Convex Neural Networks

Yoshua Bengio, Nicolas Le Roux, Pascal Vincent, Olivier Delalleau, Patrice Marcotte
Dept. IRO, Université de Montréal
P.O. Box 6128, Downtown Branch, Montreal, H3C 3J7, Qc, Canada
{bengioy,lerouxni,vincentp,delallea,marcotte}@iro.umontreal.ca

Abstract

Convexity has recently received a lot of attention in the machine learning community, and the lack of convexity has been seen as a major disadvantage of many learning algorithms, such as multi-layer artificial neural networks. We show that training multi-layer neural networks in which the number of hidden units is learned can be viewed as a convex optimization problem. This problem involves an infinite number of variables, but can be solved by incrementally inserting a hidden unit at a time, each time finding a linear classifier that minimizes a weighted sum of errors.

1 Introduction

The objective of this paper is not to present yet another learning algorithm, but rather to point to a previously unnoticed relation between multi-layer neural networks (NNs) [14], Boosting [3] and convex optimization. Much of our contributions concern the mathematical analysis of an algorithm that is similar to previously proposed incremental NNs, with L^1 regularization on the output weights. However, this analysis helps to understand the underlying convex optimization problem that one is trying to solve.

This paper was motivated by the unproven conjecture (based on anecdotal experience) that when the number of hidden units is “large”, the resulting average error is rather insensitive to the random initialization of the NN parameters, i.e., the optimization algorithm does not fall in “poor” local minima\(^1\). One way to justify this assertion is that to really stay stuck in a local minimum, one must have second derivatives positive simultaneously in all directions. When the number of hidden units is large, it seems implausible for none of them to offer a descent direction. Although this paper does not prove or disprove the above conjecture, in trying to do so we found an interesting characterization of the optimization problem for NNs as a convex program if the output loss function is convex in the NN output and if the output layer weights are regularized by a convex penalty. More specifically, if the regularization is the L^1 norm of the output layer weights, then we show that a “reasonable” solution exists, involving a finite number of hidden units (no more than the number of examples, and in practice typically much less). We present a theoretical algorithm that is reminiscent of Column Generation [1], in which hidden neurons are inserted one at a time. Each insertion requires solving a weighted classification problem, very much like in Boosting [3] and in particular Gradient Boosting [10, 4].

Neural Networks, Gradient Boosting, and Column Generation

\(^1\)Another explanation is that it always falls in the same kind of minima, which means that a deeper global minimum is difficult to reach by a descent method.
Denote $\hat{x} \in \mathbb{R}^{d+1}$ the extension of vector $x \in \mathbb{R}^d$ with one element with value 1. What we call “Neural Network” (NN) here is a predictor for supervised learning of the form

$$\hat{y}(x) = \sum_{i=1}^{m} w_i h_i(x)$$

(1)

where x is an input vector, $h_i(x)$ is obtained from a linear discriminant function $h_i(x) = s(v_i \cdot \hat{x})$ with e.g. $s(a) = \text{sign}(a)$, or $s(a) = \tanh(a)$ or $s(a) = \frac{1}{1+e^{-a}}$. A learning algorithm must specify how to select m, the w_i’s and the v_i’s. The classical solution [14] involves (a) selecting a loss function $Q(\hat{y}, y)$ that specifies how to penalize for mismatches between $\hat{y}(x)$ and the observed y’s (target outputs or target class, for example), (b) optionally selecting a regularization penalty that favors “small” parameters, and (c) choosing a method to approximately optimize the sum of the losses on the training data $D = \{(x_1, y_1), \ldots, (x_n, y_n)\}$ plus the regularization penalty. Note that in this formulation, an output non-linearity can still be used, by inserting it in the loss function Q. Examples of such loss functions are the quadratic loss $\|\hat{y} - y\|^2$, the hinge loss $\max(0, 1 - y\hat{y})$ (used in SVMs), the cross-entropy loss $-y \log \hat{y} - (1 - y) \log(1 - \hat{y})$ (used in logistic regression), and the exponential loss $e^{-y\hat{y}}$ (used in Boosting).

