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Abstract

Many machine learning algorithms can be formulated as the minimiza�

tion of a training criterion which involves a hyper�parameter� This hyper�

parameter is usually chosen by trial and error with a model selection cri�

terion� In this paper we present a methodology to optimize several hyper�

parameters� based on the computation of the gradient of a model selection

criterion with respect to the hyper�parameters� In the case of a quadratic

training criterion� the gradient of the selection criterion with respect to

the hyper�parameters is e�ciently computed by back�propagating through

a Cholesky decomposition� In the more general case� we show that the

implicit function theorem can be used to derive a formula for the hyper�

parameter gradient involving second derivatives of the training criterion�
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� Introduction

Machine learning algorithms pick a function from a set of functions F in order

to minimize something that cannot be measured� only estimated� that is the ex�

pected generalization performance of the chosen function� Many machine learning

algorithms can be formulated as the minimization of a training criterion which

involves a hyper�parameter� kept �xed during this minimization� For example�

in the regularization framework �Tikhonov and Arsenin� ����� Poggio� Torre and

Koch� ��	
�� one hyper�parameter controls the strength of the penalty term� a

larger penalty term reduces the complexity� of the resulting function �it forces

the solution to lie in a smaller� subset of F�� A common example is weight de�

cay �Hinton� ��	��� used with neural networks and linear regression �also known

as ridge regression �Hoerl and Kennard� ������ in that case�� to penalize the L��

norm of the parameters� Increasing the penalty term �increasing the weight decay

hyper�parameter� corresponds to reducing the e�ective capacity �Guyon et al��

����� by forcing the solution to be in a zero�centered hyper�sphere of smaller

radius� which may improve generalization� A regularization term can also be in�

terpreted as an a�priori probability distribution on F � in that case the weight

decay is a scale parameter �e�g�� inverse variance� of that distribution�

A model selection criterion can be used to select hyper�parameters� more

generally to compare and choose among models which may have a di�erent ca�

pacity� Many model selection criteria have been proposed in the past �Vapnik�

��	�� Akaike� ����� Craven and Wahba� ������ When there is only a single hyper�

parameter one can easily explore how its value a�ects the model selection criterion�

typically one tries a �nite number of values of the hyper�parameter and picks the

one which gives the lowest value of the model selection criterion�

In this paper we present a methodology to simultaneously select many hyper�

parameters using the gradient of the model selection criterion with respect to the

hyper�parameters� This methodology can be applied when some di�erentiability

and continuity conditions of the training criterion are satis�ed� The use of multiple

hyper�parameters has already been proposed in the Bayesian literature� one hyper�
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parameter per input feature was used to control the prior on the parameters

associated to that input feature �MacKay and Neal� ����� Neal� ���	�� In this

case� the hyper�parameters can be interpreted as scale parameters for the prior

distribution on the parameters� for di�erent directions in parameter space� In

Sections �� � and �� we explain how the gradient with respect to the hyper�

parameters can be computed� In the conclusion� we brie�y describe the results

of preliminary experiments performed with the proposed methodology �described

in more details in �Latendresse and Bengio� ����� Bengio and Dugas� ������� and

we raise some important open questions concerning the kind of over��tting� that

can occur with the proposed methodology�

� Objective Functions for Hyper�Parameters

We are given a set of independent data points� D � fz�� � � � � zTg� all generated by

the same unknown distribution P �Z�� We are given a set of functions F indexed

by a parameter � � � �i�e�� each value of the parameter � corresponds to a function

in F�� In our applications we will have � � Rs� We would like to choose a value of

� that minimizes the expectation EZ�Q��� Z�� of a given loss functional Q��� Z��

In supervised learning problems� we have input�output pairs Z � �X� Y �� with

X � X � Y � Y� and � is associated to a function f� from X to Y� For example�

we will consider the case of the quadratic loss� with real�valued vectors Y � Rm

and Q��� �X� Y �� � �
�
�f��X� � Y ���f��X�� Y �� Note that we use the letter � to

represent parameters and the letter � to represent hyper�parameters�

In the next section� we will provide a formulation for the cases in which Q is

quadratic in � �e�g�� quadratic loss with constant or a�ne function sets�� In

section �� we will consider more general classes of functions and loss� which may

be applied to the case of multi�layer neural networks� for example�
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��� Training Criteria

