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Our Task

< Basic task
> To Create an algorithm to classify whether an image contains a

dog or a cat
> Kaggle Competition

% Dataset: the ASIRRA dataset provided by Microsoft
Research
> Training Dataset: 543.76 MB, 25000 images(12500 dogs, 12500
cats)
> Testing Dataset: 271.15MB, 12500 images



Our Task

< Input & Output

> Input: images of dogs and cats

> Qutput: classification accuracy on testing dataset
/

< Relevance to Machine Learning

> Learning task

m For fraining dataset, to learn a classification model to determine the decision
boundary.

> Performance task

m For testing dataset, to make classification for each image based on the learned
model, and get the accuracy.
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Our Solutions

< Traditional Model for pattern recognition
> Fixed features + Trainable classifiers

> Fixed features
m Low Level Features: Color

m High Level Features: Dense SIFT (Scale-Invariant Feature
Transform)



Our Solutions

< Deep Learning Model

> Trainable features + Trainable classifiers

> Trainable features
m from Deep Neural Networks



Our Solutions

«» Two trainable classifiers

based on data property (high dimensionality) and previous work

> Support Vector Machines (SVMs)
> Deep Neural Networks
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Solution 1: Traditional Model

<+ Fixed Features
> High Level Features
m Dense SIFT (Scale-Invariant Feature Transform)

> Low Level Features
m Color



Solution 1: Traditional Model

% Feature Extraction - (Dense) SIFT feature

> The SIFT features are local and based on the appearance of the object
> |nvariant to image scale and rotations
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Solution 1: Traditional Model

% Feature Extraction - cColor

> Use HSV (hue, saturation, value) model
other than RGE (red, green, blue) model of color

m Closer to human perception of color
Easier to int t
" Easler o fnierpre 61.6% —> 715%



Solution 1: Traditional Model

< Feature Representation - Bag of Words
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http://cs.nyu.edu/~fergus/teaching/vision_2012/9_BoW.pdf
http://cs.nyu.edu/~fergus/teaching/vision_2012/9_BoW.pdf

Solution 1: Traditional Model

% Feature Extraction - Whole Process

learnin recognition
1. feature detection R el
2. create dictionary foaurs amtomior e '
3. representation [image representation
4. training model '
5. get decision boundary
category models — —» zzt:ig%?"

(and/or) classifiers

http://cs.nyu.edu/~fergus/teaching/vision 2012/9 BoW.pdf
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Solution 1: Traditional Model

< Preprocessing: Image Segmentation

> Segmentation of pets from backgrounds
-- complicated and various backgrounds

> Results (good & bad):
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Solution 2: Deep Learning




Solution 2: Deep Learning

“* Architecture of model: previous work
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(Alex Krizhevsky, ImageNet 2012, 60 million parameters,
650,000 neurons, trained on 1.2 million training images)



Solution 2: Deep Learning

% Convolutional layers: feature maps
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Solution 2: Deep Learning

“*  Max pooling: sub-sampling

Feature Maps

(Matthew D. Zeiler, 2013)

128 Max
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Solution 2: Deep Learning

¢ Fully connected layers: image representation
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Solution 2: Deep Learning

** Our model: Learned feature + Classifier
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Solution 2: Deep Learning

% Top activation for Layer 1, 2
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edges, colors (low-level feature) corners, edge/color conjunctions (low-level feature)

(Matthew D. Zeiler, 2013)



Solution 2: Deep Learning
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textures (mid-level feature)

(Matthew D. Zeiler, 2013)



Solution 2: Deep Learning

“* Top activation for Layer 4

part of objects (high-level feature)

(Matthew D. Zeiler, 2013)



Solution 2: Deep Learning

“* Top activation for Layer 5 (objects)
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entire objects (high-level feature)
(Matthew D. Zeiler, 2013)
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Per‘fo PMANCe on Fixed Features

> Fixed features + SVMs
m Dense SIFT features

0.61804 — 0.65067 — 0.67600

m Dense SIFT + Color features
0.54960 — 0.55867 — 0.71467

m Dense SIFT features(with segmentation)
0.49600 — 0.50133



Per‘fo rmMancCe on Trainable Features

> Trainable Features + Deep Neural Network
m  Original neural network(Alex 2012)

0.83200

m Decaf features + BP Neural Network
0.93013

m Decaf features + SVM (RBF Kernel)
0.93787
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Increasing Performance
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< Leaderboard on Kaggle (ranked 9th in 71 teams)
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Last Submission UTC (sest - Last Submission)

Mon, 18 Nov 2013 17:54:09 (-3d)

Sat, 16 Nov 2013 17:30:20 (-30.6d)

Thu, 26 Sep 2013 13:54:31

Wed, 23 Oct 2013 02:12:19(-1.1h)

Mon, 25 Nov 2013 15:17:11 (-4.1d)

Fri, 29 Nov 2013 19:11:26 (-10.9d)

Wed, 27 Nov 2013 09:17:39

Thu, 24 Oct 2013 19:00:57 (-21h)

Tue, 03 Dec 2013 01:55:13 (-0.7h)

Sun, 17 Nov 2013 09:19:38 (-4d)
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What we are going to do...

> to achieve higher performance

m different parameter settings for SVMs and Deep Neural
Networks
m Features combination
thanks to Dr Russ 6Greiner
m Face detection
m multi classifiers for different types of images
thanks to Dr Mohamed Elgendi



New ldeas

% Done

> Works:
m Combined SIFT with Color features
m Tried different types of Decaf features
m SVMs on Decaf features

> Doesn't work:
m Image Segmentation

% To Do

m Combine Decaf features with other features
m Face Detection
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