
D
ra

ft

1

A review of Array-RQMC

Sorting methods and convergence rates

Pierre L’Ecuyer

Christian Lécot, David Munger, Bruno Tuffin

DIRO, Université de Montréal, Canada
LAMA, Université de Savoie, France

Inria–Rennes, France

UNSW, Sydney, Feb. 2016

D
ra

ft

2

Monte Carlo for Markov Chains
Setting: A Markov chain with state space X ⊆ R`, evolves as

X0 = x0, Xj = ϕj(Xj−1,Uj), j ≥ 1,

where the Uj are i.i.d. uniform r.v.’s over (0, 1)d . Want to estimate

µ = E[Y] where Y =
τ∑

j=1

gj(Xj)

for some fixed time horizon τ .

Ordinary MC: For i = 0, . . . , n − 1, generate Xi ,j = ϕj(Xi ,j−1,Ui ,j),
j = 1, . . . , τ , where the Ui ,j ’s are i.i.d. U(0, 1)d . Estimate µ by

µ̂n =
1

n

n∑
i=1

τ∑
j=1

gj(Xi ,j) =
1

n

n∑
i=1

Yi .

E[µ̂n] = µ and Var[µ̂n] = 1
nVar[Yi] = O(n−1).

D
ra

ft

2

Monte Carlo for Markov Chains
Setting: A Markov chain with state space X ⊆ R`, evolves as

X0 = x0, Xj = ϕj(Xj−1,Uj), j ≥ 1,

where the Uj are i.i.d. uniform r.v.’s over (0, 1)d . Want to estimate

µ = E[Y] where Y =
τ∑

j=1

gj(Xj)

for some fixed time horizon τ .

Ordinary MC: For i = 0, . . . , n − 1, generate Xi ,j = ϕj(Xi ,j−1,Ui ,j),
j = 1, . . . , τ , where the Ui ,j ’s are i.i.d. U(0, 1)d . Estimate µ by

µ̂n =
1

n

n∑
i=1

τ∑
j=1

gj(Xi ,j) =
1

n

n∑
i=1

Yi .

E[µ̂n] = µ and Var[µ̂n] = 1
nVar[Yi] = O(n−1).

D
ra

ft

3

Example 1 (very simple, one-dimensional state)

Let Y = θU + (1− θ)V , where U,V indep. U(0, 1) and θ ∈ [0, 1).
This Y has cdf Gθ.

Markov chain is defined by

X0 = U0 ∼ U(0, 1);

Xj = ϕj(Xj−1,Uj) = Gθ(θXj−1 + (1− θ)Uj), j ≥ 1

where Uj ∼ U(0, 1). Then, Xj ∼ U(0, 1).

We consider various functions gj : gj(x) = x − 1/2, gj(x) = x2 − 1/3,
gj(x) = sin(2πx), gj(x) = ex − e + 1,
gj(x) = (x − 1/2)+ − 1/8, gj(x) = I[x ≤ 1/3]− 1/3.
They all have E[gj(Xj)] = 0.

Also discrepancies of states X0,j , . . . ,Xn−1,j .

D
ra

ft

4

Example 2: Asian Call Option (two-dim state)

Given observation times t1, t2, . . . , tτ suppose

S(tj) = S(tj−1) exp[(r − σ2/2)(tj − tj−1) + σ(tj − tj−1)1/2Φ−1(Uj)],

where Uj ∼ U[0, 1) and S(t0) = s0 is fixed.

Running average: S̄j = 1
j

∑j
i=1 S(ti).

Payoff at step j = τ is Y = gτ (Xτ) = max
[
0, S̄τ − K

]
.

State: Xj = (S(tj), S̄j) .

Transition:

Xj = (S(tj), S̄j) = ϕj(S(tj−1), S̄j−1,Uj) =

(
S(tj),

(j − 1)S̄j−1 + S(tj)

j

)
.

D
ra

ft

5

Plenty of potential applications:

Finance

Queueing systems

Inventory, distribution, logistic systems

Reliability models

MCMC in Bayesian statistics

Etc.

D
ra

ft

6

Classical Randomized Quasi-Monte Carlo (RQMC)
for Markov Chains

One RQMC point for each sample path.

