
Image Classification for Dogs and Cats

Bang Liu, Yan Liu
Department of Electrical and Computer Engineering

{bang3,yan10}@ualberta.ca

Kai Zhou
Department of Computing Science

kzhou3@ualberta.ca

Abstract

In this project, our task is to develop an algorithm to classify images of dogs and
cats, which is the Dogs vs. Cats competition from Kaggle. We mainly investi-
gated two approaches to address this problem. The first one is a traditional pat-
tern recognition model. We extracted some human-crafted features like color and
Dense-SIFT, represented images using bag of words model, and then trained Sup-
port Vector Machines(SVMs) classifiers. For the second approach, we used Deep
Convolutional Neural Networks (CNN) to learn features of images and trained
Backpropagation(BP) Neural Networks and SVMs for classification. We tried
various experiments to improve our performance on the test dataset, and finally
got the best accuracy of 94.00% by the second approach.

1 Introduction

1.1 Motivation and Background

The Dogs vs. Cats competition from Kaggle is trying to solve the CAPTCHA[3] challenge, which
relies on the problem of distinguishing images of dogs and cats. It is easy for humans, but evidence
[3] suggests that cats and dogs are particularly difficult to tell apart automatically.

Many people has worked or are working on constructing machine learning classifiers to address this
problem. In [3], a classifier based on color features got 56.9% accuracy on the Asirra dataset [2]. In
[17], an accuracy of 82.7% was achieved from a SVM classifier based on a combination of color and
texture features. And in [18], they used the SIFT (Scale-Invariant Feature Transform) [13] features
to train a classifier and finally got an accuracy of 92.9%.

In our project, we also would like to solve this problem and achieve higher performance. We tried
different strategies. For instance, we tried Dense-SIFT features and the combination of Dense-
SIFT and color features, and features learned from CNN. Also, we employed SVMs on the learned
features and finally achieved our best classication accuracy of 94.00%.

1.2 Task Definition

Our basic task is to create an algorithm to classify whether an image contains a dog or a cat. The
input for this task is images of dogs or cats from training dataset, while the output is the classification
accuracy on test dataset.

The given dataset for this competition is the Asirra dataset provided by Microsoft Research. Our
training set contains 25,000 images, including 12,500 images of dogs and 12,500 images of cats,
while the test dataset contains 12,500 images. The average size for these images is around 350×500.

Our learning task is to learn a classification model to determine the decision boundary for the training
dataset. The whole process is illustrated in Figure 1, from which we can see the input for the learning
task is images from the training dataset, while the output is the learned classification model.

1

Figure 1: Architecture for Learning Task

Figure 2: Architecture for Performance Task

Our performance task is to apply the learned classification model to classify images from the test
dataset, and then evaluate the classification accuracy. As seen from Figure 2, the input is images
from the test dataset, and the output is the classification accuracy.

1.3 Our Solution

In our solution, we mainly tried two different approaches. The first method is a traditional pattern
recognition model, by which we learned the classification model from some human-crafted features,
mainly including color feature, Dense-SIFT feature, and a combination of the two kinds of features.
The second method is a trainable model, by which we applied a CNN to learn features. In terms
of classifiers, we mainly chose SVMs and BP Neural Networks, considering the high dimensional
feature space for images. We tried various experiments to achieve high accuracy on the test dataset,
with different algorithms and parameter settings.

The outline of our paper is as follows. We introduce the first approach in section 2. The second
approach is described in section 3. Finally we summarize our work and potential future work in
section 4.

2 Method One: Using Human-Crafted Features

2.1 Human-Crafted Features

In typical image classification problems, we choose some fixed human-crafted features to use. There
are many well studied features, such as SIFT, HoG[15], RGB or HSV color features, etc. In our
project, the images are either dogs or cats. And we know that the shape and the priori probability of
colors of dogs and cats are different. So we extracted local features descriptor SIFT and HSV color
features to represent the original images.