Gradient Boosting has been introduced in [4] and [10] as a non-parametric greedy-stagewise supervised learning algorithm in which one adds a function at a time to the current solution $\hat{y}(x)$, in a steepest-descent fashion, to form an additive model like that in eq. 1 but with the functions h_i typically taken in other kinds of sets of functions, such as those obtained with decision trees. In a stagewise approach, when the $(m + 1)$-th basis h_{m+1} is added, only w_{m+1} is optimized (by a line search), like in matching pursuit algorithms [8]. Such a greedy-stagewise approach is also at the basis of Boosting algorithms [3], which is usually applied using decision trees as bases and Q the exponential loss. It may be difficult to minimize exactly for w_{m+1} and h_{m+1} when the previous bases and weights are fixed, so [4] proposes to “follow the gradient” in function space, i.e., look for a base learner h_{m+1} that is best correlated with the gradient of the loss on $\hat{y}(x)$ (that would be the residue $\hat{y}(x_i) - y_i$ in the case of the square loss). The algorithm analyzed here also involves maximizing the correlation between Q' (the derivative of Q with respect to its first argument, evaluated on the training predictions) and the next basis h_{m+1}. However, we follow a “stepwise”, less greedy, approach, in which all the output weights are optimized at each step, in order to obtain convergence guarantees.

Our approach adapts the Column Generation principle [1], a decomposition technique initially proposed for solving linear programs involving a large number of variables and a relatively small number of constraints. In this framework, active variables, or “columns”, are only generated as they are required to decrease the objective. In several implementations, the column-generation subproblem is frequently a combinatorial problem for which efficient algorithms are available. In our case, the subproblem corresponds to determining an “optimal” linear classifier.

2 Core Ideas

The starting idea behind this paper, expressed informally, is the following. Consider the set \mathcal{H} of all the possible hidden unit functions (i.e., of all the possible hidden unit weight vectors v_i). Imagine a NN that has all the elements in this set as hidden units. We might want to impose precision limitations on those weights to obtain either a countable or even a finite set. For such a NN, we only need to learn the output weights. If we end up with a finite number of non-zero output weights, we will have at the end an ordinary feedforward NN. This can be achieved by using a regularization penalty on the output weights that yields to sparse solutions, such as the L^1 penalty. If in addition the loss function is convex in the output layer weights (which is the case of squared error, hinge loss, ϵ-tube regression loss, and logistic or softmax cross-entropy), then it is easy to show that the overall training
criterion is convex in the parameters (which are now only the output weights). The only problem is that there are as many variables in this convex program as there are elements in the set \mathcal{H}, which may be very large. However, we find that with L^1 regularization, a finite solution is obtained, and that such a solution can be obtained by greedily inserting one hidden unit at a time. Furthermore, it is theoretically possible to check that the global optimum has been reached.

Definition 2.1. Let \mathcal{H} be a set of functions from an input space X to \mathbb{R}. Elements of \mathcal{H} can be understood as "hidden units" in a NN. Let W be the Hilbert space of functions from \mathcal{H} to \mathbb{R}, with an inner product denoted by $a \cdot b$ for $a, b \in W$. An element of W can be understood as the output weights vector in a neural network. Let $h(x) : \mathcal{H} \rightarrow \mathbb{R}$ the function that maps any element h_i of \mathcal{H} to $h_i(x)$. $h(x)$ can be understood as the vector of activations of hidden units when input x is observed. Let $w \in W$ represent a parameter (the output weights). The NN prediction is denoted $\hat{y}(x) = w \cdot h(x)$. Let $Q : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be a convex cost function (convex in its first argument) that takes a scalar prediction $\hat{y}(x)$ and a scalar target value y and returns a scalar cost. This is the cost to be minimized on example pair (x, y). Let $D = \{(x_i, y_i) : 1 \leq i \leq n\}$ a training set. Let $\Omega : W \rightarrow \mathbb{R}$ be a regularization functional that penalizes for the choice of more "complex" parameters, and that is convex in its argument (for example we could choose $\Omega(w) = \lambda ||w||_1$ according to a 1-norm in W, if \mathcal{H} is countable). We define the convex NN criterion $C(\mathcal{H}, Q, \Omega, D, w)$ with parameter w as follows:

$$C(\mathcal{H}, Q, \Omega, D, w) = \Omega(w) + \sum_{i=1}^{n} Q(w \cdot h(x_i), y_i).$$

(2)

The following is a trivial lemma, but it is conceptually very important as it is the basis for the rest of the analysis in this paper.