Put Vi = (Ui ,1, . . . ,Ui ,τ) ∈ (0, 1)s = (0, 1)dτ . Estimate µ by

µ̂rqmc,n =
1

n

n∑
i=1

τ∑
j=1

gj(Xi ,j)

where Pn = {V0, . . . ,Vn−1} ⊂ (0, 1)s satisfies:
(a) each point Vi has the uniform distribution over (0, 1)s ;
(b) Pn covers (0, 1)s very evenly (i.e., has low discrepancy).

The dimension s is often very large!

D
ra

ft

7

Array-RQMC for Markov Chains
L., Lécot, Tuffin, et al. [2004, 2006, 2008, etc.]
Earlier deterministic versions: Lécot et al.
Simulate an “array” of n chains in “parallel.”
At each step, use an RQMC point set Pn to advance all the chains by one
step. Seek global negative dependence across the chains.

Goal: Want small discrepancy (or “distance”) between empirical
distribution of Sn,j = {X0,j , . . . ,Xn−1,j} and theoretical distribution of Xj .

If we succeed, these (unbiased) estimators will have small variance:

µj = E[gj(Xj)] ≈ µ̂arqmc,j ,n =
1

n

n−1∑
i=0

gj(Xi ,j)

Var[µ̂arqmc,j ,n] =
Var[gj(Xi ,j)]

n
+

2

n2

n−1∑
i=0

n−1∑
k=i+1

Cov[gj(Xi ,j), gj(Xk,j)] .

D
ra

ft

8Some RQMC insight: To simplify the discussion, suppose Xj ∼ U(0, 1)`.
This can be achieved (in principle) by a change of variable. We estimate

µj = E[gj(Xj)] = E[gj(ϕj(Xj−1,U))] =

∫
[0,1)`+d

gj(ϕj(x,u))dxdu

(we take a single j here) by

µ̂arqmc,j,n =
1

n

n−1∑
i=0

gj(Xi,j) =
1

n

n−1∑
i=0

gj(ϕj(Xi,j−1,Ui,j)).

This is (roughly) RQMC with the point set Qn = {(Xi,j−1,Ui,j), 0 ≤ i < n} .

We want Qn to have low discrepancy (LD) (be highly uniform) over [0, 1)`+d .

We do not choose the Xi,j−1’s in Qn: they come from the simulation.
To construct the (randomized) Ui,j , select a LD point set

Q̃n = {(w0,U0,j), . . . , (wn−1,Un−1,j)} ,

where the wi ∈ [0, 1)` are fixed and each Ui,j ∼ U(0, 1)d .
Permute the states Xi,j−1 so that Xπj (i),j−1 is “close” to wi for each i (LD
between the two sets), and compute Xi,j = ϕj(Xπj (i),j−1,Ui,j) for each i .

Example: If ` = 1, can take wi = (i + 0.5)/n and just sort the states.
For ` > 1, there are various ways to define the matching (multivariate sort).

D
ra

ft

8Some RQMC insight: To simplify the discussion, suppose Xj ∼ U(0, 1)`.
This can be achieved (in principle) by a change of variable. We estimate

µj = E[gj(Xj)] = E[gj(ϕj(Xj−1,U))] =

∫
[0,1)`+d

gj(ϕj(x,u))dxdu

(we take a single j here) by

µ̂arqmc,j,n =
1

n

n−1∑
i=0

gj(Xi,j) =
1

n

n−1∑
i=0

gj(ϕj(Xi,j−1,Ui,j)).

This is (roughly) RQMC with the point set Qn = {(Xi,j−1,Ui,j), 0 ≤ i < n} .

We want Qn to have low discrepancy (LD) (be highly uniform) over [0, 1)`+d .

We do not choose the Xi,j−1’s in Qn: they come from the simulation.
To construct the (randomized) Ui,j , select a LD point set

Q̃n = {(w0,U0,j), . . . , (wn−1,Un−1,j)} ,

where the wi ∈ [0, 1)` are fixed and each Ui,j ∼ U(0, 1)d .
Permute the states Xi,j−1 so that Xπj (i),j−1 is “close” to wi for each i (LD
between the two sets), and compute Xi,j = ϕj(Xπj (i),j−1,Ui,j) for each i .