The SIFT features are local and based on the appearance of the object, also invariant to image
scale and rotations. The scale-invariant feature transform of a neighborhood is a 128 dimensional
vector of histograms of image gradients, as shown in Figure 3. The region, at the appropriate scale
and orientation, is divided into a 4×4 square grid, each cell of which yields a histogram with 8

2

Figure 3: SIFT Descriptor [14]

Figure 4: Bag of Words [16]

orientation bins. The Dense-SIFT is a fast algorithm for the calculation of a large number of SIFT
descriptors of densely sampled features[12].

The HSV (hue, saturation, value) are the most common cylindrical-coordinate representations of
points in an RGB color model, which rearranges the geometry of RGB in an attempt to be more
intuitive and perceptually relevant. The reason why we chose it is that the HSV is closer to human
perception of color and easy to interpret.

2.2 Our Model

After getting the Dense-SIFT and HSV features, we applied the bag of words model [16] to represent
images. Figure 4 shows the bag of words model. It is a simplifying representation used in natural
language processing and computer vision. In this model, a dictionary is formed by clustering the
extracted features of training set using k-means algorithm. Every cluster is a word of this visual dic-
tionary. Then images are represented by frequency vectors in which every dimention represents the
proportion of features belong to a cluster. For classification, we trained SVM classifiers respectively
on the Dense-SIFT feature, the HSV feature and the combination of the two. SVMs with suitable
parameters have the ability to prevent overfitting, and experience shows that they usually can get
good performance for classification.

Additionally, since the original images have various complicated backgrounds, we also tried the
grab-cut [18] segmentation algorithm to cut the backgrounds of images.

2.3 Result and Analysis

When only using the Dense-SIFT features, the accuracy on the test dataset was only 67.60%. After
combining with HSV feature, the accuracy increased to 71.47%. The performance is not good and
here we analyzed some potential reasons. The most possible one is that the Dense-SIFT and color

3

features of dogs and cats are quite similar. For instance, they both have one head, one tail and four
legs. Also, their color has much in common.

For the image segmentation part, the classification performance turns out to decrease, due to the poor
results of image segmentation. For example, in some images, the dogs or cats were even cutted out.
Also, some important information like tails or ears was removed during the segmentation process.

To further improve the performance, we can extract more distinctive features, use PCA to reduce
dimension or try Deep Neural Network to extract features of images.

3 Method Two: Using Features learned by Convolutional Neural Network

Our second approach is to learn features by the CNN [5][6] and then use BP Neural Network or
SVM classifiers to train these features. Different from human crafted features which are fixed fea-
tures directly extracted from images, deep neural networks learn features from images, and discover
multiple levels of representation, with higher-level features representing more abstract aspects of the
data [4].

3.1 Deep Convolutional Neural Networks

The CNN is a kind of deep architecture which has achieved great performance in tasks like document
recognition [5] and image recognition [6].

Different from traditional BP Neural Networks, which contains input layer, hidden layers and output
layer, the CNN also contains Convolutional layers and Max Pooling layers.

Figure 5: Convolutional Operation and Max Pooling in CNN[9][10]

Convolutional layers contain many feature maps, which are two dimensional hidden nodes. Every
feature map owns a weight matrix called kernel, and different feature maps owns different kernels.
Kernels do convolutional operation with every feature map in previous layer (layer j), then we sum
them up and put it into sigmoid function. The output is the pixel value in layer j+1. With different
kernels, we can learn different representations of data and the amount of parameters is not increased
exponentially with the number of hidden nodes and layers.

Once a feature has been detected, its exact location becomes less important [5]. Only its approximate
position relative to other features is relevant. Not only is the precise position of each of those features
irrelevant for identifying the pattern, it is also potentially harmful because the positions are likely to
vary for different instances of the pattern. Max pooling layers do sub-sampling operation on feature
maps. For every four pixels, we only retain the max value, so that the size of feature maps will
be half of the original size. Sub-sampling reduces the resolution of feature maps and reduces the
sensitivity of the output to shifts and distortions, so that the model will be more robust. Max pooling
operation can be incorporated into convolutional layers, and we don’t need additional layers to do
sub-sampling.

