
Knowing What I Don’t Know: A Generation
Assisted Rejection Framework in Knowledge

Base Question Answering

Junyang Huang1, Xuantao Lu1, Jiaqing Liang1, Qiaoben Bao1, Chen Huang3,
Yanghua Xiao12(B), Bang Liu4, and Yunwen Chen5

1 Shanghai Key Laboratory of Data Science, School of Computer Science,
Fudan University, Shanghai, China

2 Fudan-Aishu Cognitive Intelligence Joint Research Center, Shanghai, China
3 CES Finance Co., Ltd., Shanghai, China

4 Mila & DIRO, Université de Montréal, Montréal, Québec, Canada
5 DataGrand Inc., Shanghai, China

{jyhuang19,xtlu20,qbbao19,shawyh}@fudan.edu.cn, l.j.q.light@gmail.com,
huangchen@kiiik.com, bang.liu@umontreal.ca, chenyunwen@datagrand.com

Abstract. Existing Knowledge Base Question Answering (KBQA) sys-
tems suffer from the sparsity issue of Knowledge Graphs (KG). To al-
leviate the issue of KG sparsity, some recent research works introduce
external text for KBQA. However, such external information is not al-
ways readily available. We argue that it is critical for a KBQA system to
know whether it lacks the knowledge to answer a given question. In this
paper, we present a novel Generation Assisted Rejection (Gear) frame-
work that identifies unanswerable questions well. Gear can be applied
to almost all KBQA systems as an add-on component. Specifically, the
backbone of Gear is a sequence-to-sequence model that generates can-
didate predicates to rerank the original results of a KBQA system. Fur-
thermore, we devise a Probability Distribution Reranking algorithm to
ensemble Gear and KBQA since the architectural distinctions between
Gear and KBQA are vast. Empirical results and case study demon-
strates the effectiveness of our framework in improving the performance
of KBQA, particularly in identifying unanswerable questions.

Keywords: Knowledge Graph · Knowledge Base Question Answering ·
Natural Language Generation.

1 Introduction

Knowledge Base Question Answering (KBQA) aims to answer questions by using
a large collection of triples in a Knowledge Graph (KG). Nowadays, KBQA
systems are widely leveraged in lots of web applications due to the fact that
a KG is in general highly accurate and contains few noisy data. Unlike many
question answering tasks where the answer of a question can be retrieved from
the input data, the questions for KBQA tend to be more diverse [12] and some



2 J. Huang et al.

of them are unanswerable because the corresponding facts might be absent [7]
in the KG. However, constructing a well-designed and complete KG with high
precision requires unaffordable human efforts [11], which limits the coverage of
a KG. Thus, more often than not, KG is incomplete to answer an open-domain
question.

Building a KBQA system with the ability to identify unanswerable questions
is an important but difficult task. However, there has been few research studying
this problem. Introducing extra information to supply missing evidence in KG
[11] and employing ensemble models with different sources are straightforward
ideas to alleviate the problem of unanswerable questions. However, the gold
answer may not always appear in external materials. Besides, these methods
enlarge noises when retrieving relevant data. Another problem is that predicate
linking in KBQA is often modeled as a binary classification task, which requires
both positive and negative samples. However, the KG in KBQA can not pro-
vide all negative samples because KG is incomplete which incurs overfitting on
negative samples and finally negatively impacts on the model’s performance.
REINFORCE algorithm based KBQA models are able to actively identify unan-
swerable questions, but they are limited to low accuracy on answerable questions.
Godin et al. [6] proposed a ternary reward function that rewards an agent for not
answering a question. However, this method realizes this idea by adding a virtual
predicate “No Answer” to every entity, which leads to low recall on answerable
questions.

