
Natural Language Processing and Text Mining with
Graph-Structured Representations

by

Bang Liu

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Engineering

Department of Electrical and Computer Engineering

University of Alberta

© Bang Liu, 2020



Abstract

Natural Language Processing (NLP) and understanding aims to read from unformat-

ted text to accomplish different tasks. As a first step, it is necessary to represent text

as a simplified model. Traditionally, Vector Space Model (VSM) is most commonly

used, in which text is represented as a bag of words. Recent years, word vectors

learned by deep neural networks are also widely used. However, the underlying lin-

guistic and semantic structures of text pieces cannot be expressed and exploited in

these representations.

Graph is a natural way to capture the connections between different text pieces,

such as entities, sentences, and documents. To overcome the limits in vector space

models, we combine deep learning models with graph-structured representations for

various tasks in NLP and text mining. Such combinations help to make full use of

both the structural information in text and the representation learning ability of deep

neural networks. Specifically, we make contributions to the following NLP tasks:

First, we introduce tree-based/graph-based sentence/document decomposition tech-

niques to align sentence/document pairs, and combine them with Siamese neural

network and graph convolutional networks (GCN) to perform fine-grained semantic

relevance estimation. Based on them, we propose Story Forest system to automati-

cally cluster streaming documents into fine-grained events, while connecting related

events in growing trees to tell evolving stories. Story Forest has been deployed into

Tencent QQ Browser for hot event discovery.

Second, we propose ConcepT and GIANT systems to construct a user-centered,

web-scale ontology, containing a large number of heterogeneous phrases conforming
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to user attentions at various granularities, mined from the vast volume of web docu-

ments and search click logs. We introduce novel graphical representation and combine

it with Relational-GCN to perform heterogeneous phrase mining and relation identi-

fication. GIANT system has been deployed into Tencent QQ Browser for news feeds

recommendation and searching, serving more than 110 million daily active users. It

also offers document tagging service to WeChat.

Third, we propose Answer-Clue-Style-aware Question Generation to automatically

generate diverse and high-quality question-answer pairs from unlabeled text corpus

at scale by mimicking the way a human asks questions. Our algorithms combine

sentence structure parsing with GCN and Seq2Seq-based generative model to make

the "one-to-many" question generation close to "one-to-one" mapping problem.

A major part of our work has been deployed into real world applications in Tencent

and serves billions of users.
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Chapter 1

Introduction

1.1 Motivation

Building a machine that can understand human language and communicate with peo-
ple is a long-time dream of researchers. In order to realize this dream, there have been
many studies about natural language processing and understanding, computational
linguistics, machine learning, or more generally, artificial intelligence.

In the early stage of natural language processing, researchers developed symbolic
approaches and expert-designed rule-based systems to capture the meaning of text,
but such approaches are unable to deal with unexpected inputs and too restrictive to
capture the intricacy of natural language [Winograd, 1972; Ruder, 2019]. As experts
cannot write down every possible rules for different NLP tasks, how to learn rules
automatically becomes a key problem.

Statistical approaches were proposed in the last 20 years [Manning et al., 1999].
They learn rules automatically by combining statistical models with engineering fea-
tures of text. However, engineering features is a time-consuming job as features are
generally task-specific and require domain expertise. Therefore, the new challenge is
how to learn features automatically from raw input text.

As a category of representation learning approaches, deep learning achieves great
success in the past seven years [Krizhevsky et al., 2012; Goodfellow et al., 2016; LeCun
et al., 2015]. Deep neural network-based models automatically learn a multi-layered
hierarchy of features from large amount of data. They greatly reduced the need for
feature engineering. However, current deep neural models requires large amount of
data and computational resources. Besides, currently, it is still difficult to achieve
satisfying performance in NLP tasks that require reasoning based on deep learning.

Reasoning is about making connections between things and form inferences about
the world. To understand and reason over text, we need to represent unstructured
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text with a simplified model and capture the connections between different text pieces.
Most existing approaches utilize Vector Space Models (VSMs) and represent words
or text pieces as a sparse one-hot-encoding vectors or dense encoding vectors, where
the vector representations are either learned from statistical approaches or trained
with deep neural networks. However, natural language text pieces have rich linguistic
and semantic structures. Such structures are hard to capture by VSMs. To exploit
the underneath structure of text, graph representations of text and graph neural
networks that learn over graphs are promising directions to overcome the limits in
current natural language processing and understanding models.

Different graph approaches and representations have been proposed to connect
text pieces and improve various NLP tasks. For example, word graphs use words as
vertices and construct different types of edges, including syntactic analysis [Leskovec
et al., 2004], co-occurrences [Zhang et al., 2018b; Rousseau and Vazirgiannis, 2013;
Nikolentzos et al., 2017] and so on. There are also text graphs that use sentences,
paragraphs or documents as vertices. They establish edges by word co-occurrence,
location [Mihalcea and Tarau, 2004], text similarities [Putra and Tokunaga, 2017], or
hyperlinks between documents [Page et al., 1999]. Besides, hybrid graphs [Rink et
al., 2010; Baker and Ellsworth, 2017] consist of different types of vertices and edges.

