Learning Deep Physiological Models of Affect

Héctor P. Martínez, Student Member, IEEE, Yoshua Bengio, and Georgios N. Yannakakis, Member, IEEE

Abstract—Feature extraction and feature selection are critical phases in the process of affective modeling. Both, however, incorporate substantial limitations that hinder the development of reliable and accurate models of affect. This paper builds on recent advances in machine learning and computational intelligence and introduces the use of deep learning (DL) approaches for modeling affect manifested through physiology. The efficiency of DL algorithms that train artificial neural network models is tested and compared against standard feature extraction and selection approaches followed in the literature. Results on a game data corpus — containing players’ physiological signals (i.e. skin conductance and blood volume pulse) and subjective self-reports of affect — reveals that DL outperforms manual ad-hoc feature extraction as it yields significantly more accurate affective models. Moreover, it appears that DL meets and even outperforms affective models that are boosted by automatic feature selection, for several of the scenarios examined. As the DL method is generic and applicable to any affective modeling task, the key findings of the paper suggest that ad-hoc feature extraction and selection — to a lesser degree — could be bypassed.

Index Terms—Deep learning, affective modeling, auto-encoders, convolutional neural networks, preference learning, skin conductance, blood volume pulse, signal fusion, games.

I. INTRODUCTION

MORE than 15 years after the early studies in Affective Computing (AC), [1] the problem of detecting and modeling emotions within human computer interaction (HCI) remains complex and largely unexplored. The detection and modeling of emotion is, primarily, the study and use of artificial and computational intelligence (AI and CI) techniques for the construction of computational models of emotion. The key challenges one faces when attempts to model emotion [2] are inherent in the vague definitions and fuzzy boundaries of emotion but also in the modeling methodology followed. On that basis, open research questions are still existent in all key components of the modeling process. These include, first, the appropriateness of the modeling tool employed to map emotion manifestations and responses to annotated affective states; second, the processing of signals that express those manifestations (i.e. model input) and; third, the way affective annotation (i.e. model output) is handled. This paper touches manifestations (i.e. model input) and; third, the way affective states; second, the processing of signals that express those key components of the modeling process. These include, first, on automatic selection. Learning within deep artificial neural network (ANN) architectures has proven to be a powerful machine learning approach for a number of benchmark problems and domains including image and speech recognition [4], [5]. DL allows the automation of feature extraction (and feature selection, in part) without compromising on the accuracy of the obtained computational models and the physical meaning of the data attributes extracted [6]. Using DL we are able to extract meaningful multimodal data attributes beyond manual ad-hoc feature design. These learned attributes lead to more accurate affective models and, at the same time, potentially save computational resources bypassing the computationally-expensive feature selection phase. Most importantly, with the use of DL we gain on simplicity as multiple signals can be
fused and fed directly — with just limited processing — to the model for training. Reviewing other automatic feature extraction techniques, principal component analysis (PCA) and fisher projection are the most common methods within AC, however they are typically applied to a set of features extracted a priori [7] while we apply DL directly to the data signals. Moreover, DL techniques can operate with any signal type and are not restricted to discrete signals as e.g. sequential data mining techniques are [8]. Finally, compared to dynamic affect modelers such as Hidden Markov Models, Dynamic Bayesian Networks and Recurrent Neural Networks, DL ANNs are advantageous with respect to their ability to reduce a signal’s resolution across the several layers of their architectures.

This paper focuses on developing DL models of affect which is annotated in a ranking format (pairwise preferences). We emphasize on the benefits of preference-based (or ranking-based) annotations for emotion (e.g. X is more frustrating than Y) opposed to rating-based annotation [9] (such as the emotional dimensions of arousal and valence [10]) and we introduce the use of DL algorithms for preference learning, namely, preference deep learning (PDL). In this paper the PDL algorithm proposed is tested on emotional manifestations of relaxation, anxiety, excitement, and fun, embedded in physiological signals (i.e. skin conductance and blood volume pulse) derived from a game-based user study of 36 participants. The comparative study against ad-hoc feature extraction on physiological signals — used broadly in the AC literature — shows that DL yields models of equal or significantly higher accuracy when a single signal is used as model input. When the skin conductance and blood volume pulse signals are fused DL outperforms standard feature extraction across all affective states examined. The supremacy of DL is maintained even when automatic feature selection is employed to improve models built on ad-hoc features; in several affective states the performance of models built on automatically selected ad-hoc features does not surpass or reach the corresponding accuracy of the PDL approach.

This paper advances the state-of-the-art in affective modeling in several ways. First, to the best of the authors’ knowledge, this is the first time deep learning is introduced to the domain of psychophysiology yielding efficient computational models of affect. Second, the paper shows the supremacy of the method when applied for the fusion of different physiological signals. Third, the paper introduces PDL, i.e. the use of deep ANN architectures for training on ranked (pairwise preference) annotations of affect. Finally, the key findings of the paper show the potential of DL as a mechanism for eliminating manual feature extraction and even, in some occasions, bypassing automatic feature selection for affective modeling.

II. COMPUTATIONAL MODELING OF AFFECT

Emotions and affect are mental and bodily processes that can be inferred by a human observer from a combination of contextual, behavioral and physiological cues. Part of the complexity of affect modeling emerges from the challenges of finding objective and measurable signals that carry affective information (e.g. body posture, speech and skin conductance) and designing methodologies to collect and label emotional experiences effectively (e.g. induce specific emotions by exposing participants to a set of images). Although this paper is only concerned with computational aspects of creating physiological detectors of affect, the signals and the affective target values collected shape the modeling task and, thus, influence the efficacy and applicability of dissimilar computational methods. Consequently, this section gives an overview of the field beyond the input modalities and emotion annotation protocols examined in our case study. Furthermore, the studies surveyed are representative of the two principal applications of CI for affect modeling and cover the two key research pillars of this paper: 1) defining feature sets to extract relevant bits of information from objective data signals (i.e. CI for feature extraction), and 2) creating models that map a feature set into given affective target value (i.e. CI for training models of affect).

