DogVCat: Create an algorithm to distinguish dogs from cats

Presenter: Bang Liu, Yan Liu, Kai Zhou

Instructor: Dr Russ Greiner

Co-coach: Junfeng Wen

Outlines

- Our Task
- Our Solutions
 - ☐ Traditional Model
 - Deep Learning Model
- Our Results
- ☐ Future Work

Our Task

- Basic task
 - > To Create an algorithm to classify whether an image contains a dog or a cat
 - > Kaggle Competition
- Dataset: the ASIRRA dataset provided by Microsoft Research
 - Training Dataset: 543.76MB, 25000 images(12500 dogs, 12500 cats)
 - Testing Dataset: 271.15MB, 12500 images

Our Task

Input & Output

- > Input: images of dogs and cats
- > Output: classification accuracy on testing dataset

Relevance to Machine Learning

- > Learning task
 - For training dataset, to learn a classification model to determine the decision boundary.
- > Performance task
 - For testing dataset, to make classification for each image based on the learned model, and get the accuracy.

Outlines

- Our Task
- Our Solutions
 - ☐ Traditional Model
 - Deep Learning Model
- Our Results
- ☐ Future Work

Our Solutions

- Traditional Model for pattern recognition
 - > Fixed features + Trainable classifiers

- > Fixed features
 - Low Level Features: Color
 - High Level Features: Dense SIFT (Scale-Invariant Feature Transform)

Our Solutions

- Deep Learning Model
 - > Trainable features + Trainable classifiers

- > Trainable features
 - from Deep Neural Networks

Our Solutions

Two trainable classifiers

based on data property (high dimensionality) and previous work

- Support Vector Machines (SVMs)
- Deep Neural Networks

Outlines

- Our Task
- Our Solutions
 - Traditional Model
 - □ Deep Learning Model
- Our Results
- ☐ Future Work

- Fixed Features
 - > High Level Features
 - Dense SIFT (Scale-Invariant Feature Transform)
 - > Low Level Features
 - Color

- Feature Extraction (Dense) SIFT feature
 - > The SIFT features are local and based on the appearance of the object
 - Invariant to image scale and rotations

Feature Extraction - Color

- Use HSV (hue, saturation, value) model other than RGB (red, green, blue) model of color
 - Closer to human perception of color
 - Easier to interpret

61.6% → 71.5%

Feature Representation - Bag of Words

Feature Extraction - Whole Process

- 1. feature detection
- 2. create dictionary
- 3. representation
- 4. training model
- 5. get decision boundary

http://cs.nyu.edu/~fergus/teaching/vision_2012/9_BoW.pdf

- Preprocessing: Image Segmentation
 - Segmentation of pets from backgrounds
 -- complicated and various backgrounds
 - > Results (good & bad):

> Performance:

no improvement

Outlines

- Our Task
- Our Solutions
 - ☐ Traditional Model
 - Deep Learning Model
- Our Results
- ☐ Future Work

Representations are hierarchical and trained

Architecture of model: previous work

(Alex Krizhevsky, ImageNet 2012, 60 million parameters, 650,000 neurons, trained on 1.2 million training images)

Convolutional layers: feature maps

1,	1 _{×0}	1,	0	0
0,0	1,	1 _{×0}	1	0
0 _{×1}	0,×0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

http://www1.i2r.a-star.edu.sg/~irkhan

(UFLDL)

Max pooling: sub-sampling

Fully connected layers: image representation

Our model: Learned feature + Classifier

Top activation for Layer 1, 2

edges, colors (low-level feature)

corners, edge/color conjunctions (low-level feature)

Top activation for Layer 3

textures (mid-level feature)

Top activation for Layer 4

part of objects (high-level feature)

Top activation for Layer 5 (objects)

entire objects (high-level feature) (Matthew D. Zeiler, 2013)

Outlines

- Our Task
- Our Solutions
 - ☐ Traditional Model
 - Deep Learning Model
- Our Results
- ☐ Future Work

- Performance on Fixed Features
 - > Fixed features + SVMs
 - Dense SIFT features

```
0.61804 \rightarrow 0.65067 \rightarrow 0.67600
```

■ Dense SIFT + Color features

```
0.54960 \rightarrow 0.55867 \rightarrow 0.71467
```

Dense SIFT features(with segmentation)

```
0.49600 \rightarrow 0.50133
```

- Performance on Trainable Features
 - > Trainable Features + Deep Neural Network
 - Original neural network(Alex 2012)
 - 0.83200
 - Decaf features + BP Neural Network0.93013
 - Decaf features + SVM (RBF Kernel)0.93787

Increasing Performance

Leaderboard on Kaggle (ranked 9th in 71 teams)

#	Δ1w	Team Name *inthemoney	Score ②	Entries	Last Submission UTC (Best – Last Submission)
1	-	DaggerFS *	0.97040	4	Mon, 18 Nov 2013 17:54:09 (-3d)
2	-	Charlie *	0.96987	5	Sat, 16 Nov 2013 17:30:20 (-30.6d)
3	-	Jeff	0.96773	2	Thu, 26 Sep 2013 13:54:31
4	-	wqren	0.96667	4	Wed, 23 Oct 2013 02:12:19 (-1.1h)
5	-	Kyle Kastner	0.96667	10	Mon, 25 Nov 2013 15:17:11 (-4.1d)
6	-	Daniel Nouri	0.96587	8	Fri, 29 Nov 2013 19:11:26 (-10.9d)
7	†1	hungry red panda	0.96427	2	Wed, 27 Nov 2013 09:17:39
8	11	naxeji	0.94933	10	Thu, 24 Oct 2013 19:00:57 (-21h)
9	15	UA_551 #	0.93787	18	Tue, 03 Dec 2013 01:55:13 (-0.7h)
10	i1	Poly 4	0.92000	4	Sun, 17 Nov 2013 09:19:38 (-4d)

Outlines

- Our Task
- Our Solutions
 - ☐ Traditional Model
 - Deep Learning Model
- Our Results
- ☐ Future Work

Future Work

- What we are going to do...
 - > to achieve higher performance
 - different parameter settings for SVMs and Deep Neural Networks
 - Features combination

thanks to Dr Russ Greiner

- Face detection
- multi classifiers for different types of images

thanks to Dr Mohamed Elgendi

New Ideas

- Done
 - > Works:
 - Combined SIFT with Color features
 - Tried different types of Decaf features
 - SVMs on Decaf features
 - > Doesn't work:
 - Image Segmentation
- To Do
 - Combine Decaf features with other features
 - Face Detection

References

- [1] Zeiler, Matthew D., and Rob Fergus. "Visualizing and Understanding Convolutional Neural Networks." *arXiv preprint arXiv:1311.2901* (2013).
- [2] Donahue, Jeff, et al. "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition." *arXiv preprint arXiv:1310.1531* (2013).
- [3] Krizhevsky, Alex, Ilya Sutskever, and Geoff Hinton. "Imagenet classification with deep convolutional neural networks." *Advances in Neural Information Processing Systems 25.* 2012.
- [4] Lowe, David G. "Distinctive image features from scale-invariant keypoints." *International journal of computer vision* 60.2 (2004): 91-110.

DogVCat