Aside from text graphs for modeling the relationship between text pieces in a sen-
tence, document or corpus, researchers pay more attention to constructing knowledge
graphs and modeling the relations in the world. Large scale graph structured knowl-
edge bases (KBs) store factual information about entities and relationships between
them. Until now, a large number of concept and knowledge graphs have been created,
including YAGO [Suchanek et al., 2007], DBpedia [Lehmann et al., 2015], Probase
[Wu et al., 2012], Freebase [Bollacker et al., 2008], NELL [Carlson et al., 2010], Google
Knowledge Graph [Singhal, 2012] and so on. They contain millions of nodes and bil-
lions of edges. With these graphs, we can better understand both short queries and
long documents, as well as link text with the real world entities and concepts.

In this dissertation, we argue that graph-based approaches can greatly benefit dif-
ferent natural language tasks by explicitly introducing relations between text pieces
and reforming unstructured text into structured representations. Our work focus on
solving NLP tasks with structured representations and approaches. To this end, we
develop novel models for a variety of tasks and demonstrate that our models outper-
form existing methods, as well as deploy our models into real world applications.
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Figure 1.1: The framework of the components in this thesis.

1.2 User and Text Understanding: a Graph Approach

In this thesis, we focus on various natural language processing and text mining tasks
which aim to understand users and natural language. Figure 1.1 illustrates the main
topics covered in our work, as well as the relationships between them. To improve
user and text understanding, our work investigate a variety of research problems
on three topics: information organization, information recommendation, and reading
comprehension.

Information organization aims to cluster and organize information, such as news
articles, to help users retrieve and track useful and non-redundant information eas-
ily in the era of information explosion. Our work mainly focus on how to cluster
documents into fine-grained events, as well as how to organized related events into
structured stories to show their connections. Furthermore, we investigate the problem
of document matching and sentence matching, which are core problems in fine-grained
document clustering and many other NLP applications.

Information recommendation aims to infer the users’ interests based on his/her
historical behaviors and recommend information to users that they may be interested
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Figure 1.2: The principled methodology used through the different tasks in the thesis.

in. In our work, we focus on mining user interests/attentions from user search click
graphs and creating user interests ontology to reveal their relationships. We further
perform query understanding and document tagging based on the constructed user
interest ontology.

Machine reading comprehension is a core research problem for text understanding.
A core challenge in machine reading comprehension is that the creation of high-
quality training dataset is quite expensive and time-consuming, as well as requires
a lot human efforts. To solve this challenge, we investigate the problem of question
generation to automatically generate large amount of high-quality question-answer
pairs from unlabeled corpus. We also analyze the performance of question answering
models trained with our generated dataset.

Although our thesis contains the discussion about different NLP and text mining
tasks, we extensively exploit a unified methodology to analyze and solve different
tasks. Figure 1.2 shows the principle methodology used through the different tasks
in the thesis. Given a problem, our first step is understand the problem and be clear
about the inputs and outputs. Second, we will consider what is the most appropriate
semantic granularity, i.e., word, sentence, document, or corpus, to characterize a spe-
cific problem. Third, based on our consideration, we will design or select a suitable
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graph representation to represent our input data. The key is designing appropriate
nodes and edges which are useful in solving the problem. The extraction of node
features, edge features, as well as graph attributes are also critical in solving the
problem. Fourth, we can reformulate our problem based on the graph representation.
For example, we can reformulate the problem of sentence matching as tree matching,
or we can reformulate the problem of phrase mining as node selection and order-
ing. After designed the graph representation and reformulated the problem, we will
come up with strategies to process the raw input data and construct the graphs. Fi-
nally, we will design models and algorithm for the given problem based on our graph
representation.

Use the task of document matching as an example. First, the input is a pair of
documents, and the output is a score or a label to indicate the semantic relevance or
relationship between the two documents. Second, as a trade of between performance
and computational speed, it is most suitable to factorize a document into a set of
sentences and compare the document pair in the granularity of sentence. Third, we
can group sentences by their sub-topics. Therefore, a node can be a set of correlated
sentences discussing the same sub-topic. To show how closely these different sub-
topics are related, we can measure the relevance by the text similarities between
the sentence sets, and use these similarities as edge features or weights. Fourth,
after constructing such a document graph, the problem of text matching turns into a
local matching problem on different nodes, and a graph scoring/classification problem
based on local matching results. We then implement specific strategies to turn raw
article pairs into a document graph, and then design models to estimate the relevance
between two articles with our graph representation.

1.3 Contributions

We make extensive contributions to a variety of NLP applications throughout this
thesis. Figure 1.3 shows an overview of our works described in this thesis. We can
see that our work combines graphical representations of data with machine learning
to fully utilize the structural and relational information in different datasets to im-
prove the performance of a variety of tasks. In this tasks, the problems are modeled
as tree or graph matching (sentence or document matching), community detection
(event/story discovery), node classification and ordering (phrase mining), relation-
ship identification (ontology creation) or node selection (question generation). Our
work extensively focused on natural language processing and text mining based on
graph-structured representations, and demonstrated the effectiveness of exploiting
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Figure 1.3: An overview of our works based on graph-structured representations.

the structural information in diverse tasks. Furthermore, our work shows a unified
framework to model text data as various graphs and solve the problems in terms of
graph computation.

