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A static network reliability problem

A system has m components, in state 0 (failed) or 1 (operating).
System state: X = (X1, . . . ,Xm)t .
Structure function: Φ : {0, 1}m → {0, 1}, assumed monotone.
System is operational iff Φ(X) = 1.
Unreliability: u = P[Φ(X) = 0].

If we know p(x) = P[X = x] for all x ∈ {0, 1}m, in theory we can compute

u =
∑

x∈D={X:Φ(X)=0}

p(x).

But the cost of enumerating D is generally exponential in m.

The Xi ’s may be dependent.
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Monte Carlo (MC): Generate n i.i.d. realizations of X, say X1, . . . ,Xn,
compute Wi = Φ(Xi ) for each i , and estimate u by
W̄n = (W1 + · · ·+ Wn)/n ∼ Binomial(n, u)/n ≈ Poisson(nu)/n.
Can also estimate Var[W̄n] and compute a confidence interval on u.

When u is very small (failure is a rare event), direct MC fails.
Ex: if u = 10−10, system fails once per 10 billion runs on average.

Relative error

RE[W̄n]
def
=

√
MSE[W̄n]

u
here
=

√
1− u√
nu

→∞ when u → 0.

For example, if u ≈ 10−10, we need n ≈ 1012 to have RE[W̄n] ≤ 10%.

We would like bounded RE (or almost) when u → 0.
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Although our methods apply much more generally, we focus here on the
case where Φ is defined by a graph. Link i “works” iff Xi = 1.
The system is operational iff all the nodes in a given set V0 are connected.
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Given X, Φ(X) is easy to evaluate by graph algorithms
(e.g., minimal spanning tree). Challenge: How to sample X effectively.

We propose methods based on (a) conditional MC and (b) splitting.
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Conditional MC with auxiliary variables
[Elperin, Gertsbach, Lomonosov 1974, 1991, 1992, etc.]
Special case: the Xi ’s are independent with P[Xi = 0] = ui .

Conceptually, suppose each link i is initially failed and gets repaired at time
Yi ∼ Expon(µi ) where µi = − ln(ui ). Then P[Yi > 1] = P[Xi = 0] = ui .
Let Y = (Y1, . . . ,Ym) and π the permutation s.t. Yπ(1) < · · · < Yπ(m).

Conditional on π, we can forget the Yi ’s, add the (non-redundant) links one by
one until the graph is operational, say at step C .
Data structure: forest of spanning trees. Adding a link may merge two trees.

Permutation Monte Carlo (PMC) estimator: conditional probability that the total
time for these repairs is larger than 1:

P [A1 + · · ·+ Ac > 1 | π, C = c] .

At step j , the time Aj to next repair is exponential with rate Λj , the sum of repair
rates of all links not yet repaired. Sum is an hypoexponential.
Theorem [Gertsback and Shpungin 2010]. Gives BRE when the ui → 0.

Improvement: turnip; at each step, discard redundant unrepaired links.
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We have

P [A1 + · · ·+ Ac > 1 | π, C = c] =
c∑

j=1

e−Λj

c∏
k=1, k 6=j

Λk

Λk − Λj
.

This formula becomes unstable when c is large and/or the Λj are small.
The product terms are very large and have alternate signs (−1)j−1.

Higham (2009) propose a stable method for matrix exponential. More
reliable, but significantly slower.

For the case where the above prob is close to 1, we also have

P [A1 + · · ·+ Ac ≤ 1 | π, C = c] =
c∑

j=1

(1− e−Λj )
c∏

k=1, k 6=j

Λk

Λk − Λj
.
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A dodecahedron network
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Turnip method for dodecahedron graph: n = 106, V0 = {1, 20}
ui = ε 10−1 10−2 10−3 10−4 10−5 10−6

W̄n 2.881e-3 2.065e-6 2.006e-9 1.992e-12 1.999e-15 2.005e-18
RE[W̄n] 0.00302 0.00421 0.00433 0.00436 0.00435 0.00434
T (sec) 15.6 15.5 15.5 15.5 15.5 15.5

We see that u ≈ 2× 10−3ε and RE is bounded (proved).
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Three dodecahedron graphs in parallel.

60 nodes and 90 links.