A. CI for Feature Extraction

In the context of affect detection, we refer to feature extraction as the process of transforming the raw signals captured by the hardware (e.g. a skin conductance sensor, a microphone, or a camera) into a set of inputs suitable for a computational predictor of affect. The most common features extracted from unidimensional continuous signals — i.e. temporal sequences of real values such as blood volume pulse, accelerometer data, or speech — are simple statistical features — such as average and standard deviation values — calculated on the time or frequency domains of the raw or the normalized signals (see [11], [12] among others). More complex feature extractors inspired by signal processing methods have also been proposed by several authors. For instance, Giakoumis et al. [13] proposed features extracted from physiological signals using Legendre and Krawtchouk polynomials while Yannakakis and Hallam [14] used the approximate entropy [15] and the parameters of linear, quadratic and exponential regression models fitted to a heart rate signal. The focus of this paper is on DL methods that can automatically derive feature extractors from the data opposed to a fixed set of extractors that represent statistical features of the signals.

Unidimensional discrete signals — i.e. temporal sequences of discrete labels, typically events such as clicking a mouse button or blinking an eye — are usually transformed with ad-hoc statistical feature extractors such as counts, similarly to continuous signals. Distinctively, Martínez and Yannakakis [8] used frequent sequence mining methods [16] to find frequent patterns across different discrete modalities, namely gameplay events and discrete physiological events. The count of each pattern was then used as an input feature to an affect detector. This methodology is only applicable to discrete signals, hence continuous signals must be discretized which involves a loss of information. To this end, the key advantage of the DL methodology proposed in this paper is that it can handle continuous signals; a lossless transformation can convert a discrete signal into a binary continuous signal which can potentially feed a deep network — DL has been successfully applied to classify binary images, e.g. [17].
Recognition of affect based on signals with more than one dimension boils down to recognition of affect from images or videos of body movements, posture or facial expressions. In most studies, a series of relevant points of the face or body are first detected (e.g. right mouth corner and right elbow) and tracked along frames. Second, the tracked points are aggregated into discrete Action Units [18], gestures [19] (e.g. lip stretch or head nod) or continuous statistical features (e.g. body contraction index) which are then used to make prediction of the affective state of the user [20]. Both above-mentioned feature extraction steps are, by definition, supervised learning problems as the points to be tracked and action units to be identified have been defined a priori. While these problems have been investigated extensively under the name of facial expression or gesture recognition we will not survey them broadly as this paper focuses on methods for automatically discovering new or unknown features in an unsupervised manner.

Deep neural network architectures such as convolutional neural networks (CNNs), as a popular technique for object recognition in images [21], have also been applied for facial expression recognition. In [22], CNNs were used to detect predefined features such as eyes and mouth which later were used to detect smiles. Contrary to our work, in that study each of the layers of the CNN was trained independently using backpropagation, i.e. labeled data was available for training each level. More recently, Rifai et al. [23] successfully applied a variant of auto-encoders [17] and convolutional networks, namely Contractive Convolutional Neural Networks, to learn features from images of faces and predict the displayed emotion. The key differences of this paper with that study reside on the nature of the dataset and the method used. While Rifai et al. [23] used a large dataset (over 100,000 samples; 4,178 of them were labeled with an emotion-class) of static images displaying posed emotions, we use a small dataset (224 samples, labeled with pairwise orders) with a set of physiological signal time-series recorded along an emotional experience. The reduced size of our dataset (which is on the same magnitude as datasets used in related psychophysiological studies — e.g. [24], [25]) does not allow the extraction of large feature sets (e.g. 9,000 features in [23]) which would lead to affect models of poor generalizability. The nature of our preference labels also calls for a modified CNN algorithm for affective preference learning which is introduced in this paper. Furthermore, while the use of CNNs to process images is extensive, to the best of the authors knowledge, CNNs have not been applied before to process (or as a means to fuse) physiological signals.

As in many other machine learning applications, in affect detection it is common to apply dimensionality reduction techniques to the complete set of features extracted. A wide variety of feature selection (FS) methods have been used in the literature including sequential forward [26], sequential floating forward [7], sequential backwards [27], n-best individuals [28], perceptron [28] and genetic [29] feature selection. Fisher projection and Principal Component Analysis (PCA) have been also widely used as dimensionality reducers on different modalities of human input for affective modeling (e.g. see [7] among others). An auto-encoder can be viewed as a non-linear generalization of PCA [5]; however, while PCA has been applied in AC to transpose sets of manually extracted features into low-dimensional spaces, in this paper auto-encoders are training CNNs to transpose subsets of the raw input signals into a learned set of features. With the application of DL in the AC domain we expect that relevant information for prediction can be extracted more effectively using dimensionality reduction methods directly on the raw physiological signals than on a set of designer-selected extracted features.

B. CI for Training Models of Affect

The selection of a method to create a model that maps a given set of features to affective target values is strongly influenced by the dynamics of the features (stationary or sequential) and the format in which training examples are given (continuous values, class labels or ordinal labels). A vast set of off-the-shelf machine learning (ML) methods have been applied to create models of affect based on stationary features, irrespective of the specific emotions and modalities involved. These include Linear Discriminant Analysis [30], Multi-layer Perceptrons [27], K-Nearest Neighbours [31], Support Vector Machines [32], Decision Trees [33], Bayesian Networks [34], Gaussian Processes [24] and Fuzzy-rules [35]. On the other hand, Hidden Markov Models [36], Dynamic Bayesian Networks [37] and Recurrent Neural Networks [38] have been applied for constructing affect detectors that rely on features which change dynamically. In the approach presented here, deep neural network architectures reduce hierarchically the resolution of temporal signals down to a set of features that can be fed to simple stateless models eliminating the need for complex sequential predictors.