More specifically, for information organization, our contributions include the fol-
lowing:

• We propose the Story Forest system for news articles clustering and organi-
zation. In this system, we explore a tree-of-events representation for organiz-
ing news events into logically well-organized trees for better user experience.
Besides, we propose the EventX algorithm to extract fine-grained events and
stories from massive news articles.

• The task of document matching is critical to Story Forest system. Therefore, we
propose the task of long document matching and apply the divide-and-conquer
philosophy to matching a pair of long documents. For long document matching,
we propose the so-called Concept Interaction Graph (CIG) to represent one
or a pair of documents as a weighted graph of concepts, and combines this
representation with graph convolutional networks to classify the relationships
between two documents.

• Our Concept Interaction Graph turns the problem of long document matching
into short text matching over vertices. We present a technique named Hier-
archical Sentence Factorization (or Sentence Factorization in short), which is
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able to represent a sentence in a hierarchical semantic tree. Based on this repre-
sentation, we further propose Ordered Word Mover’s Distance for unsupervised
sentence matching, and extend the existing Siamese network architectures to
multi-scaled models.

For information recommendation, to help understand user interests and document
contents, we make the following contributions:

• We design and implement a concept and event mining system which extract
large-scale user-centered concepts and hot topics/events from vast query logs
to model user interests and improve query and document understanding. This
system constructs and maintains a graph-structured user interest ontology to
depict user interests and text topics in different granularities. The nodes in the
taxonomy can be tagged to short queries or long documents to improve under-
standing. The edges in the taxonomy also helps with reasoning and inference
over different user interests.

• We implemented and deployed multiple systems (Story Forest, ConcepT, and
GIANT) into Tencent QQ Browser. The systems are serving billions of users
from Tencent QQ Browser and other applications such as WeChat.

We shall note that our techniques proposed in the thesis are general and can be
easily adapted to other languages and other products. They do not rely on any specific
features that only Tencent can provide. To adapt our approaches to another language
or application, the changes we need to make are mostly data sources, computational
and service platforms, off-the-shelf tools for data preprocessing, and hyper-parameters
for algorithms.

For machine reading comprehension, we propose efficient systems to generate high-
quality training dataset from unlabeled corpus. Specifically:

• We propose a novel Answer-Clue-Style aware question generation system which
generates questions based on both given answers and the predicted/sampled
clue words. This helps to alleviates the one-to-many mapping problem in text
generation. To predict the potential clue words in input, we have designed a
novel clue prediction model that combines the syntactic dependency tree of an
input with Graph Convolutional Networks. To generate large-scale and high-
quality questions, we also propose efficient sampling strategies to sample answer,
clue and question types from unlabeled text pieces.
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Finally, we open-source our codes and new created datasets in different works for
research purpose 1.

1.4 Thesis Outline

Based on the applications of our works, we can divide this thesis into three parts:
text clustering and matching for information organization, text mining for information
recommendation, and text generation for reading comprehension.

In Chapter 2, we review prior research works that are related to our thesis. Specif-
ically, we will introduce the prior works related to the problems we discussed in infor-
mation organization, information recommendation, as well as reading comprehension.

In Chapter 3, we focus on the problem of fine-grained event clustering and orga-
nization for massive breaking news. In this work, we first propose the design of Story
Forest system for online news articles organization and visualization, as well as the
key EventX algorithm for fine-grained event clustering. We then describe our created
Chinese News Events dataset for evaluating our event extraction algorithms. Based
on the dataset, we compare our algorithms with existing approaches and discuss the
experimental results.

In Chapter 4 and 5, we present our works on long document matching and short
sentence matching, respectively. For document matching, we propose the Concept
Interaction Graph (CIG) to represent an article as a graph of concepts. We then
present a model which combines CIG with graph convolutional networks for semantic
matching between a pair of documents. We have created two datasets, each consist-
ing of about 30K pairs of breaking news articles covering diverse topics in the open
domain, to evaluate our algorithms. For sentence matching, we propose Hierarchical
Sentence Factorization—a technique that is able to factorize a sentence into a hier-
archical representation, with the components at each different scale reordered into
a “predicate-argument” form. Based on this technique, we further propose an un-
supervised semantic distance metric, as well as multi-scale deep learning models for
semantic matching of natural language sentences. We apply our techniques to text-
pair similarity estimation and text-pair relationship classification tasks, and show that
the proposed hierarchical sentence factorization can be used to significantly improve
the performance of existing unsupervised distance-based metrics as well as multiple
supervised deep learning models.