In its most general form� a training criterion C is any real�valued function of

the set of empirical losses Q��� zi� and of some hyper�parameters ��

C��� ��D� � c���Q��� z��� Q��� z��� � � � � Q��� zT ��

Here � is assumed to be a real�valued vector � � ���� � � � � �q�� The proposed

method relies on the assumption that C is continuous and di�erentiable almost

everywhere with respect to � and �� When the hyper�parameters are �xed� the

learning algorithm attempts to perform the following minimization�

����D� � argmin�C��� ��D� ���

An example of training criterion with hyper�parameters is the following�

C �
X

�xi�yi��D

wi����f��xi�� yi�
� � ��A���� ���

where the hyper�parameters provide di�erent quadratic penalties to di�erent pa�

rameters �with the matrix A����� and di�erent weights to di�erent training pat�

terns �with wi����� �as in �Bengio and Dugas� ����� Latendresse and Bengio�

�������

��� Model Selection Criteria

The model selection criterion E is a criterion that is used to select hyper�

parameters or more generally to choose one model among several models� Ide�

ally� it should be the expected generalization error �for a �xed ��� but P �Z� is

unknown� so many alternatives have been proposed� which are either approxima�

tions� bounds� or empirical estimates� Most model selection criteria have been

proposed for selecting a single hyper�parameter that controls the complexity�

of the class of functions in which the learning algorithms �nds a solution� e�g�

the minimum description length principle �Rissanen� ������ structural risk mini�

mization �Vapnik� ��	��� the Akaike Information Criterion �Akaike� ������ or the
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generalized cross�validation criterion �Craven and Wahba� ������ Another type of

criteria are those based on held�out data� such as the cross�validation estimates

of generalization error� These are almost unbiased estimates of generalization

error �Vapnik� ��	�� obtained by testing f� on data not used to choose �� For

example� the K�fold cross�validation estimate uses K partitions of D� S�
� � S�

� �

S�
� � S

�
� � ��� and SK

� � SK
� �

Ecv���D� �
�

K

X
i

�

jSi
�j

X

zt�Si
�

Q����� Si
��� zt��

When � is �xed� the empirical risk �
T

P
tQ��� zt� is an unbiased estimate of the gen�

eralization error of f� �but it becomes an optimistic estimate when � is chosen to

minimize the empirical risk�� Similarly� when � is �xed� the cross�validation crite�

rion is an almost unbiased estimate �when K approaches jDj� of the generalization

error of ����D�� When � is chosen to minimize the cross�validation criterion� this

minimum value also becomes an optimistic estimate� Likewise� when there is a

greater diversity of values Q�f����D�� z� that can be obtained for di�erent values

of �� there is more risk of over��tting the hyper�parameters� In this sense�

the use of hyper�parameters proposed in this paper can be very di�erent from

the common use in which a hyper�parameter helps to control over��tting� In�

stead� a blind use of the extra freedom brought by many hyper�parameters could

deteriorate generalization�

� Optimizing Hyper�Parameters for a Quadratic

Training Criterion

In this section we analyze the simpler case in which the training criterion C

is a quadratic polynomial of the parameters �� The dependence on the hyper�

parameters � can be of higher order� as long as it is continuous and di�erentiable

almost everywhere �see for example �Bottou� ���	� for more detailed technical






conditions su�cient for stochastic gradient descent��

C � a��� � b����� �
�

�
��H���� ���

where �� b � Rs� a � R� and H � Rs�s� For a minimum of ��� to exist requires

that H be positive de�nite� It can be obtained by solving the linear system

�C

��
� b �H� � � ���

which yields the solution

���� � �H�����b���� �
�

Assuming that E only depends on � through �� the gradient of the model selection

criterion E with respect to � is

�E

��
�
�E

��

��

��
�

If there were a direct dependency �not through ��� an extra partial derivative

would have to be added�

For example� in the case of the cross�validation criteria�

�Ecv

��
�

�

K

X
i

�

jSi
�j

X

zt�S
i
�

�Q��� zt�

��
�

In the quadratic case� the in�uence of � on � is spelled out by �
�� yielding

��i
��

� �
X
j

�H��
i�j

��
bj �

X
j

H��
i�j

�bj
��

���

Although the second sum can be readily computed�
�H��

i�j

��
in the �rst sum is more

challenging� we consider several methods below� One solution is based on the com�

putation of gradients through the inverse of a matrix� This general but ine�cient

solution is the following�

�H��
i�j

��
�
X
k�l

�H��
i�j

�Hk�l

�Hk�l

��
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where
�H��

i�j

�Hk�l

� �H��
i�j H

��
l�k � Ii��l�j ��kH

��
i�j minor�H� j� i�

��
l��k�� ���

where minor�H� j� i� denotes the minor matrix�� obtained by removing the j�th

row and the i�th column from H� and the indices �l�� k�� in the above equation

refer to the position within a minor matrix that corresponds to the position �l� k�

in H �note l �� i and k �� j�� Unfortunately� the computation of this gradient

requires O�s�� multiply�add operations for an s�s matrix H� which is much more

than is required by the inversion of H �O�s�� operations�� A better solution is

based on the following equality� HH�� � I� where I is the s� s identity matrix�

This implies� by di�erentiating with respect to �� �H
��
H���H �H��

��
� �� Isolating

�H��

��
� we get

�H��

��
� �H���H

��
H�� �	�

which requires only about �s� multiply�add operations�

PLACE FIGURE � AROUND HERE

Figure �� Illustration of forward paths �full lines� and gradient paths �dashed� for

computation the model selection criterion E and its derivative with respect to the

hyper�parameters ���� when using the method based on the Cholesky decomposi�

tion and back�substitution to solve for the parameters ����

An even better solution �which was suggested by L�eon Bottou� is to return to

equation ���� which can be solved using about s��� multiply�add operations �when

� � Rs�� The idea is to back�propagate gradients through each of the operations

performed to solve the linear system� The objective is to compute the gradient of
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E with respect to H and b through the e�ect of H and b on �� in order to �nally

compute �E
��

� as illustrated in �gure �� The back�propagation costs the same as

the linear system solution� i�e�� about s��� multiply�add operations� so this is

the approach that we have kept for our implementation� Since H is the Hessian

matrix� it is positive de�nite and symmetric� and ��� can be solved through the

Cholesky decomposition ofH �assumingH is full rank� which is likely if the hyper�

parameters provide some sort of weight decay�� The Cholesky decomposition of a

symmetric positive de�nite matrix H gives H � LL� where L is a lower diagonal

matrix �with zeros above the diagonal�� It is computed in time O�s�� as follows�

for i � �� � � � � s

Li�i �
q
Hi�i �

Pi��
k�� L

�
i�k

for j � i � �� � � � � s

Lj�i � �Hi�j �
Pi��

k�� Li�kLj�k��Li�i

Once the Cholesky decomposition is achieved� the linear system LL�� � �b can

be easily solved� in two back�substitution steps� �rst solve Lu � �b for u� then

solve L�� � u for �� First step� iterating once forward through the rows of L�

for i � �� � � � � s�

ui � ��bi �
Pi��

k�� Li�kuk��Li�i�

Second step� iterating once backward through the rows of L�

for i � s� � � � � ��

�i � �ui �
Ps

k�i�� Lk�i�k��Li�i�

The computation of the gradient of � with respect to the elements of H and b

proceed in exactly the reverse order� We start by back�propagating through the

back�substitution steps� and then through the Cholesky decomposition� Together�

the three boxed algorithms that follow allow to compute �E
�b

and �E
�H

� starting from

the partial� parameter gradient �E
��i

���
��������s

�not taking into account the depen�

dencies of �i on �j for j � i�� As intermediate results� the algorithm computes

the partial derivatives with respect to u and L� as well as the full gradients�

with respect to �� �E
��i

���
�i
� taking into account all the dependencies between the �i�s

brought by the recursive computation of the �i�s�

	



First back�propagate through the solution of L�� � u�

initialize dEdtheta � �E
��

���
��������s

initialize dEdL� �

for i � �� � � � � s

dEdui � dEdthetai�Li�i

dEdLi�i � dEdLi�i � dEdthetai �i�Li�i

for k � i � � � � � s

dEdthetak � dEdthetak � dEdthetai Lk�i�Li�i

dEdLk�i � dEdLk�i � dEdthetai �k�Li�i

Then back�propagate through the solution of Lu � �b�

for i � s� � � � � �
�E
�bi
� �dEdui�Li�i

dEdLi�i � dEdLi�i � dEdui ui�Li�i

for k � �� � � � � i� �

dEduk � dEduk � dEdui Li�k�Li�i

dEdLi�k � dEdLi�k � dEdui uk�Li�i

The above algorithm gives us the gradient of the model selection criterion E with

respect to coe�cient b��� of the training criterion� as well as with respect to the