To overcome the problems mentioned above, we propose aGenerationAssisted
Rejection (Gear) framework, which helps KBQA better identify unanswerable
questions. The framework is an add-on component for KBQA systems that takes
the result of a KBQA system into consideration through the following steps: (1)
Predicate Generation: Gear directly generates the predicate to the question
through a sequence-to-sequence (seq2seq) model, i.e., “What is the highest point
in Canada?” → “highest point”. The seq2seq model is trained only on positive
samples that overcomes the problem of overfitting on negative samples. (2) Re-
sult Re-ranking: Gear re-ranks the answers of the KBQA system through
the latent space of the generated predicate from the seq2seq model. Specifically,
we apply a Probability Distribution Re-ranking (PDR) algorithm to assemble
seq2seq model and KBQA model. The ensemble of a typical seq2seq model and a
KBQA model is difficult without the PDR algorithm due to the vast distinction
in the structure of seq2seq and KBQA models.

Extensive evaluations and case studies demonstrate that the performance of
KBQAmodels improved significantly whenGear was incorporated especially for
unanswerable questions. In summary, we have made the following contributions:

– We propose a novel framework Gear for KBQA model that improves the
performance of KBQA especially on identifying unanswerable questions. To
the best of our knowledge, this is the first attempt to adopt generation
methods in identifying unanswerable questions.

– We devise an algorithm PDR to overcome the difficulty in implementing
the ensemble of seq2seq models and typical KBQA models. The ensemble of



A Generation Assisted Rejection Framework in KBQA 3

KBQA model and Gear strengthens robustness and generalization capabil-
ity of processing a question.

– Gear has a broad scope of application. The framework can be easily applied
to almost every KBQA model, which improves the performance of off-the-
shelf KBQA systems.

2 Task Definition

The input of KBQA task is a natural language question, and the output is an
answer object from KG or “No Answer” indicating that KBQA can’t answer the
question. More specifically, a KG is denoted as K, which is a set of triples in the
form of (s, p, o), where s, p, o denote subject, predicate and object respectively.
Here, the object entity is also called answer entity. The task is, given a natural
language question denoted as X containing M tokens X = [x1, x2, . . . , xM ] and
the entity of the question, the KBQA system should retrieve the gold answer
if KG K contains the answer. Otherwise, the KBQA system should return “No
Answer” indicating no relevant information exists in KG K.

3 Methodology

3.1 Overview of GEAR

There are two core components in Gear: the Generation Module and the Re-
ranking Module. The interaction between Gear and KBQA model is shown in
Figure 1. First, the question will be sent to a KBQA model. The KBQA model
will score every candidate predicate-answer pair retrieved from KG. The score
represents the confidence in each candidate predicate-answer pair. Then, the
Generation Module generates a sequence probability matrix C and a predicate
sequence in line with the question. Finally, the Re-ranking Module re-ranks the
result from KBQA model based on the sequence probability matrix C through
PDR. The output of Re-ranking Module is the final re-ranked score of every
candidate predicate-answer pair. If the candidate predicate-answer pair with
the highest confidence is lower than hyper-parameter τ , the system will reject
answering the question.

3.2 Generation Module

The Generation Module, in this paper, aims to generate the predicate for a given
input question sequence via a transformer-based encoder-decoder architecture,
which consists of two components: (a) an encoder that computes a representation
for each source sentence and (b) a decoder that generates one target word at each
timestep since the conditional probability is decomposed into several timesteps.

Given the question token sequence X = [x1, x2, . . . , xM ] as input, Gear out-
puts: 1) a sequence represents the predicate of the input question sequence X,
which is denoted as Y = {y1, y2, . . . , yL}, where yi is the token-id of the i-th



4 J. Huang et al.

Query:  What is the highest point in Canada?

What

Generation Module (Pre-trained Seq2Seq)

Re-ranking Module

K
B

Q
A M

odel

Canada

Arctic Ocean

Ottawa
…

Mount Logan
Lowest point Highest point

… Capital

Existing link

Missing link

Knowledge Base

…

…

Capital

... Lowest point

... Part of

Capital

... Lowest point

... Part of

Final output: No answer

KBQA

highest point

Probability Matrix C

Predicate

 Ranking

is … in Canada

GEAR

Threshold
Threshold

KBQA Scores

Re-ranked

Fig. 1. The illustration of the interaction between Gear and KBQA. Gear is com-
posed of a Generation Module (Section 3.2) and a Re-ranking Module (Section 3.3).
Gear re-ranks the candidate answers retrieved by the KBQA model.

word in Y . M and L are the lengths of input sequence and output sequence re-
spectively. 2) a sequence probability matrix C. The sequence probability matrix
is the probability distribution of each candidate character in every step of the
generated sequence, which is denoted as C = {c1, . . . , cL}, L is the length of
the sequence. ci = {ci1, . . . , ciW } is the character probability distribution of the
i-th decoding step, cij is the j-th token, W is the length of the vocabulary list
V. The sequence probability matrix C will be used as part of the input of the
Re-ranking Module.