4

3.2 Our Model

In 2012, Krizhevsky and Hinton trained a CNN and achieved state of the art performance on the
ImageNet 2012 classification benchmark [6]. Our model is based on the model of Krizhevsky. The
original model contains 8 layers and the last three layers are two fully connected layers (same as
hidden layers in BP Neural Network) and output layer. We cut off the last 2 layers and re-use the
previous 6 layers to extract features from images. Recent work [8] proved that features extracted
from the activation of a CNN trained in a fully supervised fashion on a large, fixed set of object
recognition tasks can be re-purposed to novel generic tasks, which may differ significantly from the
originally trained tasks. And training a Deep Neural Network needs much experience and skill, and
it is very time consuming. That is why we re-used the pre-trained network of Krizhevsky rather than
training a deep architecture by ourselves.

Figure 6: An illustration of the architecture of our model. The CNN was trained in parallel by two
GPUs, and the figure explicitly shows the delineation of responsibilities between two GPUs. One
GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom.
The networks input is 2242243 (RGB), and the number of neurons in the networks remaining layers
is given by 55×55×96, 27×27×256, 13×13×384, 13×13×256, 4096. Then we train a classifier
using the 4096 dimensional features and classify images as dog or cat. We refer to [6] for more
details about the network.

The architecture of this model is illustrated by figure 6. First, input images are normalized into
224×224 (first normalize the short edge size to 224 and then choose the center part of images); then
the first convolutional layer filters the 224×224×3 input image with 96 kernels of size 11×11×3
with a stride of 4 pixels (this is the distance between the receptive field centers of neighboring
neurons in a kernel map). The second convolutional layer takes as input the pooled output of the
first convolutional layer and filters it with 256 kernels of size 5× 5×48. The third, fourth, and fifth
convolutional layers are connected to one another without any intervening pooling layers. The third
convolutional layer has 384 kernels of size 3×3× 192, and the fifth convolutional layer has 256
kernels of size 3×3×192. The fully-connected layers have 4096 neurons. Until now, the 6 layer
CNN transforms an image into a feature vector of 4096 dimensions. Then we trained the BP Neural
Networks and SVMs with 5 fold cross-validation on the extracted features. After that, we applied
the learned models to classify the test set and evaluated their performance.

3.3 Result and Analysis

In this method, we finally got the best accuracy 94.00% from an SVM classifier (with RBF kernel
and C = 10000), which is impressive. To clearly understand how and why the CNN work, here we
look insight into the internal operation and behavior of the complex model.

To understand what every layers learned from images, we need to figure out what kind of inputs
activate a feature map. A feature map is activated if its pixel value is 1. Zeiler [9] proposed a
visualization technique using multi-layered Deconvolutional Network (deconvnet) [11] to reveals
the input stimuli that excite individual feature maps at any layer in the model. It projects the feature
activations back to the input pixel space. A deconvnet can be thought as a convent model that uses
the same components (filtering, pooling) but in reverse, so instead of mapping pixels to features
does the opposite. To examine a convnet, a deconvnet is attached to each of its layers, providing
a continuous path back to image pixels. To examine a given covnet activation, we set all other

5

Figure 7: Projecting back from higher layers.

Figure 8: Feature visualization using deconvnet. Images are from the ImageNet2012 validation
set[9]

activations in the layer to zero and pass the feature maps as input to the attached deconvnet layer.
Then we reconstruct the activity in the layer beneath until input pixel space is reached. For more
details about decovnet please refer to [9][11].

Figure 8 shows feature visualizations for different layers [9]. Instead of showing the single strongest
activation for a given feature map, we show the top 9 activations. Projecting each separately down
to pixel space reveals the different structures that excite a given feature map, hence showing its
invariance to input deformations. Alongside these visualizations we show the corresponding image
patches. These have greater variation than visualizations as the latter solely focus on the discriminant
structure within each patch. For example, in layer 5, row 1, col 2, the patches appear to have little
in common, but the visualizations reveal that this particular feature map focuses on the grass in the
background, not the foreground objects.