In all above-mentioned studies, the prediction targets are either class labels or continuous values. Class labels can be assigned either using an induction protocol (e.g. participants are asked to self-elicit an emotion [31] or presented with stories to evoke an specific emotion [39]) or via rating- or rank-based questionnaires referred to users experiencing the emotion (self-reports) or experts (third-person reports). If ratings are used, reports can be binned into binary classes (e.g. in a scale from 1 to 5 of stress, values above or below 3 correspond to the user being or not stressed, respectively [40]) or used as target values for supervised learning (e.g. two experts rate the amount of sadness of a facial expression and the average value is used as the sadness intensity [41]). Alternatively, if ranks are used, the problem of affective modeling becomes one of preference learning. In this paper we use object ranking methods — a subset of preference learning algorithms [42], [43] — which train computational models using partial orders among the training samples. These methods allow us to avoid binning together ordinal labels and to work with comparative questionnaires which provide more reliable self-report data compared to ratings as they generate less inconsistency and order effects [9].

Object ranking methods and comparative (rank) questionnaires have been scarcely explored in the AC literature, despite their well-known advantages. For example, Tognetti et
al. [44] applied Linear Discriminant Analysis to learn models of preferences over game experiences based on physiological statistical features and comparative pairwise self-reports (i.e. participants played pairs of games and ranked games according to preference). On the same basis, Yannakakis et al. [45], [46] and Martínez et al. [29], [28] trained single and multiple layer perceptrons via genetic algorithms (i.e. neuroevolutionary preference learning) to learn models for several affective and cognitive states (e.g. fun, challenge and frustration) using physiological and behavioral data, and pairwise self-reports. In this paper we introduce a deep learning methodology for data given in a ranked format (i.e. Preference Deep Learning) for the purpose of modeling affect.

III. DEEP ARTIFICIAL NEURAL NETWORKS

We investigate an effective method to learn models that map signals of user behavior to predictions of affective states. To bypass the manual ad-hoc feature extraction stage, we use a deep model composed by a multi-layer convolutional neural network (CNN) that transforms the raw signals into a reduced set of features that feed a single-layer perceptron (SLP) which predicts affective states (see Fig. 1). Our hypothesis is that the automation of feature extraction via deep learning will yield physiological affect detectors of higher predictive power which, in turn, will deliver affective models of higher accuracy. The advantages of deep learning techniques mentioned in the introduction of the paper have led to very promising results in computer vision as they have outperformed other state-of-the-art methods [47]. Furthermore, convolutional networks have been successfully applied to dissimilar temporal datasets (e.g. [48], [21]) including electroencephalogram (EEG) signals [49] for seizure prediction.

To train the convolutional neural network (see Section III-A) we use denoising auto-encoders, an unsupervised learning method to train filters or feature extractors which compress the information of the input signal (see Section III-B). The SLP is then trained using backpropagation [50] to map the outputs of the CNN to the given affective target values. In the case study examined in this paper, target values are given as pairwise comparisons (partial orders of length 2) making error functions commonly used with gradient descent methods, such as the difference of squared errors or cross-entropy, unsuitable for the task. For that purpose, we use the rank margin error function for preference data [51], [52] as detailed in Section III-C below. Additionally, we apply an automatic feature selection method to reduce the dimensionality of the feature space improving the prediction accuracy of the models trained (see Section III-D).

A. Convolutional Neural Networks

Convolutional or time-delay neural networks [21] are hierarchical models that alternate convolution and pooling layers (see Fig. 1) in order to process large input spaces in which a spatial or temporal relation among the inputs exists (e.g. images, speech and physiological signals).

Convolution layers contain a set of neurons that calculate the weighted sum on a patch of the input (e.g. a time window in a time series or part of an image) and apply an activation function to the result. The output of a layer is a set of feature maps which is the result of evaluating each of the neurons on all consecutive patches of the input — i.e. the output of the layer is the convolution of each of the neurons across the input. Note that the convolution of each neuron produces the same number of outputs as the number of samples in the input signal minus the size of the patch (i.e. the inputs of the neuron).

As soon as feature maps have been generated, a pooling layer samples consecutive (and typically non-overlapping) patches of the feature maps resulting from a convolution layer and reduces their resolution with a pooling function — the maximum or average values of the patches are popular pooling functions. The output of a pooling layer presents the same number of feature maps as its input but at a lower resolution (see Fig. 1).

B. Auto-encoders

An auto-encoder (AE) [17] is a model that transposes an input space into a dissimilar space representation by applying a deterministic function (e.g. logistic sigmoid) to different
the learned features of her physiology (see Fig 1). To this
time, we use backpropagation [50] which optimizes an error
function iteratively across \(n \) epochs by adjusting the weights
proportionally to the gradient of the error with respect the
current value of the weights and current data samples.

We use the Rank Margin error function that given two data
samples \(\{x_P, x_N\} \) such that \(x_P \) is preferred (or greater) over
\(x_N \) is calculated as follows

\[
E(x_P, x_N) = \max\{0, 1 - (f(x_P) - f(x_N))\}
\]

where \(f(x_P) \) and \(f(x_N) \) represent the outputs of the SLP
for the preferred and non-preferred sample, respectively. This
function decreases linearly as the difference between the pre-
dicted value for preferred and non-preferred samples increases.
The function becomes zero if this distance is greater than 1. By minimizing this function, the neural network learns to
separate the preferred from the non-preferred objects as much
as possible — and below a 1.0 threshold — in the output space.
Note that while preference learning could be applied to train
all layers of the deep architecture (including the CNNs) in this
paper the Preference Deep Learning algorithm is constrained
to the last layer (i.e. SLP) of the network as CNNs are trained
via auto-encoders.