A dodec. 1

dodec. 2

dodec. 3

B
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Turnip for three dodecahedrons in parallel: n = 108, V0 = {1, 20}
ui = ε 10−1 10−2 10−3 10−4 10−5 10−6

W̄n 2.39e-8 8.80e-18 8.20e-27 8.34e-36 8.07e-45 7.92e-54
RE[W̄n] 0.0074 0.0194 0.0211 0.0210 0.0212 0.0215
T (sec) 6236 6227 6229 6546 6408 6289

We have u ≈ 2× 10−9ε and RE is bounded (proved).
Total CPU time is about 2 hours, regardless of ε.

However, for very large graphs (thousands of links), the turnip method
fails, because the important permutations π, for which the conditional
probability contributes significantly, are rare, and hitting them becomes a
rare event.

BRE does not hold for an asymptotic regime where the size of the graph
increases. Splitting will come to the rescue (later on).
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Dependent Links: A Marshall-Olkin Copula Model

Goal: Define a model where the Xi ’s may have positive dependence.

We use an auxiliary dynamic model to specify the dependence.
Suppose all links are initially operational. For each s ⊆ {1, . . . ,m}, a
shock that takes down all links in s occurs at an exponential time with
rate λs. Let L = {s : λs > 0} = {s(1), . . . , s(κ)}.
Denote λj = λs(j), let Yj be the shock time for subset s(j), and
Y = (Y1, . . . ,Yκ) (the latent state of the system).

Xi is the the indicator that component i is operational at time 1:

Xi = I[Yj > 1 for all shocks j such that i ∈ s(j)}.

This can represent group failures and cascading failures (quite natural).

However, the previous PMC and turnip methods do not apply here,
because the “repairs” or failures of links are not independent!
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PMC method, now a destruction process
Generate the shock times Yj (instead of link failure or repair times), sort
them to get Yπ(1) < · · · < Yπ(κ), and retain only the permutation π.

PMC estimator: P[graph is failed at time 1 |π].

To compute it, add the shocks π(1), π(2), . . . , and remove corresponding
links i ∈ s(j), until the system fails, at critical shock number Cs.

Data structure: forest of spanning trees.
When removing a link: breath-first search for alternative path.

The time Aj = Yπ(j) − Yπ(j−1) between two successive shocks is
exponential with rate Λj equal to the sum of rates of all forthcoming
shocks. That is, Λ1 = λ1 + · · ·+ λκ and Λj+1 = Λj − λπ(j) for j ≥ 1.
PMC estimator of u:

U = P [A1 + · · ·+ Ac ≤ 1 | π,Cs = c] =
c∑

j=1

(1− e−Λj )
c∏

k=1, k 6=j

Λk

Λk − Λj
.
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Generating the permutation π directly

At step k , the kth shock is selected with probability λj/Λk for shock j ,
where Λk is the sum of rates for the shocks that remain. This avoids the
sort, and we stop when we reach Cs.

However, the probabilities λj/Λk change at each step, so they must be
updated to generate the next shock. Could bring significant overhead:
O(κ) time at each step; O(Csκ) time overall. So it is slower in some
situations.

A special case: If the λj are all equal, the next shock is always selected
uniformly. This amounts to generating a random permutation, which is
easy to do efficiently.
We also have a formula to compute the hypoexponential cdf must faster
in this case.
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Scanning the shocks in reverse order

Instead of adding shocks until the system fails, we can generate all the
shocks to know π, then assume that all shocks have already occurred, and
remove them one by one until V0 is connected. Reconstructing the
network like this is sometimes much faster.

But for a link to be repaired, we must remove all the shocks that affect it!
How do we know when the link is repaired?

If ci shocks can affect link i , start a counter fi at ci , and decrease it each
time a shock that affects i is removed. Link i is repaired when fi = 0.

Cs is the number of shocks that remain when the system becomes
operational, plus 1.

This gives a faster way to compute Cs when it is large (close to κ).
The estimator U remains the same.
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PMC with anti-shocks

Here we change the estimator. Assume all the shocks have occurred and
generate independent anti-shocks that remove the shocks, one by one.
Idea: repair the shocks rather than the links.

Anti-shock j occurs at exponential time Rj , with rate µj = − ln(1− e−λj ).
This gives P[Rj ≤ 1] = P[Yj > 1] = P[shock j has occurred].