The projections from each layer show the hierarchical nature of the features in the network. Layer 1
learns some basic edges and colors. Layer 2 responds to corners and other edge/color conjunctions.
Layer 3 has more complex invariances, capturing similar textures or patterns. Layer 4 shows signif-

6

Figure 9: Some incorrectly classified images in the kaggle test set

icant variation, but is more class-specific: dog faces, birds legs. Layer 5 shows entire objects with
significant pose variation, e.g. dogs and grass.

Now we get an insight into why deep architectures can achieve good performances. Features learned
by Deep Neural Networks are hierarchical. With more hidden layers, the learned features become
more high level and specific. Compared to human-crafted features such as Dense-SIFT or color
features, they are more expressive, class-specific, and invariant to backgrounds. We can also figure
out which layers are critical to recognition and change the parameters and architecture of deep neural
network , e.g. increase the number of feature maps in some layers, to achieve better performance.

To know the remaining problems and achieve better performance, we investigated what kind of
images were incorrectly classified. Figure 9 reveals some characters of images that have been failed
to classify. Some images’ resolutions are too low to recognize (1 and 2), and some images’ critical
characters, e.g. faces, are hidden (3 and 4). The test set also contains some cartoon images (5 and
6) that only contain simple shapes of dog or cat, which are hard to classify. Also, many wrongly
classified images contain backgrounds (7 and 8) that are very complicated or similar to the forground
animals. Finally, some images even cannot be recognized by humans (9).

From the properties of images that failed to recognize, we can try different strategies. We may try
object localization to locate the animals in images, so that complicated backgounds can be elimited.
We may also take advantage of extra training set to improve the ability of classification for special
images such as cartoon dogs or cats. We can also combine features such as texture feature with
features learned by Deep Neural Network, which may be helpful for the recognition of images that
only contains the fur or partial of the animal’s body.

4 Conclusion and Future Work

In this report, we first briefly explained our motivation of this project and showed some background
materials. Then, we precisely illustrated our task, including the learning task and the performance
task. After that, we introduced our solution in detail, mainly including two approaches.

The first approach is a traditional pattern recognition model, by which we learned the classifica-
tion model from some human-crafted features, mainly including color feature, Dense-SIFT feature,
and a combination of the two. To improve the performance, we also applied image segmentation
approach to preprocess the data. However, due to poor segmentation result, we did not achieve
any improvement. The best accuracy we got from the first method is only 71.47% (from an SVM
classifier).

7

To achieve better performance, we implemented our second approach, which is a trainable model
that applies the CNN to learn features. We also looked insight into what Deep Networks learned from
images and explained why they achieve good performance. The highest accuracy of this approach
is 94.00% (from an SVM classifier), which is also our best result and helps us rank 9th in 91 teams
in the Kaggle competition.

In terms of classifiers, we mainly considered SVMs and BP Neural Networks, taking our high dimen-
sional feature space into account. Various parameter settings were explored to improve classification
accuracy on the test dataset. For example, for the BP Neural Networks, we tried different hidden
layers and hidden units; for the SVMs, different kernel functions and C parameters were used. Table
1 illustrates the best results of each model and related parameters.

Table 1: Best Performance on the Test Dataset for Different Models
Feature Classifier Parameter Setting Accuracy

Dense-SIFT SVM Linear kernel, C=1000 67.60%
Dense-SIFT+Colors SVM Linear kernel, C=5 71.47%
From Deep CNN BP Network 1 Hidden layer, 30 Neurons 93.01%
From Deep CNN SVM RBF kernel, C = 10000 94.00%

In the future, we will explore more to achieve better performance. For instance, we will try to
change the architecture and parameter settings of the Deep Neural Network based on the feature
visualization of different layers’ feature maps. Also, we will apply different parameter settings for
SVMs and Deep Neural Networks. We may also try object localization to eliminate the influence of
complicated backgrounds. Additionally, we would like to extract more features or try a combination
of human-crafted features and learned features.