D. Automatic Feature Selection

Automatic feature selection (FS) is an essential process to-
wards picking those features (deep learned or ad-hoc extracted)
that are appropriate for predicting the examined affective
states. In this paper we use Sequential Forward Feature Selec-
tion (SFS) for its low computational effort and demonstrated
good performance compared to more advanced, nevertheless
time consuming, feature subset selection algorithms such as
the genetic-based FS [29]. While a number of other FS
algorithms is available for comparison, in this paper we focus
on the comparative benefits of learned physiological detectors
over ad-hoc designed features. The impact of FS on model
performance is further discussed in Section VI.

In brief, SFS is a bottom-up search procedure where one
feature is added at a time to the current feature set (see e.g.
[43]). The feature to be added is selected from the subset of
the remaining features such that the new feature set generates
the maximum value of the performance function over all
candidate features for addition. Since we are interested in the
minimal feature subset that yields the highest performance we
terminate selection procedure when an added feature yields
equal or lower validation performance to the performance
obtained without it. The performance of a feature set selected
by automatic FS is measured through the average classification
accuracy of the model in three independent runs using 3-fold
cross-validation. In the experiments presented in this paper,
the SFS algorithm selects the input feature set for the SLP
model.

IV. THE MAZE-BALL DATASET

The dataset used to evaluate the proposed methodology
was gathered during an experimental game survey in which

- weighted sums of its input (see Fig. 2). The weights of the
model are trained so the information lost when reconstructing
the inputs from the outputs using a decoder is minimized. In
this paper, the weights used to obtain the outputs are also
used to reconstruct the inputs (tied weights). By defining the
reconstruction error as the sum of squared differences between
the inputs and the reconstructed inputs, we can use a gradient
descent method such as backpropagation to train the weights
of the model. A denoising auto-encoder (DA) is a variant of
the basic model that during training adds a variable amount of
noise to the inputs before computing the outputs. The resulting
training objective is to reconstruct the original inputs from
those outputs.

Auto-encoders among other unsupervised learning tech-
niques have provided immense improvements to gradient-
descent supervised learning [3]. ANNs that are pretrained
using these techniques usually converge to more robust and
accurate solutions than ANNs with randomly sampled weights.
In this paper, we use a DA method known as Stacked Convo-
lutional Auto-encoders [53] to train greedily all convolution
layers of our CNNs from bottom to top.

C. Preference Deep Learning

The outputs of a trained CNN define a number of learned
features on the input signal presented. These, in turn, may feed
any function approximator that attempts to find a mapping
between learned features and output (i.e. affective state in
our case). In this paper we train a single layer perceptron
to learn to predict the affective state of a user based on

Fig. 2. Structure of an auto-encoder. The encoder generates the outputs
from the input signals. During training the outputs are fed to a decoder that
reconstructs the input.
36 participants played four pairs of different variants of the same video-game. The test-bed game named Maze-Ball is a 3D prey/predator game that features a ball inside a maze controlled by the arrow keys. The goal of the player is to maximize her score in 90 seconds by collecting a number of pellets scattered in the maze while avoiding some red enemies that wander around. A number of eight different game variants were presented to the players. The games were different with respect to the virtual camera profile used which determines how the virtual world is presented on screen. We expected that different camera profiles would induce different experiences and affective states which would, in turn, reflect on the physiological state of the player making possible to predict the players’ affective self-reported preferences using information extracted from their physiology.

Blood volume pulse (BVP) and skin conductance (SC) were recorded at 31.25Hz during each game session. The players filled in a 4-alternative forced choice questionnaire after completing a pair of game variants reporting whether the first or the second game of the pair (i.e. pairwise preference) felt more anxious, exciting, frustrating, fun and relaxing, or whether both felt equally, or none of them did [28]. While three additional labels were collected in the original experiment (boredom, challenge and frustration), for space considerations we focus only on affective states or states that are implicitly linked to affective experiences such as fun (thereby, removing the cognitive state of challenge), and report only results for states in which prediction accuracies of over 70% were achieved in at least one of the input feature sets examined (thereby, removing boredom and frustration). The details of the Maze-Ball game design and the experimental protocol followed can be found in [28], [29].

A. Ad-Hoc Extraction of Statistical Features

This section lists the statistical features extracted from the two physiological signals monitored. Some features are extracted for both signals while some are signal-dependent as seen in the list below. The choice of those specific statistical features is made in order to cover a fair amount of possible BVP and SC signal dynamics (tonic and phasic) proposed in see in the list below. The choice of those specific statistical features extracted for both signals while some are signal-dependent as expected the cognitive state of boredom and removing the cognitive state of challenge). The details of the Maze-Ball game design and the experimental protocol followed can be found in [28], [29].

- **Both signals** ($\alpha \in \{BVP, SC\}$): Average $E\{\alpha\}$, standard deviation $\sigma\{\alpha\}$, maximum $\max\{\alpha\}$, minimum $\min\{\alpha\}$, the difference between maximum and minimum signal recording $D^\alpha = \max\{\alpha\} - \min\{\alpha\}$, time when maximum α occurred $t_{\max}\{\alpha\}$, time when minimum α occurred $t_{\min}\{\alpha\}$ and the difference $D^h_{\alpha} = t_{\max}\{\alpha\} - t_{\min}\{\alpha\}$; autocorrelation (lag equals 1) of the signal ρ^α_1 and mean of the absolute values of the first and second differences of the signal [11] (δ^α_1 and δ^α_2 respectively).
- **BVP**: Average inter-beat amplitude $E\{IBAmp\}$; given the inter-beat time intervals (RR intervals) of the signal the following Heart Rate Variability (HRV) parameters were computed: the standard deviation of RR intervals $\sigma\{RR\}$, the frequency of RR intervals that differ by more than 50 msec from the previous RR interval $pRR50$ and the root-mean-square of successive differences of RR intervals RMS_{RR} [54].
- **SC**: Initial, SC_{in}, and last, SC_{last}, SC recording, the difference between initial and final SC recording $D^{SC}_{i\rightarrow l} = SC_{last} - SC_{in}$ and Pearson’s correlation coefficient R^{SC} between raw SC recordings and the time t at which data were recorded.