We adopt the pre-trained language model BART [8] as our transformer-
based seq2seq backbone. In this way, the general semantic knowledge of natural
language and text generation knowledge can be directly reused. The encoder of
the Generation Module first learns the hidden states H = hi, . . . ,h|M | of the
given input question sequence through a multi-layer transformer encoder:

H = Encoder(x1, x2, . . . , xM ), (1)

where each layer of Encoder(·) is a transformer block with the multi-head atten-
tion mechanism. After the input question token sequence is encoded, the decoder
predicts the output predicate token-by-token with the sequential input tokens’
hidden vectors. At the timestep i of generation, the self-attention decoder pre-
dicts the i-th token pi in the linearized form and decoder hidden state hd

i as:

yi,h
d
i = Decoder([H;hd

1, . . . ,h
d
i−1], yi−1), (2)

where each layer of Decoder(·) is a transformer block that includes self-attention
with decoder state hd

i and cross-attention with encoder state H. The generated
output predicate begins with “<s>” and ends with the end token “</s>”.



A Generation Assisted Rejection Framework in KBQA 5

Algorithm 1 Probability Distribution Re-ranking

Input: Sequence probability matrix C from Gear, candidate predicate sequence P,
the score of the candidate predicate SP from KBQA, the weight parameter η, the
length of the generated predicate L and the length of the candidate predicate s.
Output: The score S of the candidate predicate sequence P.

1: k ← 0, S ← 0
2: if L ≤ s then
3: while k ≤ s− L do

4: S ← max(
l∑

i=1

ci+k,pi ,S)

5: k ← k + 1
6: end while
7: else
8: while k ≤ L− s do

9: S ← max(
s∑

i=1

ci,pi+k ,S)

10: k ← k + 1
11: end while
12: end if
13: S ← ηS

max(s,L)
+ (1− η)SP

14: return S

The probability of each step p(yi|y<i, x) is gradually added to the conditional
probability of the entire output sequence p(y|x):

p(y|x) =
|y|∏
i

p(yi|y<i, X), (3)

where y<i = y1, . . . , yi−1, and p(yi|y<i, x) is the probability over the target vo-
cabulary list V normalized by softmax function. At step i, ci represents the nor-
malized probability distribution over V. The objective function of Gear during
training is to minimize the negative log-likelihood loss, θ represents the param-
eters of the model:

L = −
L∑

t=0

logPθ(yt|y<t, X), (4)

3.3 Re-ranking Module

The goal of the Re-ranking Module is to assign new scores for matched pred-
icates in KG retrieved by KBQA model. Specifically, the PDR algorithm re-
ranks the score with the generated results from the Generation Module. PDR is
a re-ranking algorithm that re-ranks the result of KBQA with the help of the
sequence probability matrix C generated by the Generation Module. The in-
put to PDR is a sequence probability matrix C, a candidate predicate sequence
P = {p1, p2, . . . , ps}, the score SP of the candidate predicate P calculated by



6 J. Huang et al.

Table 1. Evaluation of different KBQAmodels on SimpleQuestions and NLPCCKBQA
datasets with a varying fraction of KG-size. “+Gear” means the result is re-ranked
by Gear. The best results in each group are highlighted in bold.