lower diagonal matrix L� dEdLi�j � �E
�Li�j

�

Finally� we back�propagate through the Cholesky decomposition� to convert the

gradients with respect to L into gradients with respect to the Hessian H����

�



for i � s� � � � � �

for j � s� � � � � i� �

dEdLi�i � dEdLi�i � dEdLj�iLj�i�Li�i

�E
�Hi�j

� dEdLj�i�Li�i

for k � �� � � � � i� �

dEdLi�k � dEdLi�k � dEdLj�iLj�k�Li�i

dEdLj�k � dEdLj�k � dEdLj�iLi�k�Li�i

�E
�Hi�i

� �
�
dEdLi�i�Li�i

for k � �� � � � � i� �

dEdLi�k � dEdLi�k � dEdLi�iLi�k�Li�i

Note that we have only computed gradients with respect to the diagonal and

upper diagonal of H because H is symmetric� Once we have the gradients of E

with respect to b and H� we use the functional form of b��� and H��� to compute

the gradient of E with respect to ��

�E

��
�
X
i

�E

�bi

�bi
��

�
X
i�j

�E

�Hi�j

�Hi�j

��

�again we assumed that there is no direct dependency from � to E� otherwise an

extra term must be added��

Using this approach rather than the one described in the previous subsection� the

overall computation of gradients is therefore in about s��� multiply�add operations

rather than O�s��� The most expensive step is the back�propagation through the

Cholesky decomposition itself �three nested s�iterations loops�� Note that this

step may be shared if there are several linear systems to solve with the same

Hessian matrix� For example this will occur in linear regression with multiple

outputs because H is block�diagonal� with one block for each set of parameters

associated to one output� and all blocks being the same �equal to the input design

matrix�
P

t xtx
�
t� denoting xt the input training vectors�� Only a single Cholesky

computation needs to be done� shared across all blocks�
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��� Weight Decays for Linear Regression

In this subsection� we illustrate the method in the particular case of multiple

weight decays for linear regression� with K�fold cross�validation as the model se�

lection criterion� The hyper�parameter �j will be a weight decay associated to the

j�th input variable� The training criterion for the k�th partition is

Ck �
�

jSk
� j

X

�xt�yt��Sk
�

�

�
��xt � yt�

���xt � yt� �
�

�

X
j

�j
X
i

��
i�j ���

The objective is to penalize separately each of the input variables �as in �MacKay

and Neal� ����� Neal� ���	��� a kind of soft variable selection� �see �Latendresse

and Bengio� ����� for more discussion and experiments with this setup��

The training criterion is quadratic� as in ���� with coe�cients

a �
�

�

X
t

y�tyt� b�ij� � �
X
t

yt�ixt�j� H�ij���i�j�� � �i�i�
X
t

xt�jxt�j� � �i�i��j�j��j�

where �i�j � � when i � j and � otherwise� and �ij� is an index corresponding to

indices �i� j� in the weight matrix �� e�g�� �ij� � �i� ��� s� j� From the above

de�nition of the coe�cients of C� we obtain their partial derivatives with respect

to ��
�b

��
� ��

�H�ij���i�j��

��k
� �i�i��j�j��j�k�

Plugging the above de�nitions of the coe�cients and their derivatives in the equa�

tions and algorithms of the previous subsection� we have therefore obtained an

algorithm for computing the gradient of the model selection criterion with respect

to the input weight decays of a linear regression�

Note that here H is block�diagonal� with m identical blocks of size �n � ��� so

the Cholesky decomposition �and similarly back�propagating through it� can be

performed in about �s�m���� multiply�add operations rather than s��� operations�

where m is the number of outputs �the dimension of the output variable��
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� Non�Quadratic Criterion� Hyper�Parameters

Gradient

If the training criterion C is not quadratic in terms of the parameters �� it will

in general be necessary to apply an iterative numerical optimization algorithm to

minimize the training criterion� In this section we consider what happens after

this minimization is performed� i�e�� at a value of � where �C
��

is approximately

zero and ��C
���

is positive de�nite �otherwise we would not be at a minimum of C��

The minimization of C��� ��D� de�nes a function ����D� �equation ��� With our

assumption of smoothness of C� the implicit function theorem tells us that this

function exists locally and is di�erentiable� To obtain this function we write

F ��� �� �
�C

��
� ��

evaluated at � � ����D� �at a minimum of C�� Di�erentiating the above equation

with respect to �� we obtain

�F

��

��

��
�
�F

��
� �

so we obtain a general formula for the gradient of the �tted parameters

with respect to the hyper�parameters�

�����D�

��
� ��

��C

���
���

��C

����
� �H�� �

�C

����
����

Let us see how this result relates to the special case of a quadratic training crite�

rion� C � a � b�� � �
�
��H��

��

��
� �H���

�b

��
�
�H

��
�� � �H�� �b

��
�H���H

��
H��b

where we have substituted � � �H��b� Using the equality �	�� we obtain the

same formula as in eq� ����

��



Let us consider more closely the case of a neural network with one layer of hidden