In Chapter 6 and 7, we describe our experience of implementing and deploying
ConcepT and GIANT in Tencent QQ Browser. They are concept/event mining sys-

1https://github.com/BangLiu/
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tems which discover user-centered concepts and hot topics/events at the right granu-
larity conforming to user interests, from vast amount of queries and search logs. We
present our techniques for concept mining, document tagging, taxonomy construc-
tion, and various applications. Besides, we introduce our experience in deploying
ConcepT and GIANT into real world applications, and show their superior ability on
user interest modeling as well as query and document understanding.

In Chapter 8, we propose Clue Guided Copy Network for Question Generation
(CGC-QG), which is a sequence-to-sequence generative model with copying mech-
anism, yet employing a variety of novel components and techniques to boost the
performance of question generation. We first introduce the problem of one-to-many
mapping in text generation. After that, we introduce the concept of clue words for
question generation, and propose to predict the clue words in context to alleviate the
problem of one-to-many mapping. We design a clue predictor by combing the syn-
tactic structure of sentences with graph convolutional networks. Our model jointly
trains the clue prediction as well as question generation with multi-task learning and
a number of practical strategies to reduce the complexity. The proposed new modules
and strategies significantly improve the performance of question generation. We fur-
ther propose Answer-Clue-Style-aware Question Generation (ACS-QG) in chapter 9,
a novel system aimed at automatically generating diverse and high-quality question-
answer pairs from unlabeled text corpus at scale by mimicking the way a human
asks questions. With models trained on a relatively smaller amount of data, we can
generate 2.8 million quality-assured question-answer pairs from a million sentences in
Wikipedia.

We conclude and provide potential future directions in Chapter 10.
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Chapter 2

Related Work

Before we describe our approaches for different user and text understanding tasks,
let us first set the context by describing prior work done in this space. Our work is
related to several lines of research within the NLP and text mining community: text
clustering and information retrieval; text matching; ontology creation; phrase mining;
question generation and so on.

2.1 Information Organization

There are mainly four research lines that are highly related to our work about infor-
mation organization: Text Clustering, Story Structure Generation, Text Matching,
and Graphical Document Representation.

2.1.1 Text Clustering

The problem of text clustering has been well studied by researchers [Aggarwal and
Zhai, 2012]. Distance based clustering algorithms measure the closeness between text
pieces with similarity functions such as cosine similarity. Various representations,
such as TF-IDF, BM25 term weighting [Büttcher et al., 2006], can be utilized to
represent a text object. After transforming text into features, different strategies can
be applied for clustering. Partition-based algorithms such as K-means [Jain, 2010]
or K-medoids [Park and Jun, 2009] divide the corpus into pre-defined number of
clusters. The Spherical K-means algorithm [Buchta et al., 2012] is especially suitable
for text clustering due to its low memory and computational requirement. However,
such algorithms are sensitive to variations in parameter values and need to specify
the number of clusters. The selection of features also plays a key role in the final
performance of clustering [Liu et al., 2005]. Hierarchical algorithms [Fung et al., 2003]
recursively find nested clusters and create a tree-like structure, but they still need to
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assume the number of clusters or a similarity threshold. Density-based algorithms
[Ester et al., 1996] do not need to specify the number of clusters in advance, but they
do not scale well to high-dimensional sparse data like text [Jain, 2010].

Word and phrase based algorithms find important clusters of words or phrases.
[Beil et al., 2002] clusters documents based on frequent pattern mining. [Slonim and
Tishby, 2000] proposes a two-phrase clustering procedure that finds word-clusters such
that most of the mutual information between words and documents is preserved, and
leverages the word-clusters to perform document clustering. Co-clustering algorithms
[Dhillon et al., 2003] simultaneously cluster words and documents, as the problem
of clustering words and clustering documents are closely related. There are also
approaches which utilize the document keywords co-occurrence information to con-
struct a keyword graph, and clustering documents by applying community detection
techniques on the keyword graph [Sayyadi and Raschid, 2013].

Non-negative Matrix Factorization is particularly suitable to clustering as a latent
space method [Xu et al., 2003]. It factorizes a term-document matrix, where the
vectors in the basis system directly correspond to different clusters. It has been shown
that matrix factorization is equivalent to spectral clustering [Ding et al., 2005].

Probabilistic model-based algorithms aim to create a probabilistic generative model
for text documents. Topic models such as Latent Dirichlet Allocation (LDA) [Blei
et al., 2003] and Probabilistic Latent Semantic Indexing (PLSA) [Hofmann, 1999]
assume documents are generated by multiple topics. The Gaussian Mixture Model
(GMM) [He et al., 2011] assumes that data points are generated by a mixture of
Gaussian distributions. However, such model-based algorithms are computationally
intensive and do not produce satisfying results when clustering at a finer granularity.

There are also some works concerning the events described in text objects. [Tanev
et al., 2008] presents a news event extraction system to extract violent and disaster
events from online news. [Ritter et al., 2012] proposes a system to extract an open-
domain calendar of significant events from Twitter. In contrast, our EventX algorithm
is specially tailored for event extraction among news documents in the open domain.
The length of news articles are relatively long compared to Twitters, and the types
of events are not restricted to violent and disaster events.