Lemma 2.2. The convex NN cost $C(\mathcal{H}, Q, \Omega, D, w)$ is a convex function of w.

Proof. $Q(w \cdot h(x_i), y_i)$ is convex in w and Ω is convex in w, by the above construction. C is additive in $Q(w \cdot h(x_i), y_i)$ and additive in Ω. Hence C is convex in w. \square

Note that there are no constraints in this convex optimization program, so that at the global minimum all the partial derivatives of C with respect to elements of w cancel.

Let $|\mathcal{H}|$ be the cardinality of the set \mathcal{H}. If it is not finite, it is not obvious that an optimal solution can be achieved in finitely many iterations.

Lemma 2.2 says that training NNs from a very large class (with one or more hidden layer) can be seen as convex optimization problems, usually in a very high dimensional space, as long as we allow the number of hidden units to be selected by the learning algorithm. By choosing a regularizer that promotes sparse solutions, we obtain a solution that has a finite number of “active” hidden units (non-zero entries in the output weights vector w). This assertion is proven below, in theorem 3.1, for the case of the hinge loss.

However, even if the solution involves a finite number of active hidden units, the convex optimization problem could still be computationally intractable because of the large number of variables involved. There are several ways to address that issue, but in the end we did not find one that yields an algorithm scaling as gracefully as stochastic gradient descent on ordinary NNs while preserving strong guarantees on approaching the global optimum.

One approach is to apply the principles already successfully embedded in Gradient Boosting, but more specifically in Column Generation (an optimization technique for very large scale linear programs), i.e., add one hidden unit at a time in an incremental fashion. The important ingredient here is a way to know that we have reached the global optimum, thus not requiring to actually visit all the possible hidden units. We show that this
can be achieved as long as we can solve the sub-problem of finding a linear classifier that minimizes the weighted sum of classification errors. This can be done exactly only on low dimensional data sets but can be well approached using weighted linear SVMs, weighted logistic regression, or Perceptron-type algorithms.

3 Finite Number of Hidden Neurons

In this section we consider the special case where \(Q \) is the hinge loss, \(Q(y, y') = \max(0, 1 - y y') \), and \(L^1 \) regularization, and we show that the global optimum of the convex cost involves at most \(n + 1 \) hidden neurons.

The training criterion is \(C(w) = K \|w\|_1 + \sum_{t=1}^n \max(0, 1 - y_t w \cdot h(x_t)) \). Let us rewrite this cost function as the constrained optimization problem:

\[
\min_{w, \xi} L(w, \xi) = K \|w\|_1 + \sum_{t=1}^n \xi_t \quad \text{s.t.} \quad \begin{cases}
 y_t [w \cdot h(x_t)] \geq 1 - \xi_t & (C_1) \\
 \xi_t \geq 0, t = 1, \ldots, n & (C_2)
\end{cases}
\]

Using a standard technique, the above program can be recast as a linear program. Defining \(\lambda = (\lambda_1, \ldots, \lambda_n) \) the vector of Lagrangian multipliers for the constraints \(C_1 \), its dual problem \((P) \) takes the form (in the case of a finite number \(J \) of base learners):

\[
(P) : \max \sum_{t=1}^n \lambda_t \quad \text{s.t.} \quad \begin{cases}
 \lambda \cdot Z_i - K \leq 0, i \in I \\
 \lambda_t \leq 1, t = 1, \ldots, n
\end{cases}
\]

with \((Z_i)_t = y_t h_i(x_t) \). In the case of a finite number \(J \) of base learners, \(I = 1, \ldots, J \). If the number of hidden units is uncountable, then \(I \) a closed bounded interval of \(\mathbb{R} \).