Example: If ` = 1, can take wi = (i + 0.5)/n and just sort the states.
For ` > 1, there are various ways to define the matching (multivariate sort).

D
ra

ft

9

Array-RQMC algorithm

Xi ,0 ← x0 (or Xi ,0 ← xi ,0) for i = 0, . . . , n − 1;
for j = 1, 2, . . . , τ do

Compute the permutation πj of the states (for matching);
Randomize afresh {U0,j , . . . ,Un−1,j} in Q̃n;
Xi ,j = ϕj(Xπj (i),j−1,Ui ,j), for i = 0, . . . , n − 1;

µ̂arqmc,j ,n = Ȳn,j = 1
n

∑n−1
i=0 g(Xi ,j);

end for
Estimate µ by the average Ȳn = µ̂arqmc,n =

∑τ
j=1 µ̂arqmc,j ,n.

Proposition: (i) The average Ȳn is an unbiased estimator of µ.
(ii) The empirical variance of m independent realizations gives an unbiased
estimator of Var[Ȳn].

D
ra

ft

9

Array-RQMC algorithm

Xi ,0 ← x0 (or Xi ,0 ← xi ,0) for i = 0, . . . , n − 1;
for j = 1, 2, . . . , τ do

Compute the permutation πj of the states (for matching);
Randomize afresh {U0,j , . . . ,Un−1,j} in Q̃n;
Xi ,j = ϕj(Xπj (i),j−1,Ui ,j), for i = 0, . . . , n − 1;

µ̂arqmc,j ,n = Ȳn,j = 1
n

∑n−1
i=0 g(Xi ,j);

end for
Estimate µ by the average Ȳn = µ̂arqmc,n =

∑τ
j=1 µ̂arqmc,j ,n.

Proposition: (i) The average Ȳn is an unbiased estimator of µ.
(ii) The empirical variance of m independent realizations gives an unbiased
estimator of Var[Ȳn].

D
ra

ft

10

Key issues:

1. How can we preserve LD of Sn,j as j increases?

2. Can we prove that Var[µ̂arqmc,j ,n] = O(n−α) for some α > 1?
How? What α?

Intuition: Write discrepancy measure of Sn,j as the mean square
integration error (or variance) when integrating some function
ψ : [0, 1)`+d → R using Qn.
Use RQMC theory to show it is small if Qn has LD. Then use induction.

D
ra

ft

11

Some generalizations

L., Lécot, and Tuffin [2008]: τ can be a random stopping time w.r.t. the
filtration F{(j ,Xj), j ≥ 0}.

L., Demers, and Tuffin [2006, 2007]: Combination with splitting
techniques (multilevel and without levels), combination with importance
sampling and weight windows. Covers particle filters.

L. and Sanvido [2010]: Combination with coupling from the past for exact
sampling.

Dion and L. [2010]: Combination with approximate dynamic programming
and for optimal stopping problems.

Gerber and Chopin [2015]: Sequential QMC.

D
ra

ft

12

Convergence results and applications

L., Lécot, and Tuffin [2006, 2008]: Special cases: convergence at MC rate,
one-dimensional, stratification, etc. Var in O(n−3/2).

Lécot and Tuffin [2004]: Deterministic, one-dimension, discrete state.

El Haddad, Lécot, L. [2008, 2010]: Deterministic, multidimensional.

Fakhererredine, El Haddad, Lécot [2012, 2013, 2014]: LHS, stratification,
Sudoku sampling, ...

Wächter and Keller [2008]: Applications in computer graphics.

Gerber and Chopin [2015]: Sequential QMC (particle filters), Owen nested
scrambling an dHilbert sort.
Variance in o(n−1).

D
ra

ft

13

Mapping chains to points when ` > 2

1. Multivariate batch sort:
Sort the states (chains) by first coordinate, in n1 packets of size n/n1.

Sort each packet by second coordinate, in n2 packets of size n/n1n2.

· · ·
At the last level, sort each packet of size n` by the last coordinate.

Choice of n1, n2, ..., n`?