Sorting the times Rj gives a permutation π′ (≡ reverse of π).
Ca = κ+ 1− Cs = anti-shock number when system becomes operational.
Times between successive anti-shocks: A′k = Rπ′(k) − Rπ′(k−1),
exponential with rate Λk = µπ(k) + · · ·+ µπ(κ). Estimator of u:

U ′ = P[A′1 + · · ·+ A′Ca
> 1 | π′].

When u is very small, we can often compute U ′ accurately and not U.
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Adapting the turnip method

When generating the shocks [or anti-shocks] in increasing order of
occurrence, at each step j , discard the future shocks [or anti-shocks] that
can no longer contribute to system failure [or repair].

For instance, when removing a link, if there are nodes that become
disconnected from V0, those nodes can be removed for further
consideration. And future shocks k that only affect removed links can be
discarded, and their rate λk subtracted from Λj .

When an anti-shock occurs, if it repairs a link that connects two groups of
nodes, all links that connect the same groups can be discarded, and
anti-shocks that only affect discarded links can be discarded.

Overhead: Must maintain data structures to identify shocks [or
anti-shocks] that can be discarded.

Removing links from the graph is more time consuming than adding links.
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A generalized splitting (GS) algorithm
Uses latent variables Y. Let

S̃(Y) = inf{γ ≥ 0 : Ψ(X(γ)) = 0},

the time at which the network fails, and S(Y) = 1/S̃(Y).

Choose real numbers 0 = γ0 < γ1 < · · · < γτ = 1 for which

ρt
def
= P[S(Y) > γt | S(Y) > γt−1] ≈ 1/2

for t = 1, . . . , τ . The γt ’s are estimated by pilot runs.

For each level γt , construct (via MCMC) a Markov chain {Yt,j , j ≥ 0}
with transition density κt and whose stationary density is the density of Y
conditional on S(Y) > γt :

ft(y)
def
= f (y)

I[S(y) > γt ]

P[S(Y) > γt ]
.
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GS algorithm with shocks

Generate Y from density f
if S(Y) > γ1 then X1 ← {Y} else return U ← 0
for t = 2 to τ do
Xt ← ∅ // set of states that have reached level γt
for all Y0 ∈ Xt−1 do

for ` = 1 to 2 do
sample Y` from density κt−1(· | Y`−1)
if S(Y`) > γt then add Y` to Xt

return U ← |Xτ |/2τ−1 as an unbiased estimator of u.

Repeat this n times, independently, and take the average.
Can compute a confidence interval, etc.
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Defining κt−1 via Gibbs sampling:

Require: Y for which S(Y) > γt−1

for j = 1 to κ do
if S(Y1, . . . ,Yj−1,∞,Yj+1, . . . ,Yκ) < γt−1 then

// removing shock j would connect V0

resample Yj from its density truncated to (0, 1/γt−1)
else

resample Yj from its original density
return Y as the resampled vector.

Data structure: forest of spanning trees.
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GS algorithm with anti-shocks
Same idea, but evolution and resampling is based on R instead of Y.

S(R) = inf{γ ≥ 0 : Ψ(X(γ)) = 1}.

Generate a vector R of anti-shock times from its unconditional density.
if S(R) > γ1 then

X1 ← {R}
else

return U ← 0
for t = 2 to τ do

Xt ← ∅ // states that have reached level γt
for all R0 ∈ Xt−1 do

for ` = 1 to s do
sample R` from the density κt−1(· | R`−1)
if S(R`) > γt then

add R` to Xt

return U ← |Xτ |/sτ−1, an unbiased estimate of u.
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Gibbs sampling for anti-shocks density κt−1(· | R):

Require: R = (R1, . . . ,Rκ) for which S(R) > γt−1.
for j = 1 to κ do

if S(R1, . . . ,Rj−1, 0,Rj+1, . . . ,Rκ) ≤ γt−1 then
resample Rj from its density truncated to (γt−1,∞)

else
resample Rj from its original density

return R as the resampled vector.