V. Experiments

To test the efficacy of DL on constructing accurate models of affect we pretrained several convolutional neural networks — using denosing auto-encoders — to extract features for each one of the physiological signals and across all reported affective states in the dataset. The topologies of the networks were selected after preliminary experiments with 1- and 2-layer CNNs and trained using the complete unlabeled dataset. In all experiments reported in this paper the final number of features pooled from the CNNs is 15, to match the number of ad-hoc extracted statistical features (see Section IV-A). Although a larger number of pooled features could potentially yield higher prediction accuracies, we restricted the size to 15 to assure a fair comparison against the accuracies yielded by the ad-hoc extracted features.

The input signals are not normalized using global, baseline or subject-dependent constants; alternatively, the first convolution layer of every CNN subtracts the mean value of each patch presented resulting on patches with a zero mean value which results on learned features only sensitive to variation within the desired time window (patch) and insensitive to the baseline level. As for statistical features, we apply z-transformation to the complete dataset: the mean and the standard deviation value of each feature in the dataset is 0 and 1, respectively. Independently of model input the use of preference learning models — which are trained and evaluated using within-participant differences — automatically minimize the effects of between-participants physiological differences (as noted in [28], [9] among other studies).

We present a comparison between the prediction accuracy of several SLPs trained on the learned features of the CNNs and on the ad-hoc designed statistical features. The affective models are trained with and without automatic feature selection and compared. This section presents the key findings derived from the SC (Section V-A) and the BVP (Section V-B) signals and concludes with the analysis of the fusion of the two physiological signals (Section V-C). In all experiments reported here, the prediction accuracy of the models is calculated as the average 3-fold cross-validation (CV) accuracy (average percentage of correctly classified pairs on each fold). While more folds in cross-validation (e.g. 10) or other validation methods such as leave-one-out cross-validation are possible, we consider that 3-fold CV is appropriate for testing the generalizability of the trained ANNs given the relatively small size of (and the high across-subject variation existent in) this dataset.

A. Skin Conductance

The focus of the paper is on the effectiveness of DL for affective modeling. While the topology of the CNNs used can
be critical for the performance of the model; the exhaustive empirical validation of all possible CNN topologies and parameter sets is out of scope of this paper. For this purpose—and also due to space considerations—we have systematically tested critical parameters of CNNs (e.g. the patch length, the number of layers, and the number of neurons), we have fixed a number of CNN parameters (e.g. pooling window length) based on suggestions from the literature and we discuss results from representative CNN architectures. In particular, for the skin conductance signal we present results on two pretrained CNNs. The first, labeled as $CNN_{SC}^{N_{20x11}}$, contains two convolution layers with 5 sigmoidal neurons at each layer and an average pooling layer of non-overlapping windows of size 3. Each of the neurons in the first and second convolution layer has 20 and 11 inputs, respectively. The second network (labeled as $CNN_{SC}^{N_{SC80}}$), contains one convolution layer with 5 sigmoidal neurons of 80 inputs each.

Both CNNs examined here are selected based on a number of criteria. The number of inputs of the first convolution layer of the two CNNs considered were selected to extract features at different time resolutions (20 and 80 inputs corresponding to 12.08 and 48.32 seconds, respectively) and, thereby, give an indication of the impact the time resolution might have on performance. Extensive experiments with smaller and larger time windows did not seem to affect the model’s prediction accuracy. The small window on the intermediate pooling layer was chosen to minimize the amount of information lost from the feature maps while the number of inputs to the neurons in the next layer was adjusted to cover about a third of the pooled feature maps. Finally, we selected 5 neurons in the first convolution layer as a good compromise between expressivity and dissimilarity among the features learned: a low number of neurons derived features with low expressivity while a large number of neurons generally resulted in features being very similar.

Both topologies are built on top of an average pooling layer with a window length of 20 samples and are topped up with an average pooling layer that pools 3 outputs per neuron. Although SC is usually sampled at high frequencies (e.g. 256 Hz), we believe that the most affect-relevant information contained in the signal can be found at a lower time resolutions as even rapid arousal changes (i.e. a phasic change of SC) can be captured with a lower resolution and at a lower computational cost [55], [28]. For that purpose, the selection of this initial pooling stage aims to facilitate feature learning at a resolution of 1.56 Hz. Moreover, experiments with dissimilar pooling layers showcased that features extracted on higher SC resolutions do not necessarily yield models of higher accuracy. The selection of 5 neurons for the last convolution layer and the following pooling layer was made to achieve the exact number of neurons derived features with low expressivity while a large number of neurons generally resulted in features being very similar.

Models trained on automatically selected features further validate this result (see Fig. 4(b)) showing differences with respect to statistical features above 5%. Furthermore, the relaxation models trained on selected ad-hoc features, despite the benefits of FS, yield accuracies lower than the models trained on the complete sets of learned features. This suggests that CNNs can extract general information from SC that is more relevant for affect modeling than statistical features selected specifically for the task. An alternative interpretation is that the feature

![Figure 3](image-url)
Fig. 3. Learned features of the best-performing convolutional neural networks. Lines are plotted connecting the values of consecutive connection weights for each neuron.
space created by CNNs allows backpropagation to find more general solutions than the greedy-reduced (via SFS) space of ad-hoc features. For all other emotions considered none of the CNNs leads to models that can significantly improve the baseline accuracy obtained by the ad-hoc statistical features (see also [56] for random baselines on this dataset). When feature selection is used (see Fig. 4(b)), CNN-based models outperform statistical-based models on the prediction of anxiety and fun with accuracies above 60%.