D
ra

ft

14

A (4,4) mapping

States of the chains

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

s
s

s
s

s

s

s sss ss

s s
s

s

Sobol’ net in 2 dimensions after
random digital shift

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0 s

s
s

s

s

s

s

s
s

s

s

s

s

s
s

s

D
ra

ft

15

A (4,4) mapping

States of the chains

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

s
s

s
s

ss
s s

s
s

ss

ss

s
s

Sobol’ net in 2 dimensions after
random digital shift

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

s
s

s
s

s
s s

s

s
s

s
s

s
s
s

s

D
ra

ft

16

A (4,4) mapping

States of the chains

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

z
z

s
s

s
s

ss
s s

s
s

ss

ss

s
s

Sobol’ net in 2 dimensions after
random digital shift

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

z
z

s
s

s
s

s
s s

s

s
s

s
s

s
s
s

s

D
ra

ft

16

A (4,4) mapping

States of the chains

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

z
z

s
s

s
s

ss
s s

s
s

ss

ss

s
s

Sobol’ net in 2 dimensions after
random digital shift

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

z
z

s
s

s
s

s
s s

s

s
s

s
s

s
s
s

s

D
ra

ft

17

A (4,4) mapping

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

s
s

s
s

s

s s

s

s
s

s
s

s

s

s

s

s
s

s
s

s
ss

s
s

s

s
s

ss

s
s

D
ra

ft

18

A (16,1) mapping, sorting along first coordinate

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

s

s
s

s

s s

s

s s

s
s

s

s

s

s

s

s

s
s

s
s

s

s
s

s

s
s

s s

s
s

s

D
ra

ft

19

A (1,16) mapping, sorting along second coordinate

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

ss s ss sss s s ss sss s

s s sssss s
s s

s
ss s
ss

D
ra

ft

20

Mapping chains to points when ` > 2

2. Multivariate split sort:
n1 = n2 = · · · = 2.

Sort by first coordinate in 2 packets.

Sort each packet by second coordinate in 2 packets.

etc.

D
ra

ft

21

Mapping by split sort

States of the chains

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

z
z

s
s

s
s

ss
s s

s
s

ss

ss

s
s

Sobol’ net in 2 dimensions after
random digital shift

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

z
z

s
s

s
s

s
s s

s

s
s

s
s

s
s
s

s

D
ra

ft

21

Mapping by split sort

States of the chains

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

z
z

s
s

s
s

ss
s s

s
s

ss

ss

s
s

Sobol’ net in 2 dimensions after
random digital shift

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

z
z

s
s

s
s

s
s s

s

s
s

s
s

s
s
s

s

D
ra

ft

21

Mapping by split sort

States of the chains

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

z
z

s
s

s
s

ss
s s

s
s

ss

ss

s
s

Sobol’ net in 2 dimensions after
random digital shift

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

z
z

s
s

s
s

s
s s

s

s
s

s
s

s
s
s

s

D
ra

ft

21

Mapping by split sort

States of the chains

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

z
z

s
s

s
s

ss
s s

s
s

ss

ss

s
s

Sobol’ net in 2 dimensions after
random digital shift

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

z
z

s
s

s
s

s
s s

s

s
s

s
s

s
s
s

s

D
ra

ft

21

Mapping by split sort

States of the chains

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

z
z

s
s

s
s

ss
s s

s
s

ss

ss

s
s

Sobol’ net in 2 dimensions after
random digital shift

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

z
z

s
s

s
s

s
s s

s

s
s

s
s

s
s
s

s

D
ra

ft

22

Mapping by batch sort and split sort
One advantage: The state space does not have to be [0, 1)d :

States of the chains

−∞−∞ ∞

∞

z
z

s
s

s
s

ss
s s

s
s

ss

ss

s
s

Sobol’ net + digital shift

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

z
z

s
s

s
s

s
s s

s

s
s

s
s

s
s
s

s

D
ra

ft

22

Mapping by batch sort and split sort
One advantage: The state space does not have to be [0, 1)d :

States of the chains

−∞−∞ ∞

∞

z
z

s
s

s
s

ss
s s

s
s

ss

ss

s
s

Sobol’ net + digital shift

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

z
z

s
s

s
s

s
s s

s

s
s

s
s

s
s
s

s

D
ra

ft

22

Mapping by batch sort and split sort
One advantage: The state space does not have to be [0, 1)d :