D
ra

ft

22

Example: dodecahedron graph

GS for the dodecahedron, shocks on links only: n = 106, V0 = {1, 20}
uj = ε 10−1 10−2 10−3 10−4 10−5 10−6

τ 9 19 29 39 49 59
W̄n 2.877e-3 2.054e-6 2.022e-9 2.01e-12 1.987e-15 1.969e-18
RE[W̄n] 0.0040 0.0062 0.0077 0.0089 0.0099 0.0112
T (sec) 93 167 224 278 334 376

GS, three dodeca. in parallel, shocks on links: n = 106, V0 = {1, 20}
uj = ε 10−1 10−2 10−3 10−4 10−5 10−6

τ 26 57 87 117 147 176
W̄n 2.38e-8 8.87e-18 8.18e-27 8.09e-36 8.24e-45 7.93e-54
RE[W̄n] 0.0071 0.0109 0.0137 0.0158 0.0185 0.0208
T (sec) 1202 2015 2362 2820 3041 3287

Turnip for three dodecahedrons in parallel: n = 108, V0 = {1, 20}
ui = ε 10−1 10−2 10−3 10−4 10−5 10−6

W̄n 2.39e-8 8.80e-18 8.20e-27 8.34e-36 8.07e-45 7.92e-54
RE[W̄n] 0.0074 0.0194 0.0211 0.0210 0.0212 0.0215
T (sec) 6236 6227 6229 6546 6408 6289
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Example: dodecahedron graph

Shocks on nodes and on links, all at rate λ. V0 = {1, 20}, n = 106.

λ = 10−5

algorithm W̄n S2
n/W̄

2
n RE[W̄n] C T (sec) WNRV

PMC 2.014e-5 23.8 0.0049 9.75 * 49 0.00117
PMC-π 1.996e-5 24.0 0.0049 9.75 * 35 0.00084
PMC-rev 2.014e-5 23.8 0.0049 9.75 * 50 0.00119
PMC-anti 2.012e-5 23.8 0.0049 41.25 33 0.00079
turnip 1.993e-5 24.1 0.0049 8.62 * 58 0.00140
turnip-π 1.998e-5 24.0 0.0049 8.51 * 52 0.00125
turnip-anti 2.000e-5 12.6 0.0035 40.18 53 0.00066
GS 2.002e-5 31.2 0.0056 230 0.00719
GS-anti 2.022e-5 30.7 0.0055 239 0.00732
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24Dodecahedron, shocks on links and nodes

algorithm W̄n S2
n/W̄

2
n RE[W̄n] C T (sec) WNRV

λ = 10−15

PMC 1.988e-15 24.2 0.0049 9.75 * 46 0.00112
PMC-π 1.998e-15 24.1 0.0049 9.75 * 35 0.00086
PMC-rev 2.063e-15 22.4 0.0047 9.75 * 52 0.00116
PMC-anti 1.988e-15 24.1 0.0049 41.2 33 0.00079
turnip 2.080e-15 22.2 0.0047 8.62 * 57 0.00127
turnip-π 2.079e-15 22.2 0.0047 8.51 * 51 0.00113
turnip-anti 1.984e-15 12.6 0.0036 40.18 49 0.00062
GS 2.014e-15 90.9 0.0095 688 0.0625
GS-anti 1.990e-15 102.3 0.0101 614 0.0629

λ = 10−20

PMC-anti 2.008e-20 23.9 0.0049 41.3 32 0.00077
turnip-anti 2.003e-20 12.6 0.0035 40.2 49 0.00062
GS 2.034e-20 136.2 0.012 849 0.116
GS-anti 1.962e-20 125.5 0.011 892 0.112
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Square lattice graphs

s

t

20× 20 lattice: 400 nodes, 760 links, and 1160 different shocks.
40× 40 lattice: 1600 nodes, 3120 links, and 4720 different shocks.