Despite the difficulty of predicting complex affective states based solely on SC, these results suggest that CNNs conform a promising method to automatically extract features from this modality as higher prediction accuracies were achieved when compared against a well-defined set of ad-hoc statistical features. Results also show that there are particular affective states (relaxation and anxiety) to a lesser degree) in which DL is able to automatically extract features that are beneficial for their prediction. On the other hand, it appears that DL does not have a significant effect in predicting some affective states based on the SC signal compared to models build on the ad-hoc designed features. Prediction accuracies in those affective states for both type of features (ad-hoc or CNN-extracted) are rather low suggesting that SC is not an appropriate signal for their modeling in this dataset. It is worth mentioning that earlier studies on this dataset [56] report higher accuracies on the ad-hoc statistical features than those reported here. On that study, however, two different signal components were extracted from the SC signal leading to three times the number of features examined in this paper (i.e. 45 features). Given the results obtained in this paper it is anticipated that by using more learned features — for example, combining CNNs with different input lengths that would capture information from different time resolutions — DL can reach and surpass those baseline accuracies.

B. Blood Volume Pulse

Following the same systematic approach for selecting CNN topology and parameter sets we present two convolutional networks for the experiments presented with the Blood Volume Pulse (BVP) signal. In particular the CNN architectures examined feature: 1) one maximum pooling layer with non-overlapping windows of length 30 followed by a convolution layer with 5 sigmoidal neurons and 45 inputs at each neuron ($CN_N^{BVP}_{15}$); and 2) two convolution layers with 10 and 5 sigmoidal neurons, respectively, and an intermediate maximum pooling layer with a window of length 30. The neurons of each layer contain 30 and 45 inputs, respectively ($CN_N^{BVP}_{30x45}$). As in the CNNs used in the SC experiments both topologies are topped up with an average pooling layer that pools 3 outputs from each of the 5 output neurons, that is, 15 outputs per network. The initial pooling layer of the first network collects the maximum value of the BVP signal every 0.96 seconds which results in an approximation of the signal’s upper envelope — that is a smooth line joining the extremes of the signal’s peaks. Decrements on this function are directly linked with increments on heart rate (HR), and further connected with increased arousal and corresponding affective states (e.g. excitement and fun [28], [14]. Neurons with 45 inputs were selected to capture long patterns (i.e. 43.2 seconds) of variation as sudden and rapid changes in heart rate were not expected during the experiment game survey. The second network follows the same rationale but the first pooling layer — instead of collecting the maximum of the raw BVP signal — processes the outputs of 10 neurons that analyze signal patches of 0.96 seconds which could operate as a beat detector mechanism.

1) Deep Learned Features: Figure 3(b) depicts the 45 connection weights of each neuron in $CN_N^{BVP}_{15}$ which cover 43.02 seconds of the BVP signal’s upper envelope. Given the negative correlation between the trend of the BVP’s upper envelope and heart rate, neurons would output maximal values when consecutive decreasing weight values are aligned with positive correlation between the trend on HR with a small peak in the middle. This convolution layer collects the maximum value of the BVP signal — processes the outputs of 10 neurons that are further connected with increased arousal and corresponding affective states (e.g. excitement and fun [28], [14]. Neurons with 45 inputs were selected to capture long patterns (i.e. 43.2 seconds) of variation as sudden and rapid changes in heart rate were not expected during the experiment game survey. The second network follows the same rationale but the first pooling layer — instead of collecting the maximum of the raw BVP signal — processes the outputs of 10 neurons that analyze signal patches of 0.96 seconds which could operate as a beat detector mechanism.

2) DL vs. ad-hoc Feature Extraction: Predictors of excitement and fun trained on features extracted with $CN_N^{BVP}_{15x45}$ outperformed the ad-hoc feature sets — both the complete (see Fig. 5(a)) and the automatically selected feature sets
Anxiety

Fun

Excitement

Statistical

CNN

Relaxation Anxiety Excitement Fun
40
50
60
70
80
90 Average Prediction Accuracy
CNN BVP
1x45 CNN BVP
30x45 Statistical

Statistical

CNN

(a) All features

(b) Features selected via SFS

Fig. 5. Blood Volume Pulse: average accuracy of ten SLPs trained on statistical features (Statistical), and features pooled from each of the CNN topologies \(CNN_{BVP}^{1x45} \) and \(CNN_{BVP}^{30x45} \). The black bar displayed on each average value represents the standard error. (see Fig. 5(b)). It is worth noting that no other model improved baseline accuracy using all features (see Fig. 5(a)). In particular, excitement and fun models based on statistical features achieved performances of 61.1% and 64.3%, respectively, which are significantly lower than the corresponding accuracies of \(CNN_{BVP}^{1x45} \) (68.0% and 69.7%, respectively — see Fig. 5(b)) and no significantly different than the accuracies of \(CNN_{BVP}^{30x45} \) with the complete set of features (57.3% and 63.0%, respectively — see Fig. 5(a)). Given the reported links between fun and heart rate [14], this result suggests that \(CNN_{BVP}^{1x45} \) effectively extracted HR information from the BVP signal to predict reported fun. The efficacy of CNNs is further supported by the results reported in [56] where SLP predictors of fun trained on statistical features of the HR signal (in the same dataset examined here) do not outperform the DL models presented in this paper. For reported fun and excitement, CNN-based feature extraction demonstrates a great advantage of extracting affect-relevant information from BVP bypassing beat detection and heart rate estimation.