States of the chains

−∞−∞ ∞

∞

z
z

s
s

s
s

ss
s s

s
s

ss

ss

s
s

Sobol’ net + digital shift

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

z
z

s
s

s
s

s
s s

s

s
s

s
s

s
s
s

s

D
ra

ft

22

Mapping by batch sort and split sort
One advantage: The state space does not have to be [0, 1)d :

States of the chains

−∞−∞ ∞

∞

z
z

s
s

s
s

ss
s s

s
s

ss

ss

s
s

Sobol’ net + digital shift

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

z
z

s
s

s
s

s
s s

s

s
s

s
s

s
s
s

s

D
ra

ft

22

Mapping by batch sort and split sort
One advantage: The state space does not have to be [0, 1)d :

States of the chains

−∞−∞ ∞

∞

z
z

s
s

s
s

ss
s s

s
s

ss

ss

s
s

Sobol’ net + digital shift

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

z
z

s
s

s
s

s
s s

s

s
s

s
s

s
s
s

s

D
ra

ft

23

Lowering the state dimension

For large `: Define a transformation h : X → [0, 1)c for c < `.
Sort the transformed points h(Xi ,j) in c dimensions.
Now we only need c + d dimensions for the RQMC point sets;
c for the mapping and d to advance the chain.

Choice of h: states mapped to nearby values should be nearly equivalent.

For c = 1, X is mapped to [0, 1), which leads to a one-dim sort.

The mapping h with c = 1 can be based on a space-filling curve:
Wächter and Keller [2008] use a Lebesgue Z-curve and mention others;
Gerber and Chopin [2015] use a Hilbert curve and prove o(n−1)
convergence for the variance when used with digital nets and Owen nested
scrambling. A Peano curve would also work in base 3.

Reality check: We only need a good pairing between states and RQMC
points. Any good way of doing this is welcome!

D
ra

ft

24

Hilbert curve
In ` dimensions, m levels: 2m` subcubes and curve has length 2m(`−1).

D
ra

ft

25

Sorting by a Hilbert curve

Suppose the state space is X = [0, 1)`.
Partition this cube into 2m` subcubes of equal size.
When a subcube contains more than one point (a collision), we could split
it again in 2`. But in practice, we rather fix m and neglect collisions.

The Hilbert curve defines a way to enumerate (order) the subcubes so
that successive subcubes are always adjacent. This gives a way to sort the
points. Colliding points are ordered arbitrarily. We precompute and store
the map from point coordinates (first m bits) to its position in the list.

Then we can map states to points as if the state had one dimension.
We use RQMC points in 1 + d dimensions, ordered by first coordinate,
which is used to match the states, and d (randomized) coordinates are
used to advance the chains.

D
ra

ft

26

Hilbert curve sort

States of the chains

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

s
s

s
s

ss
s s

s
s

ss

ss

s
s

D
ra

ft

26

Hilbert curve sort

States of the chains

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

s
s

s
s

ss
s s

s
s

ss

ss

s
s

D
ra

ft

26

Hilbert curve sort

States of the chains

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

s
s

s
s

ss
s s

s
s

ss

ss

s
s

D
ra

ft

26

Hilbert curve sort

States of the chains

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

s
s

s
s

ss
s s

s
s

ss

ss

s
s

D
ra

ft

27

What if state space is not [0, 1)`?

Ex.: For the Asian option, X = [0,∞)2.

Then one must define a transformation ψ : X → [0, 1)` so that the
transformed state is approximately uniformly distributed over [0, 1)`.

Not easy to find a good ψ in general!
Gerber and Chopin [2015] propose using a logistic transformation for each
coordinate, combined with trial and error.

A lousy choice could possibly damage efficiency.

D
ra

ft

28

Intuition for multivariate sort
For a path that connects the points in a given order, the variation along
the path may have a bound that is proportional to its length.

Shortest path that connect all the points? Traveling salesman problem!
Quickest heuristic for a good solution when n is very large: Hilbert or
Peano curve sorts! Length of shortest path is O(

√
n) on average. and

heuristic gives O(log n
√
n).

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

r
r

r
r

rrr r r
r
rr

rr

r r

D
ra

ft

29

Hilbert curve batch sort

Perform a multivariate batch sort, or a split sort, and then enumerate the
boxes as in the Hilbert curve sort.
Advantage: the state space can be R`.