2.1.2 Story Structure Generation

The Topic Detection and Tracking (TDT) research spot news events and group by
topics, and track previously spotted news events by attaching related new events
into the same cluster [Allan et al., 1998; Allan, 2012; Yang et al., 2009; Sayyadi and
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Raschid, 2013]. However, the associations between related events are not defined or
interpreted by TDT techniques. To help users capture the developing structure of
events, different approaches have been proposed. [Nallapati et al., 2004] proposed
the concept of Event Threading, and tried a series of strategies based on similarity
measure to capture the dependencies among events. [Yang et al., 2009] combines the
similarity measure between events, temporal sequence and distance between events,
and document distribution along the timeline to score the relationship between events,
and models the event evolution structure by a directed acyclic graph (DAG). [Mei
and Zhai, 2005] discover and summarize the evolutionary patterns of themes in a
text stream by first generating word clusters for each time period and then use the
Kullback-Leibler divergence measure to discover coherent themes over time.

The above research works measure and model the relationship between events in a
pairwise manner. However, the overall story consistency is not considered. [Wang et
al., 2012] generates story summarization from text and image data by constructing a
multi-view graph and solving a dominating set problem, but it omits the consistency
of each storyline. The Metro Map model proposed in [Shahaf et al., 2013] defines
metrics such as coherence and diversity for story quality evaluation, and identifies
lines of documents by solving an optimization problem to maximize the topic diversity
of storylines while guarantee the coherence of each storyline. [Xu et al., 2013] further
summarize documents with key images and sentences, and then extract story lines
with different definitions of coherence and diversity. These works consider the problem
of discovering story development structure as optimizing problems with given news
corpora. However, new documents are being generated all the time, and systems that
are able to catch related news and update story structures in an online manner are
desired.

As studies based on unsupervised clustering techniques [Yan et al., 2011] perform
poorly in distinguishing storylines with overlapped events [Hua et al., 2016], more
recent works introduce different Bayesian models to generate storyline. However,
they often ignore the intrinsic structure of a story [Huang and Huang, 2013] or fail to
properly model the hidden relations [Zhou et al., 2015]. [Hua et al., 2016] proposes
a hierarchical Bayesian model for storyline generation, and utilize twitter hashtags
to “supervise” the generation process. However, the Gibbs sampling inference of the
model is time consuming, and such twitter data is not always available for every news
stories.
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2.1.3 Text Matching.

The task of text matching has been extensively studied for a long time. In recent
years, different neural network architectures have been proposed for text pair match-
ing tasks. For representation-focused models, they usually transform text pairs into
context representation vectors through a Siamese neural network, followed by a fully
connected network or score function which gives the matching result based on the
context vectors [Qiu and Huang, 2015; Wan et al., 2016; Liu et al., 2018a; Mueller
and Thyagarajan, 2016; Severyn and Moschitti, 2015]. For interaction-focused mod-
els, they extract the features of all pair-wise interactions between words in text pairs,
and aggregate the interaction features by deep networks to give a matching result
[Hu et al., 2014; Pang et al., 2016]. However, the intrinsic structural properties of
long text documents are not fully utilized by these neural models. Therefore, they
cannot achieve good performance for long text pair matching. Here we review related
unsupervised and supervised models for text matching.

Traditional unsupervised metrics for document representation, including bag of
words (BOW), term frequency inverse document frequency (TF-IDF) [Wu et al.,
2008], Okapi BM25 score [Robertson and Walker, 1994]. However, these representa-
tions can not capture the semantic distance between individual words. Topic mod-
eling approaches such as Latent Semantic Indexing (LSI) [Deerwester et al., 1990]
and Latent Dirichlet Allocation (LDA) [Blei et al., 2003] attempt to circumvent the
problem through learning a latent representation of documents. But when applied to
semantic-distance based tasks such as text-pair semantic similarity estimation, these
algorithms usually cannot achieve good performance.

Learning distributional representation for words, sentences or documents based on
deep learning models have been popular recently. word2vec [Mikolov et al., 2013] and
Glove [Pennington et al., 2014] are two high quality word embeddings that have been
extensively used in many NLP tasks. Based on word vector representation, the Word
Mover’s Distance (WMD) [Kusner et al., 2015] algorithm measures the dissimilarity
between two sentences (or documents) as the minimum distance that the embedded
words of one sentence need to “travel” to reach the embedded words of another sen-
tence. However, when applying these approaches to sentence pair matching tasks,
the interactions between sentence pairs are omitted, also the ordered and hierarchical
structure of natural languages is not considered.

Different neural network architectures have been proposed for sentence pair match-
ing tasks. Models based on Siamese architectures [Mueller and Thyagarajan, 2016;
Severyn and Moschitti, 2015; Neculoiu et al., 2016; Baudiš et al., 2016] usually trans-
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form the word embedding sequences of text pairs into context representation vectors
through a multi-layer Long Short-Term Memory (LSTM) [Sundermeyer et al., 2012]
network or Convolutional Neural Networks (CNN) [Krizhevsky et al., 2012], followed
by a fully connected network or score function which gives the similarity score or
classification label based on the context representation vectors. However, Siamese
models defer the interaction between two sentences until the hidden representation
layer, therefore may lose details of sentence pairs for matching tasks [Hu et al., 2014].