Acknowledgments

We would like to express our appreciation to Dr. Russ Greiner. Thanks for his time and efforts
on guiding the whole process of our project. Also, we would like to thank Junfeng for being our
co-coach and providing some suggestions. Apart from that, we would like to thank Dr. Mohamed
Elgendi for his suggestions on image preprocessing.

References

[1] Kaggle DogVCat Competation: http://www.kaggle.com/c/dogs-vs-cats

[2] MSR Asirra: http://research.microsoft.com/en-us/um/redmond/projects/asirra/

[3] J. Elson, J. Douceur, J. Howell and J. Saul. Asirra: a CAPTCHA that exploits interest-aligned manual image
categorization. Proc. of ACM CCS 2007, pp. 366-374.

[4] Bengio, Y. (2013). Deep learning of representations: Looking forward. arXiv preprint arXiv:1305.0445.
[5] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11), 2278-2324.

[6] Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). Imagenet classification with deep convolutional neural
networks. In Advances in Neural Information Processing Systems 25 (pp. 1106-1114).

[7] Huang, F. J., & LeCun, Y. (2006, June). Large-scale learning with svm and convolutional for generic object
categorization. In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on
(Vol. 1, pp. 284-291). IEEE.

[8] Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., & Darrell, T. (2013). DeCAF: A Deep
Convolutional Activation Feature for Generic Visual Recognition. arXiv preprint arXiv:1310.1531.

[9] Zeiler, M. D., & Fergus, R. (2013). Visualizing and Understanding Convolutional Neural Networks. arXiv
preprint arXiv:1311.2901.

[10] http://www1.i2r.a-star.edu.sg/ irkhan/conn2.html

8

[11] Zeiler, M. D., Taylor, G. W., & Fergus, R. (2011, November). Adaptive deconvolutional networks for
mid and high level feature learning. In Computer Vision (ICCV), 2011 IEEE International Conference on (pp.
2018-2025). IEEE.

[12] Vedaldi, A., & Fulkerson, B. (2010, October). VLFeat: An open and portable library of computer vision
algorithms. In Proceedings of the international conference on Multimedia (pp. 1469-1472). ACM.

[13] Lowe, D. G. (1999). Object recognition from local scale-invariant features. InComputer vision, 1999. The
proceedings of the seventh IEEE international conference on (Vol. 2, pp. 1150-1157). Ieee.

[14] Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints.International journal of
computer vision, 60(2), 91-110.

[15] Dalal, N., & Triggs, B. (2005, June). Histograms of oriented gradients for human detection. In Computer
Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on (Vol. 1, pp.
886-893). IEEE.

[16] Bag of Words: http://cs.nyu.edu/ fergus/teaching/vision 2012/9 BoW.pdf

[17] Golle, P. (2008, October). Machine learning attacks against the Asirra CAPTCHA. In Proceedings of the
15th ACM conference on Computer and communications security (pp. 535-542). ACM.

[18] Parkhi, O. M., Vedaldi, A., Zisserman, A., & Jawahar, C. V. (2012, June). Cats and dogs. In Computer
Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on (pp. 3498-3505). IEEE.

[19] Dense SIFT: http://www.vlfeat.org/api/dsift.html

9

Table 2: Team Member’s Jobs
Jobs Members

Conceptualize the problem Kai Zhou
Implement the algorithms (SIFT + SVM) Kai Zhou & Yan Liu & Bang Liu
Implement the algorithms (Deep Neural Networks) Bang Liu & Yan Liu
Run experiments Bang Liu & Yan Liu & Kai Zhou
Prepare for presentation Bang Liu & Yan Liu & Kai Zhou

10

	Introduction
	Motivation and Background
	Task Definition
	Our Solution

	Method One: Using Human-Crafted Features
	Human-Crafted Features
	Our Model
	Result and Analysis

	Method Two: Using Features learned by Convolutional Neural Network
	Deep Convolutional Neural Networks
	Our Model
	Result and Analysis

	Conclusion and Future Work