−∞−∞ ∞

∞

s
s

s
s

ss
s s

s
s

ss

ss

s
s

D
ra

ft

30

Proved convergence results
L., Lécot, Tuffin [2008] + some extensions.
Simple case: suppose ` = d = 1, X = [0, 1], and Xj ∼ U(0, 1). Define

∆j = sup
x∈X
|F̂j(x)− Fj(x)| (star discrepancy of states)

V∞(gj) =

∫ 1

0

∣∣∣∣dgj(x)

dx

∣∣∣∣ dx (corresponding variation of gj)

D2
j =

∫ 1

0
(F̂j(x)− Fj(x))2dx =

1

12n2
+

1

n

n−1∑
i=0

((i + 0.5/n)− Fj(X(i),j))2, (square L2 discrepancy),

V 2
2 (gj) =

∫ 1

0

∣∣∣∣dgj(x)

dx

∣∣∣∣2 dx (corresp. square variation of gj).

We have ∣∣Ȳn,j − E[gj(Xj)]
∣∣ ≤ ∆jV∞(gj),

Var[Ȳn,j] = E[(Ȳn,j − E[gj(Xj)])2] ≤ E[D2
j]V 2

2 (gj).

D
ra

ft

31

Convergence results and proofs, ` = 1

Assumption 1. ϕj(x , u) non-decreasing in u. Also n = k2 for some
integer k and that each square of the k × k grid contains exactly one
RQMC point.

Let Λj = sup0≤z≤1 V (Fj(z | ·)).

Proposition. (Worst-case error.) Under Assumption 1,

∆j ≤ n−1/2
j∑

k=1

(Λk + 1)

j∏
i=k+1

Λi .

Corollary. If Λj ≤ ρ < 1 for all j , then

∆j ≤
1 + ρ

1− ρ
n−1/2.

D
ra

ft

32

Convergence results and proofs, ` = 1
Assumption 2. (Stratification) Assumption 1 holds, ϕj also
non-decreasing in x , and randomized parts of the points are uniformly
distributed in the cubes and pairwise independent (or negatively
dependent) conditional on the cubes in which they lie.

Proposition. (Variance bound.) Under Assumption 2,

E[D2
j] ≤

(
1

4

j∑
`=1

(Λ` + 1)

j∏
i=`+1

Λ2
i

)
n−3/2

Corollary. If Λj ≤ ρ < 1 for all j , then

E[D2
j] ≤ 1 + ρ

4(1− ρ2)
n−3/2 =

1

4(1− ρ)
n−3/2,

Var[Ȳn,j] ≤
1

4(1− ρ)
V 2

2 (gj)n
−3/2.

These bounds are uniform in j .

D
ra

ft

33

Convergence results and proofs, ` > 1

Worst-case error of O(n−1/(`+1)) has been proved in a deterministic
setting for a discrete state space in X ⊆ Z`, and for a continuous state
space X ⊆ R` under strong conditions on ϕj , using a batch sort
(El Haddad, Lécot, L’Ecuyer 2008, 2010).

Gerber and Chopin (2015) proved o(n−1) for the variance, for Hilbert sort
and digital net with nested scrambling.

D
ra

ft

34

The one-dimensional example

X0 = U0; Xj = ϕj(Xj−1,Uj) = Gθ(θXj−1 + (1− θ)Uj), j ≥ 1

For array-RQMC, we take Xi ,0 = wi = (i − 1/2)/n.

We have

E[D2
j] ≤ n−3/2

4(1− ρ)
=

1− θ
4(1− 2θ)

n−3/2.

We tried different RQMC methods, for n = 29 to n = 221.
We did m = 200 independent replications for each n.
We fitted a linear regression of log2 Var[Ȳn,j] vs log2 n, for various gj

We also looked at E[D2
j] and E[Pα] for α = 2, 4, 6.