Aside from Siamese architectures, [Wang et al., 2017b] introduced a matching
layer into Siamese network to compare the contextual embedding of one sentence
with another. [Hu et al., 2014; Pang et al., 2016] proposed convolutional matching
models that consider all pair-wise interactions between words in sentence pairs. [He
and Lin, 2016] propose to explicitly model pairwise word interactions with a pairwise
word interaction similarity cube and a similarity focus layer to identify important
word interactions.

There are also research works which utilize knowledge [Wu et al., 2018], hierarchi-
cal property [Jiang et al., 2019] or graph structure [Nikolentzos et al., 2017; Paul et
al., 2016] for long text matching. In contrast, our method represents documents by a
novel graph representation and combines the representation with GCN.

Finally, pre-training models such as BERT [Devlin et al., 2018] can also be utilized
for text matching. However, the model is of high complexity and is hard to satisfy
the speed requirement in real-world applications.

2.1.4 Graphical Document Representation

A various of graph representations have been proposed for document modeling. Based
on the different types of graph nodes, a majority of existing works can be generalized
into four categories: word graph, text graph, concept graph, and hybrid graph.

For word graphs, the graph nodes represent different non-stop words in a docu-
ment. [Leskovec et al., 2004] extracts subject-predicate-object triples from text based
on syntactic analysis, and merge them to form a directed graph. The graph is further
normalized by utilizing WordNet [Miller, 1995] to merge triples belonging to the same
semantic pattern. [Rousseau and Vazirgiannis, 2013; Rousseau et al., 2015] represent
a document as graph-of-word, where nodes represent unique terms and directed edges
represent co-occurrences between the terms within a fixed-size sliding window. [Wang
et al., 2011] connect terms with syntactic dependencies. [Schenker et al., 2003] con-
nects two words by directed edge if one word is immediately precedes another word in
document title, body or link. The edges are categorized by the three different types
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of linking.
Text graphs use sentences, paragraphs or documents as vertices, and establish

edges by word co-occurrence, location or text similarities. [Balinsky et al., 2011;
Mihalcea and Tarau, 2004; Erkan and Radev, 2004] connect sentences if they near
to each other, share at least one common keyword, or sentence similarity is above
a threshold. [Page et al., 1999] connects web documents by hyperlinks. [Putra and
Tokunaga, 2017] constructs directed weighted graphs of sentences for evaluating text
coherence. It using sentence similarities as weights and connect sentences with various
constraints about sentence similarity or location.

For concept graphs, they link terms in a document to real world entities or con-
cepts based on resources such as DBpedia [Auer et al., 2007], WordNet [Miller, 1995],
VerbNet [Schuler, 2005] and so forth. [Schuhmacher and Ponzetto, 2014] identifies
the set of concepts contained in a document using DBpedia. Using these concepts
as initial seeds, it performs a depth-first search along the DBpedia with a maximum
depth of two, and adds all outgoing relational edges and concepts along the paths
to form a semantic graph. [Hensman, 2004] identifies the semantic roles in a sen-
tence using WordNet and VerbNet, and combines these semantic roles with a set of
syntactic/semantic rules to construct a concept graph.

Hybrid graphs consists of different types of vertices and edges. [Rink et al., 2010]
builds a graph representation of sentences that encodes lexical, syntactic, and seman-
tic relations. [Jiang et al., 2010] extract tokens, syntactic structure nodes, part of
speech nodes, and semantic nodes from each sentence, and link them by different
types of edges that representing different relationships. [Baker and Ellsworth, 2017]
combines Frame Semantics and Construction Grammar to construct a Frame Seman-
tic Graph of a sentence.

2.2 Information Recommendation

Our work is mainly related to the following research lines.

2.2.1 Concept Mining

Existing approaches on concept mining are closely related to research works on named
entity recognition [Nadeau and Sekine, 2007; Ritter et al., 2011; Lample et al., 2016],
term recognition [Frantzi et al., 2000; Park et al., 2002; Zhang et al., 2008], keyphrase
extraction [Witten et al., 2005; El-Kishky et al., 2014] or quality phrase mining [Liu
et al., 2015; Shang et al., 2018; Liu et al., 2019c]. Traditional algorithms utilize
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pre-defined part-of-speech (POS) templates and dependency parsing to identify noun
phrases as term candidates [Koo et al., 2008; Shang et al., 2018]. Supervised noun
phrase chunking techniques [Chen and Chen, 1994; Punyakanok and Roth, 2001] au-
tomatically learn rules for identifying noun phrase boundaries. There are also meth-
ods that utilize resources such as knowledge graph to further enhance the precision
[Witten and Medelyan, 2006; Ren et al., 2017]. Data-driven approaches do not rely
on complex linguistic features or rules. Instead, they make use of frequency statistics
in the corpus to generate candidate terms and evaluate their quality [Parameswaran
et al., 2010; El-Kishky et al., 2014; Liu et al., 2015]. Phrase quality-based approaches
exploit statistical features to measure phrase quality, and learn a quality scoring func-
tion by using knowledge base entity names as training labels [Liu et al., 2015; Shang
et al., 2018]. Neural network-based approaches consider the problem as sequence
tagging. They utilize large-scale labeled training data to train complex deep neural
models based on CNN or LSTM-CRF [Huang et al., 2015].