SimpleQuestions 100% 70% 50% 30% 10%

BiLSTM 80.3 / – 79.9 / 65.0 77.9 / 68.5 79.7 / 67.5 82.1 / 66.8
BiLSTM+Gear 80.5 / – 80.2 / 76.3 77.9 / 77.2 79.7 / 76.2 79.2 / 75.4

MCCNN 79.8 / – 79.4 / 71.4 78.7 / 71.9 79.5 / 71.6 76.8 / 71.5
MCCNN+Gear 79.5 / – 79.2 / 77.2 77.6 / 76.1 79.7 / 76.6 77.4 / 76.6

BAMnet 82.1 / – 81.4 / 62.0 80.1 / 66.4 81.5 / 65.0 83.9 / 64.3
BAMnet+Gear 81.9 / – 80.8 / 73.1 80.8 / 74.4 81.2 / 73.5 83.3 / 72.8

BBKBQA 88.3 / – 88.4 / 68.0 88.8 / 67.0 87.4 / 66.4 90.5 / 66.2
BBKBQA+Gear 88.4 / – 88.2 / 72.3 89.3 / 71.2 87.8 / 71.3 89.2 / 71.1

NLPCCKBQA 100% 70% 50% 30% 10%

BiLSTM 66.8 / – 66.7 / 65.0 65.5 / 65.4 66.3 / 64.7 65.3 / 64.6
BiLSTM+Gear 75.7 / – 75.6 / 70.2 75.1 / 70.6 73.6 / 69.9 75.9 / 70.1

MCCNN 77.8 / – 77.9 / 83.2 76.3 / 84.1 76.9 / 83.8 77.8 / 83.6
MCCNN+Gear 80.8 / – 81.0 / 87.9 79.3 / 88.7 80.0 / 88.3 81.1 / 88.0

BAMnet 71.6 / – 71.9 / 65.2 70.5 / 64.4 70.4 / 64.0 69.6 / 64.4
BAMnet+Gear 79.3 / – 79.2 / 73.5 78.6 / 72.3 78.7 / 72.4 78.3 / 72.3

BBKBQA 90.3 / – 90.6 / 81.3 89.5 / 81.9 89.7 / 81.6 89.7 / 81.1
BBKBQA+Gear 91.5 / – 91.9 / 83.2 91.1 / 83.5 90.8 / 83.3 91.1 / 82.7

KBQA model and the weight parameter η. The output is the re-ranked final
score S that denotes the confidence of the predicate sequence P. The overall re-
ranking procedure is described in Algorithm 1. We set η as the weight parameter
that indicates the proportion of Gear in the final scoring. In other words, the
proportion of KBQA in the final scoring is 1− η.

4 Experiments

4.1 Datasets, Baselines and Training Details

We evaluate our framework on two popular KBQA datasets SimpleQuestions[1]
and NLPCCKBQA [4]. The two datasets are modified with 5 different KG-size
setups: 100%, 70%, 50%, 30%, 10%. If KG-size parameter is set to 70%, we
drop triples related to 30% random selected questions in test sets. Thus, 70%
questions are answerable while the other 30% questions are unanswerable. We
take four widely used KBQA models as our baselines: BiLSTM [10], MCCNN [3],
BAMnet [2], and BBKBQA [9]. We do the best to adjust the hyperparameters of
the baseline KBQA models so that the baseline models have relatively optimal
performance. We implement the Generation Module inGear based on the public



A Generation Assisted Rejection Framework in KBQA 7

Table 2. Evaluation of the predicates generated by the Generation Module on Sim-
pleQuestions and NLPCCKBQA.

Metrics SimpleQuestions NLPCCKBQA

EM 86.7 70.9
BLEU-1 90.7 83.5

ROUGE-L 91.1 85.4
HCI 95.8 88.4

HuggingFace implementation of the BART seq2seq model and optimize it by
Adam. The initial learning rate is set to 5e−5 and we set the batch size to 32. We
set τ = 0.5 because re-ranking is essentially implementing binary classification
for each predicate-answer pair. We set η to 0.3 based on the overall accuracy of
the model for all questions on the devset.

4.2 Performance and Analysis

Evaluation of KBQA model after GEAR is applied The main results are
shown in Table 1. Each grid has two results separated by “/” indicating accuracy
of answerable questions and the rejection rate of unanswerable questions respec-
tively. “-” is a placeholder since no unanswerable question exists when KG-size
is 100%. The rate of rejection on unanswerable questions achieves significant im-
provement after Gear is applied to baseline KBQA models. However, in Simple-
Questions, the improvement in accuracy on answerable questions is inapparent.
This is reasonable because overfitting on negative samples mainly presents in
unanswerable questions. This improvement demonstrates that Gear improves
the performance of KBQA particularly on identifying unanswerable questions.