For λj = 10−10 and 10−20, we have µj = 23.0259 and 46.0517.
Computing U is much faster for these µ’s than for the corresponding λ’s.
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20× 20 lattice graph, n = 105

algorithm W̄n S2
n/W̄

2
n RE[W̄n] C T (sec) WNRV

λ = 10−10

PMC 1.995e-10 580 0.076 166 * 2668 15.5
PMC-π 2.018e-10 574 0.076 166 * 2252 12.9
PMC-rev 1.995e-10 580 0.076 166 * 2030 11.8
PMC-anti 2.076e-10 558 0.075 995 898 5.0
turnip 1.972e-10 587 0.077 148 * 3237 19.0
turnip-π 2.123e-10 545 0.074 147 * 2844 15.5
GS 2.021e-10 63 0.025 3033 1.9
GS-anti 2.006e-10 65 0.025 2919 1.9

algorithm W̄n S2
n/W̄

2
n RE[W̄n] C T (sec) WNRV

λ = 10−20

PMC-anti 1.984e-20 584 0.0764 995 900 5.3
GS 2.14e-20 134 0.0366 3504 4.7
GS-anti 1.992e-20 116 0.0341 3562 4.1
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40× 40 lattice graph, n = 104

algorithm W̄n S2
n/W̄

2
n RE[W̄n] C T (sec) WNRV

λ = 10−10

PMC-anti 1.888e-10 2499 0.5 4044 1437 359
GS 2.151e-10 62 0.079 4473 28
GS-anti 2.085e-10 65 0.081 4402 29

algorithm W̄n S2
n/W̄

2
n RE[W̄n] C T (sec) WNRV

λ = 10−20

PMC-anti 1.416e-20 3333 0.577 4053 1431 477
GS 1.748e-20 163 0.128 4785 78
GS-anti 1.935e-20 121 0.110 4869 59
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2820× 20 lattice graph, 400 nodes and 760 links.
One shock per node at rate λ and one shock per link at rate 10λ.
V0 = {1, 400}, GS with shocks, n = 104.

λ W̄n RE[W̄n] T (sec)

10−2 4.66e-2 0.0283 102
10−3 2.16e-3 0.0480 133
10−4 2.00e-4 0.0624 122
10−5 1.95e-5 0.0629 153
10−6 2.17e-6 0.0653 168
10−7 2.14e-7 0.0634 184
10−8 2.05e-8 0.1203 105
10−9 1.97e-9 0.1093 150
10−10 1.94e-10 0.0696 266
10−11 1.97e-11 0.0819 187
10−12 2.16e-12 0.0629 359
10−18 1.93e-18 0.0712 811

PMC and turnip do not work here when λ is too small.
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Complete graphsComplete graph with n0 nodes, one link for each pair of nodes.
n0 = 30 gives 435 links and 465 shocks.
n0 = 100 gives 4950 links and 5050 shocks.
n = 105.

algorithm W̄n S2
n/W̄

2
n RE[W̄n] C T (sec) WNRV

λ = 10−10

PMC 1.916e-10 242 0.0492 154 2246 5.43
PMC-π 1.893e-10 245 0.0495 153 1890 4.63
PMC-rev 1.916e-10 242 0.0492 154 2026 4.90
PMC-anti 1.934e-10 239 0.0489 313 110 0.26
turnip 2.065e-10 224 0.0474 100 790 1.77
turnip-π 1.911e-10 242 0.0492 100 761 1.84
turnip-anti 1.994e-10 36 0.0190 259 220 0.08
GS 1.962e-10 60 0.0244 689 0.41
GS-anti 2.061e-10 66 0.0257 580 0.38

λ = 10−20

PMC-anti 2.041e-20 227 0.0476 312 110 0.25
turnip-anti 1.961e-20 37 0.0191 260 209 0.08
GS 1.986e-20 126 0.0355 1029 1.30
GS-anti 1.924e-20 147 0.0384 891 1.31
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Complete graph with 100 nodes, n = 104

algorithm W̄n S2
n/W̄

2
n RE[W̄n] C T (sec) WNRV

λ = 10−10

PMC-anti 2.02e-10 2499 0.5 3361 1088 272
GS 1.943e-10 67 0.082 1116 7.5
GS-anti 1.935e-10 65 0.081 1107 7.2

λ = 10−20

PMC-anti 2.02e-20 2499 0.5 3379 1099 275
GS 2.13e-20 158 0.13 1475 23
GS-anti 2.15e-20 144 0.12 1385 20
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Extensions

PMC, turnip, and GS could be adapted to rare-event simulation in more
general shock-based reliability models, e.g., where shocks only alter the
state of the system, may change the future shock rates, etc. Several
applications in sight.

Example: Probability that max flow is under a given threshold in a
network where links have random capacities.

Example: Probability of overflow in a communication network where links
have capacities and demand is random.


