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Object of this talk

Think of a static system in which components have a random state, and
there is a small probability u that their combined state is not good enough
for the system to work properly.

Estimating u by standard Monte Carlo can be very inefficient.

In this talk we discuss a class of methods that transform the (simple)
static model into a (more complicated) dynamic system, a
continuous-time Markov chain, whose simulation can provide a much more
efficient estimator of u when combined with conditional Monte Carlo.
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CTMC model
Some rare-event estimation problems can be recast as follows.

We have a continuous-time Markov chain (CTMC) {X(γ), γ ≥ 0}
over state space X , with X(0) = x0 ∈ X .

In state x ∈ X , jump rate is λ(x) and next state is x′ with (transition)
probability p(x′ | x). (Works also for a density p.)

Let T0 = 0 and T1 < T2 < · · · the jump times.
At Tj , chain jumps from state Xj−1 = X(Tj−1) to state Xj = X(Tj).
The associated discrete-time chain (DTMC) is {Xj , j ≥ 0}.
Let ∆ ⊂ X (target) and C = inf{j ≥ 0 : Xj ∈ ∆} (a stopping time).

We want to estimate some function of TC = inf{Tj : Xj ∈ ∆}; e.g.,
u(γ) = P[TC > γ].

Conditional on the DTMC trajectory H = (X0,X1, . . . ,XC ), the
Aj = Tj − Tj−1 are independent exponential with rates Λj = λ(Xj−1).
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Monte Carlo (MC) for function of TC

To estimate u = u(γ) = P[TC > γ], generate n realizations I1, . . . , In of
I = I[TC > γ], and compute estimator

Īn =
1

n

n∑
i=1

Ii .

When u is very small ({TC > γ} is a rare event), direct MC fails because
the rare event occurs too rarely.

Relative error

RE[Īn]
def
=

√
MSE[Īn]

u
here
=

√
1− u√
nu

→∞ when u → 0.

For example, if u ≈ 10−10, we need n ≈ 1012 to have RE[Īn] ≤ 10%.

We would like bounded RE (or almost) when u → 0.
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Conditioning on the DTMC
Alternative: replace I = I[TC > γ] by W = P[TC > γ | H].
Idea used for static network reliability estimation by Elperin, Gertsbach,
Lomonosov [1974, 1991, 1992, etc.].

Conditional on H, TC = A1 + · · ·+ AC is hypoexponential, with cdf and pdf:

F (γ | H) = P[TC ≤ γ | H] = 1− et
1 exp(Q γ)1

and
f (γ | H) = −et

1 exp(Q γ)Q1,

where et
1 = (1, 0, . . . , 0), 1 = (1, . . . , 1)t , and

Q =



−Λ1 Λ1 0 · · · 0

0 −Λ2 Λ2 0
...

0 0
. . .

. . . 0
... 0 0 −ΛC−1 ΛC−1

0 · · · 0 0 −ΛC


.
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Higham (2009) has a stable and accurate algorithm for the matrix
exponential that takes O(C 3) time. Slow when C is large.

In some applications, Λj decreases strictly with j .
Then, explicit formulas (O(c2) time):

W = P[TC > γ | H] =
C∑
j=1

e−Λjγpj(H) = 1−
C∑
j=1

(1− e−Λjγ)pj(H)

where

pj(H) =
C∏

k=1, k 6=j

Λk

Λk − Λj
.

But does not work if some Λk − Λj = 0 (or near).
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Permutation Monte Carlo estimator

To estimate u(γ) = P[TC > γ], sample n independent realizations of H
and compute W = W (H) = P[TC > γ | H] for each, say W1, . . . ,Wn.

PMC estimator:

W̄n =
1

n

n∑
i=1

Wi .

Since P[0 <W < 1] = 1, one has Var[W ] < Var[I ] and

Var[W̄n] < Var[Īn] (strictly).
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Bounded relative error (BRE)

Suppose the distribution of TC depends on a parameter ε and
u = u(ε) = P[TC (ε) > γ]→ 0 when ε→ 0. Then,

RE2[Īn] =
Var[Īn]

u2
=

1− u

nu
→∞ when ε→ 0.

However, RE2[W̄n] = E[W 2/u2 − 1] <∞ iff E[W 2/u2] ≤ K .

If the number of paths H is finite, this happens iff when ε→ 0,
P[H]W 2(H)/u2 ≤ K for all H. Holds iff P[H] 6→ 0 for all H.
A sufficient condition: whenever p(x′ | x) > 0, p(x′ | x) 6→ 0 when ε > 0.

More specific (weaker) conditions can be formulated on certain examples.

Our development adapts easily to the case where we want to estimate
P[TC (ε)≤γ]→ 0 instead of P[TC (ε) > γ].



D
ra

ft

8

Bounded relative error (BRE)

Suppose the distribution of TC depends on a parameter ε and
u = u(ε) = P[TC (ε) > γ]→ 0 when ε→ 0. Then,

RE2[Īn] =
Var[Īn]
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Simple example: Credit risk

An lending firm (or bank) has m obligors. With probability ui , obligor i
defaults (Xi = 1) and the firm loses `i from it. Total loss:

L = L(X) =
m∑
i=1

Xi`i .