Models built on selected features for relaxation and anxiety yielded low accuracies around 60% showing small differences between learned and ad-hoc features which suggests that BVP-based emotional manifestations are not the most appropriate predictors for those two states in this dataset. Despite the challenges that the periodicity of blood volume pulse generates in affective modeling, CNNs managed to extract powerful features to predict two affective states, outperforming the statistical features proposed in the literature and matching more complex data processing methods used in similar studies [56].

C. Fusion of SC and BVP

To test the effectiveness of learned features in fused models, we combined the outputs of BVP and SC CNN networks presented earlier into one SLP and compared its performance against a combination of all ad-hoc BVP and SC features. For space considerations we only present the combination of the best performing CNNs trained on each signal individually — i.e. \(CNN_{SC}^{80x45} \) and \(CNN_{BVP}^{1x45} \). The fusion of CNNs from both signals generates models that yield higher prediction accuracies than models built on ad-hoc features across all affective states, using both all features and subsets of selected features (see Fig. 6). This result further validates the effectiveness of CNNs for modeling affect from physiological signals as models trained on automatic selected learned features from the two signals yield prediction accuracies around 70-75%. In all cases but one (i.e. anxiety prediction with SFS) these performances are significantly higher than the corresponding models built on commonly used ad-hoc statistical features.

VI. DISCUSSION

Even though the results obtained are more than encouraging with respect to the applicability and efficacy of DL for affective modeling there is a number of research directions that should be considered in future research. While the MazeBall game is a dataset that includes key components for affective modeling and it is representative of a typical affective modeling scenario our PDL approach needs to be tested on diverse datasets. The reduced size of the dataset limited the amount of features that could be learned. Currently, deep architectures are widely used to extract thousands of features...
from large datasets which yields models that outperform other state-of-the-art classification or regression methods (e.g. [23]). We expect that the application of DL to model affect in large physiological datasets would show larger improvements with respect to statistical features and provide new insights on the relationship between physiology and affect. Moreover, to be able to demonstrate robustness of the algorithm, more and dissimilar modalities of user input need to be considered as well as different domains (beyond games) need to be explored. To that end, different approaches to multimodal fusion in conjunction with DL need to be investigated. The accuracies obtained across different affective states and modalities of user input, however, already provide sufficient evidence that the method would generalize well in dissimilar domains and modalities.

The paper did not provide a thorough analysis on the impact of feature selection to the efficiency of DL as the focus was put on feature extraction. To that end, more feature selection methods will need to be investigated and compared to SFS. While ad-hoc feature performance might be improved with more advanced FS methods such as genetic-search based FS [29], the obtained results already show that DL matches and even beats a rather effective and popular FS mechanism without the use of feature selection in several experiments. Although in this paper we have compared DL to a complete and representative set of ad-hoc features, a wider set of features could be explored in future work. For instance, heart rate variability features derived from the Fourier transformation of BVP (see [28]) could be included in the comparison. However, it is expected that CNNs would be able to extract relevant frequency-based features as their successful application on other domains already demonstrates (e.g. music sample classification [48]). Furthermore, other automatic feature extraction methods such as principal component analysis, which are common in domains such as image classification [57], will be explored for psycho-physiological modeling and compared to DL in this domain.

Despite the good results reported in this paper on the skin conductance and blood volume pulse signals, we expect that certain well-designed ad-hoc features can still outperform automatically learned features. Within playing behavioral attributes, for example, the final score of a game which is highly correlated to reported fun in games [58] may not be captured by convolution networks which tend to find patterns that are invariant with respect to the position in the signal. Such an ad-hoc feature, however, may carry information of high predictive power for particular affective states. We argue that DL is expected to be of limited use in low resolution signals (e.g. player score over time) which could generate well-defined feature spaces for affective modeling.

An advantage of ad-hoc extracted statistical features resides on their simplicity to interpret the physical properties of the signal as they are usually based on simple statistical metrics. Therefore, prediction models trained on statistical features can be analysed with low effort providing insights in affective phenomena. Artificial neural networks have traditionally been considered as black boxes that oppose their high prediction power to their low expressivity value. We have shown, however, that appropriate visualization tools can ease the interpretation of neural-network based features. Moreover, learned features derived from DL architectures may define data-based extracted patterns which could lead to the advancement of our understanding on emotion manifestations via physiology (and beyond).

Finally, while DL can provide automatically a more complete and appropriate set of features when compared to ad-hoc feature extraction, parameter tuning is a necessary phase in (and limitation of) the training process. This paper introduced a number of CNN topologies that performed well on the SC and BVP signals while empirical results showcase that, in general, the performance of the CNN topologies is not affected significantly by parameter tuning. Future work, however, would aim to further test the sensitivity of CNN topologies and parameter sets as well as the generality of the extracted features across physiological datasets, diminishing the experimentation effort required for future applications of DL to psychophysiology.

VII. CONCLUSIONS

This paper introduced the application of deep learning for the construction of reliable models of affect built on physiological manifestations of emotion. The algorithm proposed employs a number of convolutional layers that learn a number of relevant features existent in the input signals of the model. The algorithm was tested on two physiological signals (skin conductance and blood volume pulse) individually and on their fusion for predicting the reported affective states of relaxation, anxiety, excitement and fun (given in a preference format). The dataset is derived from 36 players of a 3D prey/predator game. The preference deep learning (PDL) approach proposed overcomes standard ad-hoc feature extraction used in the affective computing literature as it manages to yield models of equal or significantly higher prediction accuracy across all affective states examined. The performance increase is more evident when automatic feature selection is employed.

Results, in general, suggest that DL methodologies are highly appropriate for affective modeling and, more importantly, indicate that ad-hoc feature extraction appears to be redundant for physiology-based modeling. Further, in some affective states examined (e.g. relaxation models built on SC; fun and excitement models built on BVP; relaxation models built on fused SC and BVP) DL without feature selection manages to reach or even outperform the performances of models built on ad-hoc extracted features which are boosted by automatic feature selection. These findings showcase the potential of DL for affective modeling as both manual feature extraction and automatic feature selection could be ultimately bypassed.