D
ra

ft

35

Some MC and RQMC point sets:

MC: Crude Monte Carlo
LHS: Latin hypercube sampling
SS: Stratified sampling
SSA: Stratified sampling with antithetic variates in each stratum
Sobol: Sobol’ points, left matrix scrambling + digital random shift
Sobol+baker: Add baker transformation
Sobol+NUS: Sobol’ points with Owen’s nested uniform scrambling
Korobov: Korobov lattice in 2 dim. with a random shift modulo 1
Korobov+baker: Add a baker transformation

D
ra

ft

36

slope vs log2 n log2 E[D2
j] log2 Var[Ȳn,j]

Xj − 1
2 X 2

j − 1
3 (Xj − 1

2)+ − 1
8 I[Xj ≤ 1

3]− 1
3

MC -1.01 -1.02 -1.01 -1.00 -1.02
LHS -1.02 -0.99 -1.00 -1.00 -1.00

SS -1.50 -1.98 -2.00 -2.00 -1.49
SSA -1.50 -2.65 -2.56 -2.50 -1.50

Sobol -1.51 -3.22 -3.14 -2.52 -1.49
Sobol+baker -1.50 -3.41 -3.36 -2.54 -1.50
Sobol+NUS -1.50 -2.95 -2.95 -2.54 -1.52

Korobov -1.87 -2.00 -1.98 -1.98 -1.85
Korobov+baker -1.92 -2.01 -2.02 -2.01 -1.90

− log10 Var[Ȳn,j] for n = 221 CPU time (sec)
X 2
j − 1

3 (Xj − 1
2)+ − 1

8 I[Xj ≤ 1
3]− 1

3

MC 7.35 7.86 6.98 270
LHS 8.82 8.93 7.61 992

SS 13.73 14.10 10.20 2334
SSA 18.12 17.41 10.38 1576

Sobol 19.86 17.51 10.36 443
Korobov 13.55 14.03 11.98 359

Summarize behavior of Pα for the states, for α = 2, 4, 6.

D
ra

ft

37

Example: Asian Call Option
S(0) = 100, K = 100, r = 0.05, σ = 0.15, tj = j/52, j = 0, . . . , τ = 13.
RQMC: Sobol’ points with linear scrambling + random digital shift.
Similar results for randomly-shifted lattice + baker’s transform.

log2 n
8 10 12 14 16 18 20

log2 Var[µ̂RQMC,n]

-40

-30

-20

-10

n−2

array-RQMC, split sort

RQMC sequential

crude MC
n−1

D
ra

ft

38

Array-RQMC for Asian option, 2-dim. batch sort
Sort in n1 packets based on S(tj), then sort the packets based on S̄j .

log2 n
8 10 12 14 16 18 20

log2 Var[µ̂arqmc,n]

-40

-30

-20

-10

n−2

n−1

n1 = n2/3

n1 = n1/3

n1 = n2 = n−1/2

sort on S̄j
sort on S(tj)

D
ra

ft

39

Example: Asian Call Option

S(0) = 100, K = 100, r = ln(1.09), σ = 0.2,
tj = (230 + j)/365, for j = 1, . . . , τ = 10.

D
ra

ft

40

Example: Asian Call Option

Sort RQMC points
log2 Var[Ȳn,j]

log2 n
VRF CPU (sec)

Split sort SS -1.38 2.0× 102 3093
Sobol -2.04 4.0× 106 1116

Sobol+NUS -2.03 2.6× 106 1402
Korobov+baker -2.00 2.2× 106 903

Batch sort SS -1.38 2.0× 102 744
(n1 = n2) Sobol -2.03 4.2× 106 532

Sobol+NUS -2.03 2.8× 106 1035
Korobov+baker -2.04 4.4× 106 482

Hilbert batch sort SS -1.54 2.3× 103 835
Sobol -1.79 1.4× 105 555

Sobol+NUS -1.80 1.2× 105 711
Korobov+baker -1.92 3.4× 106 528

Hilbert sort SS -1.55 2.4× 103 840
(logistic map) Sobol -2.03 2.6× 106 534

Sobol+NUS -2.02 2.8× 106 724
Korobov+baker -2.01 3.3× 106 567

VRF for n = 220. CPU time for m = 100 replications.

D
ra

ft

41

Conclusion

We have convergence proofs for special cases, but not yet for the rates we
observe in examples.

Many other sorting strategies remain to be explored.

Other examples and applications. Higher dimension.

Array-RQMC is good not only to estimate the mean more accurately, but
also to estimate the entire distribution of the state.