We want to estimate u = P[L > `∗].

Exact formula (2m terms):

u =
∑

x∈{0,1}m
I[L(x) > `∗]

m∏
i=1

uxii (1− ui )
1−xi .

MC: generate X = (X1, . . . ,Xm), compute L and I = I[L > `∗].
Repeat n times and take the average.
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From static model to CTMC

PMC: define Yi exponential with rate λi = − ln(1− ui ).
Then P[Yi ≤ 1] = 1− e−λi = ui .

Define a CTMC whose state is a binary vector X(γ) = (X1(γ), . . . ,Xm(γ))
where Xi (0) = 0 and Xi (γ) jumps from 0 to 1 at time γ = Yi .
We have P[Xi (1) = 1] = ui and P[L(X(1)) > `∗] = u.

Let π the permutation s.t. Yπ(1) < · · · < Yπ(m) (ordered jumps).
Conditional on π, we can forget the Yi ’s, switch the Xi ’s one by one until
L(X) > `∗, say at step C = min{j : L(Xj) > `∗}.

The CTMC has initial jump rate Λ1 = λ1 + · · ·+ λm.
At the jth jump of the DTMC, Xπ(j) switches from 0 to 1 and the jump
rate decreases to Λj+1 = Λj − λπ(j). Thus, Λj is strictly decreasing in j
and C cannot exceed m. Easy to apply PMC.
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A CTMC that removes the defaults

Instead of adding the defaults one by one, we can construct a CTMC that
starts with all obligors in default, and remove the defaults one by one until
L(X) ≤ `∗, say at step C ′.

The “anti-default” that switches Xi from 1 to 0 occurs at time Ri , taken
as exponential with rate µi = − ln(1− e−λi ), so P[Ri ≤ 1] = P[Yi > 1].

We have a similar PMC estimator of u, with C ′, Λ′j , ..., defined from the
µi :

W ′ = P[A′1 + · · ·+ A′C ′ > 1 | π′].

In this example, we expect C � C ′, i.e., we should need much less than
half the obligors to default, so the first approach should be faster.
But the second approach may win in terms of variance.
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BRE, functional estimation, etc.

Suppose ui = ui (ε)→ 0 when ε→ 0.

If ui (ε)/uj(ε) ≥ δ > 0 for all i , j , then the PMC estimator has bounded
relative error (sufficient condition for BRE).

Moreover, if ui (ε) = κε for all i , then the law of the DTMC (or π) does
not depend on ε, so we can estimate u(ε) as a function of ε (the entire
function), and even its derivative w.r.t. ε, from a single sample of n
realizations of π.
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Multicomponent static system

A system has m components, in state 0 (failed) or 1 (operating).
System state: X = (X1, . . . ,Xm)t .
Structure function: Φ : {0, 1}m → {0, 1}, assumed monotone.
System is operational iff Φ(X) = 1.
Unreliability: u = P[Φ(X) = 0].

CTMC model: Suppose all links are initially operational. For certain
subsets s ⊆ {1, . . . ,m}, a shock that takes down all components in s
occurs at time Yj , an exponential with rate λj = λs(j).
At time Yj , Xi (γ) is set to 0 for all i ∈ s(j).
We have u = P[Φ(X(1)) = 0].
PMC: Generate only the order in which the shocks occur, and compute W .

Scanning the shocks in reverse order: We can also replace shocks by
“anti-shocks”: Start by assuming that all the shocks have occurred and
remove them one by one.
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Example: A dodecahedron network
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Dodecahedron graph, shocks on nodes and on links

All shocks at rate λj except on V0 = {1, 20}; n = 106.

algorithm W̄n S2
n/W̄

2
n RE[W̄n] C̄ T (sec) WNRV

λj = 10−3

PMC 1.62e-8 993 0.032 12.7 35 0.035
PMC-anti 1.60e-8 1004 0.032 36.3 17 0.018
turnip 1.63e-8 894 0.030 10.7 • 72 0.064
turnip-anti 1.58e-8 296 0.017 35.8 ◦ 45 0.013

λj = 10−7

PMC 1.65e-20 1047 0.032 12.7 32 0.034
PMC-anti 1.66e-20 1044 0.032 36.3 18 0.019
turnip-anti 1.58e-20 311 0.018 35.8 ◦ 44 0.014
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Example: Max flow in network with random capacities

A network has links with random capacities, distributed over finite sets.

We want to estimate the probability u that the max flow between two
given nodes is under a given target threshold.

In the CTMC model, the capacities start at their minimum, and at the
jump times Yj , the capacity of one or more link(s) jumps up.

Or it can be the other way around: capacities start at max and go down.

PMC can be very effective when u is very small and the network is not too
large.

Example: Probability of overflow in a communication network
where links have fixed capacities and demand is random.
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Conclusion

The CTMC-PMC approach can be very efficient in situations where the
number of steps in the CTMC remains relatively small, so the important
permutations are not too rare.

The mehod is not always effective.

When C can be very large, important realizations of H may be too rare,
and other approaches could be needed. Splitting and generalized splitting
(GS) often work well in those situations. See our papers (on our web
pages) for further details.