Such an optimization problem satisfies all the conditions needed for using Theorem 4.2 from [7]. Indeed:

- \(I \) is compact (as a closed bounded interval of \(\mathbb{R} \));
- \(F : \lambda \mapsto \sum_{t=1}^n \lambda_t \) is a concave function (it is even a linear function);
- \(g : (\lambda, i) \mapsto \lambda \cdot Z_i - K \) is convex in \(\lambda \) (it is actually linear in \(\lambda \));
- \(\nu(P) \leq n \) and is therefore finite (\(\nu(P) \) is the largest value of \(F \) attainable while satisfying the constraints);
- for every set of \(n + 1 \) points \(i_0, \ldots, i_n \in I \), there exists \(\tilde{\lambda} \) such that \(g(\tilde{\lambda}, i_j) < 0 \) for \(j = 0, \ldots, n \) (one can take \(\tilde{\lambda} = 0 \) since \(K > 0 \)).

Then, from Theorem 4.2 from [7], the following theorem holds:

Theorem 3.1. The solution of \((P) \) can be attained with constraints \(C'_2 \) and only \(n + 1 \) constraints \(C'_1 \) (in the sense that there exists a subset of \(n + 1 \) constraints \(C'_1 \) giving rise to the same maximum as when using the whole set of constraints). Therefore, the primal problem associated is the minimization of the cost function of a NN with \(n + 1 \) hidden neurons.

A similar result was obtained by [13] in the context of regression Boosting with a \(L^1 \) regression loss and a \(L^1 \) penalization for the weights of the base learners.

4 Incremental Convex NN Algorithm

In this section we present a stepwise algorithm to optimize a convex NN, and show that there is a criterion that allows to verify whether the global optimum has been reached. This is a specialization of the minimization of \(C(\mathcal{H}, Q, \Omega, D, w) \) in which \(\Omega(w) = \lambda \|w\|_1 \) is the \(L^1 \) penalty and \(\mathcal{H} = \{ h : h(x) = s(v \cdot \tilde{z}) \} \) is the set of soft or hard linear classifiers (depending on the choice of \(s(\cdot) \)).
At termination of Algorithm ConvexNN, no linear classifier (i.e. no vector v) associated with some hidden unit may yield a descent direction for the cost function $C(w) = \sum_i Q(w \cdot h(x_i), y_t) + \lambda \|w\|_1$.

Proof. By contradiction, suppose we can obtain $C(w') < C(w)$ with w' be a weight vector obtained from w by only changing one zero weight $w_k = 0$ to a non-zero value ϵ. Without loss of generality, we can assume $\epsilon < 0$, since the opposite of any function in \mathcal{H} also belongs to \mathcal{H}. The condition $C(w') < C(w)$ then becomes:

$$\sum_i Q(w \cdot h(x_i), y_t) - Q(w' \cdot h(x_i), y_t) + \lambda \epsilon > 0.$$

Since $C(w)$ is (strictly) convex in w, if $C(w') < C(w)$ then it is also true for $|\epsilon|$ arbitrarily small. In that limit, the above inequality becomes

$$\sum_i -Q'(w \cdot h(x_i), y_t) \epsilon h_k(x_i) + \lambda \epsilon > 0 \quad \text{that is} \quad \sum_i q_i h_k(x_i) > \lambda,$$

where we recall that $Q'(\cdot, \cdot)$ is the derivative of Q with respect to its first argument. But in step (6) of Algorithm ConvexNN, we found that the h_i that maximizes $\sum_i q_i h_i(x_i)$ also verifies $\sum_i q_i h_i(x_i) \leq \lambda$, which is in contradiction with eq. 3.

To prove the next theorem, we will need the following lemma:

Lemma 4.2. Each neuron h_k with a non-zero weight satisfies $\sum_i q_i h_k(x_i) = \lambda$.

Proof. Let a neuron h_k with a weight $w_k \neq 0$ and optimize its weight to w'_k. It must satisfy $Q(w) - Q(w') > \lambda |w'_k| - \lambda |w_k|$. For a small change, this becomes $\sum_i (w_k - w'_k) q_i h_k(x_i) > \lambda |w'_k| - \lambda |w_k|$. We can suppose without restriction that $w_k < 0$ and $w'_k < 0$ (with a change small enough). Therefore, we must have $\sum_i (w_k - w'_k) q_i h_k(x_i) > \lambda (w_k - w'_k)$.