units with hyperbolic tangent activations� a linear output layer� squared loss� and

hidden layer weights Wi�j� For example� if we want to use hyper�parameters for

penalizing the use of inputs� we have a criterion similar to ����

Ck �
�

jSk
� j

X

�xt�yt��Sk
�

�

�
�f��xt�� yt�

��f��xt�� yt� �
�

�

X
j

�j
X
i

W �
i�j�

with C �
P

k Ck� and the cross�derivatives are easy to compute�

��C

�Wi�j��k
� �k�jWi�j�

The Hessian and its inverse require more work� but can be done respectively in

at most O�s�� and O�s�� operations� See for example �Bishop� ����� for the

exact computation of the Hessian for multi�layer neural networks� See �Becker

and LeCun� ��	�� LeCun� Denker and Solla� ����� for a diagonal approximation

which can be computed and inverted in O�s� operations�

� Summary of Experiments and Conclusions

In this paper� we have presented a new methodology for simultaneously optimizing

several hyper�parameters� based on the computation of the gradient of a model

selection criterion with respect to the hyper�parameters� taking into account the

in�uence of the hyper�parameters on the parameters� We have considered both the

simpler case of a training criterion that is quadratic with respect to the parameters

�� � Rs� and the more general non�quadratic case� We have shown a particularly

e�cient procedure in the quadratic case that is based on back�propagating gra�

dients through the Cholesky decomposition and back�substitutions� This was an

improvement� we have arrived at this s����operations procedure after studying

�rst an O�s�� procedure and then a �s��operations procedure� In the particular

case of input weight decays for linear regression� the computation can even be

reduced to about �s�m���� operations when there are m outputs�

We have performed preliminary experiments with the proposed methodology in

several simple cases� using conjugate gradients to optimize the hyper�parameters�

��



The application to linear regression with weight decays for each input is described

in �Latendresse and Bengio� ������ The hyper�parameter optimization algorithm

is used to perform a soft selection of the input variables� A large weight decay on

one of the inputs e�ectively forces the corresponding weights to very small values�

Comparisons on simulated data sets are made in �Latendresse and Bengio� �����

with ordinary regression as well as with stepwise regression methods and the

adaptive ridge �Grandvalet� ���	� or LASSO �Tibshirani� ���
��

Another type of application of the proposed method has been explored� in the

context of a real�world� problem of non�stationary time�series prediction �Ben�

gio and Dugas� ������ In this case� an extension of the cross�validation criterion

to sequential data which may be non�stationary is used� Because of this non�

stationarity� recent data may sometimes be more relevant to current predictions

than older data� The training criterion is a sum of weighted errors for the past

examples� and these weights are given by a parametrized function of time �as

the wi��� in eq� ��� The parameters of that function are two hyper�parameters

that control when a transition in the unknown generating process would have

occurred and how strong that change was or should be trusted� In these exper�

iments� the weight given to past data points is a sigmoid function of the time�

the threshold and the slope of the sigmoid are the hyper�parameters� representing

respectively the time of a strong transition and the strength of that transition�

Optimizing these hyper�parameters� we obtained statistically signi�cant improve�

ments in predicting one�month ahead future volatility of Canadian stocks� The

comparisons were made against several linear� constant� and ARMA models of

the volatility� The experiments were performed on monthly return data from ���

Canadian stocks from ���� to ����� The measure of performance is the aver�

age out�of�sample squared error in predicting the squared returns� Single�sided

signi�cance tests were performed taking into account the auto�covariance in the

temporal series of errors and the covariance of the errors between the compared

models� When comparing the prediction of the �rst moment �expected return�� no

model signi�cantly improved on the historical average of stock returns �constant

��



model�� When comparing the prediction of the second moment �expected squared

returns�� the method based on hyper�parameters optimization beat all the other

methods� with a p�value of �� or less�

What remains to be done� �rst� more experiments� in particular with the non�

quadratic case �e�g�� MLPs�� and with model selection criteria other than cross�

validation �which has large variance �Breiman� ������� Second� there are im�

portant theoretical questions that remain unanswered concerning the amount of

over��tting that can be brought when too many hyper�parameters are optimized�

As we have outlined in the introduction� the situation with hyper�parameters may

be compared with the situation of parameters� However� whereas the form of the

training criterion as a sum of independent errors allows to de�ne the capacity for

a class of functions and relate it to the di�erence between generalization error and

training error� it does not appear clearly to us how a similar analysis could be

performed for hyper�parameters�
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