2.2.2 Event Extraction

Existing research works on event extraction aim to identify different types of event
triggers and their arguments from unstructured text data. They combine supervised
or semi-supervised learning with features derived from training data to classify event
types, triggers and arguments [Ji and Grishman, 2008; Chen et al., 2017; Liu et
al., 2016b; Nguyen et al., 2016; Huang and Riloff, 2012]. However, these approaches
cannot be applied to new types of events without additional annotation effort. The
ACE2005 corpus [Grishman et al., 2005] includes event annotations for 33 types of
events. However, such small hand-labeled data is hard to train a model to extract
maybe thousands of event types in real-world scenarios. There are also works using
neural networks such as RNNs [Nguyen et al., 2016; Sha et al., 2018], CNNs [Chen et
al., 2015; Nguyen and Grishman, 2016] or GCNs [Liu et al., 2018b] to extract events
from text. Open domain event extraction [Valenzuela-Escárcega et al., 2015; Ritter
et al., 2012] extracts news-worthy clusters of words, segments and frames from social
media data such as Twitter [Atefeh and Khreich, 2015], usually under unsupervised
or semi-supervised settings and exploits information redundancy.

2.2.3 Relation Extraction

Relation Extraction (RE) identifies the relationships between different elements such
as concepts and entities. A comprehensive introduction can be found in [Pawar et
al., 2017]. Most existing techniques for relation extraction can be classified into
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the following classes. First, supervised learning techniques, such as features-based
[GuoDong et al., 2005] and kernel based [Culotta and Sorensen, 2004] approaches, re-
quire entity pairs that labeled with one of the pre-defined relation types as the training
dataset. Second, semi-supervised approaches, including bootstrapping [Brin, 1998],
active learning [Liu et al., 2016a; Settles, 2009] and label propagation [Chen et
al., 2006], exploit the unlabeled data to reduce the manual efforts of creating large-
scale labeled dataset. Third, unsupervised methods [Yan et al., 2009] utilize tech-
niques such as clustering and named entity recognition to discover relationships be-
tween entities. Fourth, Open Information Extraction [Fader et al., 2011] construct
comprehensive systems to automatically discover possible relations of interest using
text corpus. Last, distant supervision based techniques leverage pre-existing struc-
tured or semi-structured data or knowledge to guide the extraction process [Zeng et
al., 2015; Smirnova and Cudré-Mauroux, 2018].

2.2.4 Taxonomy and Knowledge Base Construction

Most existing taxonomy or knowledge bases, such as Probase [Wu et al., 2012], DB-
Pedia [Lehmann et al., 2015], YAGO [Suchanek et al., 2007], extract concepts and
construct graphs or taxonomies based on Wikipedia or formal documents. To con-
struct domain-specific taxonomies or knowledge bases, they usually select a text cor-
pus as its input, and then extract ontological relationships from the corpus [Poon and
Domingos, 2010; Navigli et al., 2011; Zhang et al., 2018a; De Sa et al., 2016]. There
are also works that construct a taxonomy from keywords [Liu et al., 2012]. [Liu et
al., 2019c] constructs a three-layered taxonomy from search logs.

2.2.5 Text Conceptualization

Conceptualization seeks to map a word or a phrase to a set of concepts as a mech-
anism of understanding short text such as search queries. Since short text usually
lack of context, conceptualization helps better make sense of text data by extend-
ing the text with categorical or topical information, and therefore facilitates many
applications. [Li et al., 2007] performs query expansion by utilizing Wikipedia as ex-
ternal corpus to understand query for improving ad-hoc retrieval performance. [Song
et al., 2011] groups instances by their conceptual similarity, and develop a Bayesian
inference mechanism to conceptualize each group. To make further use of context
information, [Wang et al., 2015b] utilize a knowledge base that maps instances to
their concepts, and build a knowledge base that maps non-instance words, including
verbs and adjectives, to concepts.
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2.3 Reading Comprehension

Our work about reading comprehension mainly focus on generating question-answer
pairs for machine reading comprehension. In this section, we review related works on
question generation and the related techniques we utilized.

Rule-Based Question Generation. The rule-based approaches rely on well-
designed rules manually created by human to transform a given text to questions
[Heilman and Smith, 2010; Heilman, 2011; Chali and Hasan, 2015]. The major steps
include preprocessing the given text to choose targets to ask about, and generate
questions based on rules or templates [Sun et al., 2018]. However, they require cre-
ating rules and templates by experts which is extremely expensive. Also, rules and
templates have a lack of diversity and are hard to generalize to different domains.