If $w_k < w'_k$, this becomes $\sum_i q_i h_k(x_i) < \lambda$. If $w'_k < w_k$, the inequality becomes $\sum_i q_i h_k(x_i) > \lambda$. Therefore, whatever the case, the weights can always be updated if $\sum_i q_i h_k(x_i) \neq \lambda$. This proves the theorem.
We want to maximize
\[
\sum_t Q(w \cdot h(x_t), y_t) + \lambda ||w||_1.
\]

Finding a linear classifier that minimizes the weighted sum of classification errors. Unfortunately, this is an NP-hard problem (see theorem 4 in [9]).

In step (5a) we are required to find a linear classifier that minimizes the weighted sum of classification errors possible. Indeed, as at the optimum, we have
\[
\sum_t q_i h_k(x_t) = \lambda
\]
for an existing neuron \(h_k\), the terms containing \(h_k\) vanish and only remain the terms containing the new neuron. Given the hypothesis, the inequality cannot be satisfied and the new neuron will not be added.

Note that [10] prove a related global convergence result for the AnyBoost algorithm, a non-parametric Boosting algorithm that is also similar to Gradient Boosting [4]. Again, this requires solving as a sub-problem an exact minimization to find a function \(h_i \in \mathcal{H}\) that is maximally correlated with the gradient \(Q'\) on the output.

We will now show a simple procedure to select a hyperplane of which has the best classification error possible.

Exact Minimization

In step (5a) we are required to find a linear classifier that minimizes the weighted sum of classification errors. Unfortunately, this is an NP-hard problem (see theorem 4 in [9]). However, an exact solution can be easily found in \(O(n^3)\) computations, as shown below.

Proposition 4.4. Finding a linear classifier that minimizes the weighted sum of classification error can be achieved in \(O(n^3)\) steps when the input dimension is \(d = 2\).

Proof. We want to maximize \(\sum_i c_i \text{sign}(u \cdot x_i + b)\) with respect to \(u\) and \(b\), the \(c_i\)'s being in \(\mathbb{R}\).

Let us see what happens for a **fixed** \(u\). We can sort the \(x_i\)'s according to their dot product with \(u\) and denote \(r\) the function which maps \(i\) to \(r(i)\) such that \(x_{r(i)}\) is in \(i\)-th position in the sort. Depending on the value of \(b\), we will have \(n+1\) possible sums, respectively
\[
-\sum_{i=1}^{k} c_{r(i)} + \sum_{i=k+1}^{n} c_{r(i)}, \quad k = 0, \ldots, n.
\]
It is obvious that those sums only depend on the order of the products \(u \cdot x_i, i = 1, \ldots, n\). When \(u\) varies smoothly on the unit circle, as the dot product is a continuous function of its arguments, the changes in the order of the dot products will occur only when there is a pair \((i, j)\) such that \(u \cdot x_i = u \cdot x_j\). Therefore, there are at most as many order changes as there are pairs of different points, i.e., \(n(n-1)/2\).

In the case of \(d = 2\), we can enumerate all the different angles for which there is a change, namely \(a_1, \ldots, a_z\) with \(z \leq \frac{n(n-1)}{2}\). We then need to test at least one \(u = [\cos(\theta), \sin(\theta)]\) for each interval \(a_i < \theta < a_{i+1}\), and also one \(u\) for \(\theta < a_1\), which makes a total of \(\frac{n(n-1)}{2}\) possibilities.

It is possible to generalize this result in higher dimensions, and as shown in [9], one can achieve \(O(\log(d)n^d)\) time.

Approximate Minimization
For data in higher dimensions, the exact minimization scheme to find the optimal linear classifier is not practical. Therefore it is interesting to consider approximate schemes for obtaining a linear classifier with weighted costs. Popular schemes for doing so are the linear SVM (i.e., linear classifier with hinge loss), the logistic regression classifier, and variants of the Perceptron algorithm. In that case, step (5c) of the algorithm is not an exact minimization, and one cannot guarantee that the global optimum will be reached. However, it might be reasonable to believe that finding a linear classifier by minimizing a weighted hinge loss should yield solutions close to the exact minimization. Unfortunately, this is not generally true, as we have found out on a simple toy data set described below. On the other hand, if in step (7) one performs an optimization not only of the output weights w_j ($j \leq i$) but also of the corresponding weight vectors v_j, then the algorithm finds a solution close to the global optimum (we could only verify this on 2-D data sets, where the exact solution can be computed easily). It means that at the end of each stage, one first performs a few training iterations of the whole NN (for the hidden units $j \leq i$) with an ordinary descent mechanism (we used conjugate gradients but stochastic gradient descent would work too), optimizing the w_j's and the v_j's, and then one fixes the v_j's and obtains the optimal w_j's for these v_j's (using a convex optimization procedure). In our experiments we used a quadratic Q, for which the optimization of the output weights can be done with the LASSO or adaptive ridge regression [15, 6].