Evaluation of Seq2seq in Generation Module We further discuss the per-
formance of the seq2seq model in Generation Module. The quality of the gen-
erated sequence reflects the general text generation and semantic knowledge
contained in the seq2seq model. As shown in Table 2, the performance of gen-
erated predicate is evaluated by four metrics. EM, BLEU-1 and ROUGE-L are
metrics that measure the n-gram overlap between a reference predicate and a
candidate predicate, which are not always valid factuality metrics. Metric HCI
[5] is a human evaluation method to test whether the predicate generated by
Gear is a reliable predicate from the perspective of humans and how effective
the perception of the end-user towards is accepting the “No Answer”. Ten volun-
teers were asked to rate the accuracy of the generated predicates. We select 1000
questions at random from the two datasets. Each of these volunteers is assigned
500 questions to rate the answers given by the KBQA system. We guarantee
that each question will be asked five times. For each question, we use hard vot-
ing to calculate the final result. The results demonstrate that our seq2seq model
is capable of generating a proper predicate in response to a given question.



8 J. Huang et al.

5 Conclusion

In this paper, we present Gear, a generation based framework to improve the
performance of KBQA task. We also propose PDR, an algorithm to implement
the ensemble of generation based model and traditional retrieval based KBQA
model. We illustrate that the proposed framework can successfully reduce the
noise of negative samples from an incomplete KG. Moreover, the framework
improves the ability of a KBQA system to identify unanswerable questions.
Empirical results on two popular KBQA datasets under different degrees of KG
incompleteness and case study demonstrate the effectiveness of our model.

Acknowledgements We thank anonymous reviewers for their comments and
suggestions. This work was supported by National Key Research and Devel-
opment Project (No.2020AAA0109302), Shanghai Science and Technology In-
novation Action Plan (No.19511120400) and Shanghai Municipal Science and
Technology Major Project (No.2021SHZDZX0103).

References

1. Bordes, A., Usunier, N., Chopra, S., Weston, J.: Large-scale simple question an-
swering with memory networks. CoRR (2015)

2. Chen, Y., Wu, L., Zaki, M.J.: Bidirectional attentive memory networks for question
answering over knowledge bases. In: Proc. of ACL (2019)

3. Dong, L., Wei, F., Zhou, M., Xu, K.: Question answering over Freebase with multi-
column convolutional neural networks. In: Proc. of ACL (2015)

4. Duan, N.: Overview of the nlpcc-iccpol 2016 shared task: open domain chinese
question answering. In: Natural Language Understanding and Intelligent Applica-
tions (2016)

5. Ehsan, U.: On design and evaluation of human-centered explainable ai systems.
In: In Human-Centered Machine Learning Perspectives Workshop at CHI (2019)

6. Godin, F., Kumar, A., Mittal, A.: Learning when not to answer: a ternary reward
structure for reinforcement learning based question answering. In: Proc. of ACL
(2019)

7. Kim, N., Pavlick, E., Karagol Ayan, B., Ramachandran, D.: Which linguist in-
vented the lightbulb? presupposition verification for question-answering. In: Proc.
of ACL (2021)

8. Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoy-
anov, V., Zettlemoyer, L.: BART: Denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehension. In: Proc. of ACL
(2020)

9. Liu, A., Huang, Z., Lu, H., Wang, X., Yuan, C.: Bb-kbqa: Bert-based knowledge
base question answering. In: Proc. of CCL (2019)

10. Petrochuk, M., Zettlemoyer, L.: SimpleQuestions nearly solved: A new upperbound
and baseline approach. In: Proc. of EMNLP (2018)

11. Xiong, W., Yu, M., Chang, S., Guo, X., Wang, W.Y.: Improving question answering
over incomplete KBs with knowledge-aware reader. In: Proc. of ACL (2019)

12. Zhu, S., Cheng, X., Su, S.: Knowledge-based question answering by tree-to-
sequence learning. Neurocomputing (2020)