With small modifications the methodology proposed can be applied for affect classification and regression tasks across any type of input signal. Thus, the method is directly applicable for affect detection in one-dimensional time-series input signals such as electroencephalograph (EEG) and electromyograph (EMG) and speech, but also in two-dimensional input signals such as images [23] (e.g. for facial expression and head pose.
analysis). Finally, results suggest that the method is powerful when fusing different types of input signals and, thus, it is expected to perform equally well across multiple modalities.

ACKNOWLEDGMENT

The authors would like to thank Tobias Mahlmann for his work on the development and administration of the cluster used to run the experiments. Thanks also goes to the Theano development team and to all participants in our experiments.

REFERENCES

C. Farabet, C. Couprie, L. Najman, Y. LeCun, “Learning hierarchi-
cal features for scene labeling,” IEEE Transactions on Pattern Analysis

P. Hamel, S. Lemieux, Y. Bengio, and D. Eck, “Temporal pooling
and multiscale learning for automatic annotation and ranking of music audio,” in In Proceedings of the 12th International Conference on Music
Information Retrieval, 2011.

svm and convolutional networks for epileptic seizure prediction from
intracranial eeg,” in Machine Learning for Signal Processing, IEEE

D. Rumelhart, Backpropagation: theory, architectures, and applications.

B. Bai, J. Weston, D. Grangier, R. Collobert, K. Sadamasa, Y. Qi,
O. Chapelle, and K. Weinberger, “Learning to rank with (a lot of) word

D. Grangier and S. Bengio, “Inferring document similarity from hyper-
links,” in Proceedings of ACM International Conference on Information

J. Masci, U. Meier, D. Ciresan, and J. Schmidhuber, “Stacked convolu-
tional auto-encoders for hierarchical feature extraction,” Artificial Neural
Networks and Machine Learning, International Conference on, pp. 52–
59, 2011.

J. Goldberger, S. Challapalli, R. Tung, M. Parker, and A. Kadish, “Rela-
tionship of heart rate variability to parasympathetic effect,” Circulation,

N. Ravaja, T. Saari, M. Salminen, J. Laarni, and K. Kallinen, “Pha-
sic emotional reactions to video game events: A psychophysiological

H. P. Martínez, M. Garbarino, and G. N. Yannakakis, “Generic physio-
logical features as predictors of player experience,” Affective Computing

W. Zhao, R. Chellappa, and A. Krishnaswamy, “Discriminant analysis
of principal components for face recognition,” in Automatic Face and

H. P. Martínez, K. Hullett, and G. N. Yannakakis, “Extending Neuro-
evolution Preference Learning through Player Modeling,” in Proceedings
of 2010 IEEE Conference on Computational Intelligence and Games,
Copenhagen, Denmark, August 2010.

Héctor P. Martínez is a Ph.D. candidate at the IT Universe-
ty of Copenhagen. He received his M.Sc.
(2009) and B.Sc. (2007) in Computer Science from
the University of Valladolid.

His primary research interest lies at the intersection of affective computing, artificial intelligence and game research. More specifically, he studies machine learning methods to automatically discover patterns among users affective and cognitive state, in-game behavioral metrics and diverse physical and physiological signals. He has published broadly in the areas of computational intelligence in games, affective computing, user modeling and multimodal interaction.

Joshua Bengio received the Ph.D. degree in computer science from McGill University, Montreal, QC, Canada, 1991, in the areas of hidden Markov models (HMMs), recurrent and convolutional neural networks, and speech recognition. He did his postdoc-
toral work at the Massachusetts Institute of Technol-
ogy (MIT), Cambridge, with M. Jordan (19911992)
and at Bell Labs, Murray Hill, NJ, with L. Jackel, Y.
LeCun, and V. Vapnik (19921993). He has been a
Professor at the Department of Computer Science and
Operations Research, University of Montreal,
Montreal, QC, Canada, since 1993. He is an author of two books and over
150 scientific papers, with over 9400 citations, according to Google Scholar
and an H-Index of 43 at the end of 2011. Prof. Bengio is the Canada Research
Chair in Statistical Learning Algorithms; Fellow of the Canadian Institute of
Advanced Research; the Natural Sciences and Engineering Research Council
of Canada (NSERC) chair; co-organizer of the Learning Workshop since 1998;
the Neural Information Processing Sys-
tems (NIPS) Program Chair in 2008;
and Fellow of the Centre Interuniversitaire de
Recherche en ANalyse des Organisations (CIRANO). He received the Urgel-
Archambault Prize in 2009. He is current or previous associate/action editor
for Journal of Machine Learning Research, the IEEE TRANSACTIONS
ON NEURAL NETWORKS, Foundations and Trends in Machine Learning,
Computational Intelligence, and Machine Learning.

Georgios N. Yannakakis (S’04; M’05) is an As-
sociate Professor at the University of Malta (UoM).
He received the Ph.D. degree in Informatics from the
University of Edinburgh in 2005. Prior to joining the
Department of Digital Games, UoM, in 2012 he was
an Associate Professor at (and still being affiliated with)
the Center for Computer Games Research at the
IT University of Copenhagen.

He does research at the crossroads of AI (compu-
tational intelligence, preference learning), affective
computing (emotion detection, emotion annotation),
advanced game technology (player experience modeling, procedural content
generation, personalisation) and human-computer interaction (multimodal
interaction, psychophysiology, user modelling). He has published over 100
journal and international conference papers in the aforementioned fields. He is
an Associate Editor of the IEEE TRANSACTIONS ON AFFECTIVE COMPUT-
ING and the IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE
AND AI IN GAMES, and the chair of the IEEE CIS Task Force on Player
Satisfaction Modeling.