Let us consider now a bit more carefully what it means to tune the v_j's in step (7). Indeed, changing the weight vector v_j of a selected hidden neuron to decrease the cost is **equivalent to a change in the output weights w's.** More precisely, consider the step in which the value of v_j becomes v_j'. This is equivalent to the following operation on the w's, when w_j is the corresponding output weight value: the output weight associated with the value v_j of a hidden neuron is set to 0, and the output weight associated with the value v_j' of a hidden neuron is set to w_j. This corresponds to an exchange between two variables in the convex program. We are justified to take any such step as long as it allows us to decrease the cost $C(w)$. The fact that we are simultaneously making such exchanges on all the hidden units when we tune the v_j’s allows us to move faster towards the global optimum.

Experimental Results

We performed experiments on the 2-D double moon toy dataset (as used in [2]), to be able to compare with the exact version of the algorithm. In these experiments, $Q(w \cdot h(x_t), y_t) = [w \cdot h(x_t) - y_t]^2$. The set-up is the following:

- Select a new linear classifier, either (a) the optimal one or (b) an approximate using the Pocket Perceptron algorithm [5].
- Optimize the output weights using the LASSO regression [15, 6].
- In case (b), tune both input and output weights by conjugate gradient descent on C and finally re-optimize the output weights using the LASSO.
- Optionally, remove neurons whose output weight has been set to 0.

Note that incremental algorithms using variants of the Perceptron algorithm have been proposed before, e.g. [11]. Note also that the Ratchet version of the Pocket Perceptron algorithm can be proven to converge to the optimal linear classifier (minimizing the number of errors) in finite time [12].

Using the approximate algorithm yielded for 100 training examples an average penalized $(\lambda = 1)$ squared error of 17.11 (over 10 runs), an average test classification error of 3.68% and an average number of neurons of 5.5. The exact algorithm yielded a penalized squared error of 8.09 and an average test classification error of 5.3%. A penalty of $\lambda = 1$ was nearly optimal for the exact algorithm whereas a smaller penalty further improved the test classification error of the approximate algorithm. Besides, when running the approximate algorithm for a long time, it converges to a solution whose quadratic error is extremely close to the one of the exact algorithm.
5 Conclusion

We have shown that training a NN can be seen as a convex optimization problem, and have analyzed an algorithm that can exactly or approximately solve this problem. We have shown that the solution with the hinge loss involved a number of non-zero weights bounded by the number of examples, and much smaller in practice. We have shown that there exists a stopping criterion to verify if the global optimum has been reached, but it involves solving a sub-learning problem involving a linear classifier with weighted errors, which can be computationally hard if the exact solution is sought, but can be easily implemented for toy data sets (in low dimension), for comparing exact and approximate solutions.

The above experimental results are in agreement with our initial conjecture: when we are allowed to change all the hidden unit weights we are much less likely to stall in the optimization procedure, because there are many more ways to descend on the convex cost $C(w)$. They also suggest based on experiments in which we can compare with the exact sub-problem minimization that applying Algorithm ConvexNN with an approximate minimization for adding each hidden unit while continuing to tune the previous hidden units tends to yield to fast convergence to the global minimum. What can get us stuck in a “local minimum” (in the traditional sense, i.e., of optimizing w’s and v’s together) is simply the inability to find a new hidden unit weight vector that can improve the total cost (fit and regularization term) even if there exists one.

Acknowledgments

The authors thank the following for support: NSERC, MITACS, and the Canada Research Chairs. They are also grateful for the feedback and stimulating exchanges with Sam Roweis, Nathan Srebro, and Aaron Courville.

References