Answer-Aware Question Generation. Neural question generation models are
trained end-to-end and do not rely on hand-crafted rules or templates. The problem is
usually formulated as answer-aware question generation, where the position of answer
is provided as input. Most of them take advantage of the encoder-decoder framework
with attention mechanism [Serban et al., 2016; Du et al., 2017; Liu et al., 2019b; Zhou
et al., 2017; Song et al., 2018a; Hu et al., 2018; Du and Cardie, 2018]. Different
approaches incorporate the answer information into generation model by different
strategies, such as answer position indicator [Zhou et al., 2017; Liu et al., 2019b],
separated answer encoding [Kim et al., 2019], embedding the relative distance between
the context words and the answer [Sun et al., 2018] and so on. However, with context
and answer information as input, the problem of question generation is still a one-to-
many mapping problem, as we can ask different questions with the same input.

Auxiliary-Information-Enhanced Question Generation. To improve the
quality of generated questions, researchers try to feed the encoder with extra infor-
mation. [Gao et al., 2018] aims to generate questions on different difficulty levels.
It learns a difficulty estimator to get training data, and feeds difficulty as input into
the generation model. [Krishna and Iyyer, 2019] learns to generate “general” or “spe-
cific” questions about a document, and they utilize templates and train classifier to
get question type labels for existing datasets. [Hu et al., 2018] identifies the content
shared by a given question and answer pair as an aspect, and learns an aspect-based
question generation model. [Gupta et al., 2019] incorporates knowledge base infor-
mation to ask questions. Compared with these works, our work doesn’t require extra
labeling or training overhead to get the training dataset. Besides, our settings for
question generation dramatically reduce the difficulty of the task, and achieve much
better performance.
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Multi-task Question Generation. Another strategy is enhancing question
generation models with correlated tasks. Joint training of question generation and
answering models has improved the performance of individual tasks [Tang et al., 2017;
Tang et al., 2018; Wang et al., 2017a; Sachan and Xing, 2018]. [Liu et al., 2019b]
jointly predicts the words in input that is related to the aspect of the targeting
output question and will be copied to the question. [Zhou et al., 2019b] predicts the
question type based on the input answer and context. [Zhou et al., 2019a] incorporates
language modeling task to help question generation. [Zhang and Bansal, 2019] utilizes
question paraphrasing and question answering tasks to regularize the QG model to
generate semantically valid questions.

Graph Convolutional Networks. Graph Convolutional Networks generalize
Convolutional Neural Networks to graph-structured data, and have been developed
and and grown rapidly in scope and popularity in recent years [Kipf and Welling, 2016;
Defferrard et al., 2016; Liu et al., 2018a; Marcheggiani and Titov, 2017; Battaglia
et al., 2018]. Here we focus on the applications of GCNs on natural language.
[Marcheggiani and Titov, 2017] applies GCNs over syntactic dependency trees as
sentence encoders, and produces latent feature representations of words in a sentence
for semantic role labeling. [Liu et al., 2018a] matches long document pairs using
graph structures, and classify the relationships of two documents by GCN. [Zhang et
al., 2018c] proposes an extension of graph convolutional networks that is tailored for
relation extraction. It pools information over dependency trees efficiently in parallel.

Sequence-to-Sequence Models. Sequence-to-sequence model has been widely
used in natural language generation. [Sutskever et al., 2014] proposes a sequence-to-
sequence model for the task of machine translation. [Bahdanau et al., 2014] further
improves the model performance of machine translation by introducing attention
mechanism to the sequence-to-sequence model. To deal with the out-of-vocabulary
issue, the copy mechanism is incorporated into sequence-to-sequence models to copy
words from source text [Cao et al., 2017; Gu et al., 2016]. In our work, we apply
copy mechanism to learn to copy potential clue chunks from the input text, instead
of restricting it to out-of-vocabulary words.

Pretrained Language Models. Pre-trained large-scale language models, such
as BERT [Devlin et al., 2018] and GPT2 [Radford et al., 2019], have dramatically
improved the performance over a series of NLP task [Sun et al., 2019; Yang et al., 2019;
Lample and Conneau, 2019]. These pre-trained language modeling have been shown
to capture many facets of language relevant for downstream tasks [Clark et al., 2019].
As sequence-to-sequence models often outputs sentences that contain repeated words,
we also fine-tuned a GPT2-based question generation model to avoid this problem.
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Part I

Text Clustering and Matching:
Growing Story Trees to Solve

Information Explosion
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In the era of information explosion, it is not easy for users to retrieve and track
high-quality, well-organized, and non-redundant information that they are interested
in from huge amount of resources. In chapter 3, we will introduce our Story Forest
system for intelligent news articles organization. Our system contains a set of online
schemes that automatically clusters streaming documents into events, while connect-
ing related events in growing trees to tell evolving stories. A core novelty of our Story
Forest system is EventX, a semi-supervised scheme to extract events from massive
Internet news corpora.

EventX relies on a two-layered, graph-based clustering procedure to group docu-
ments into fine-grained events. A key step in the second layer clustering procedure
is classifying whether two documents are talking about the same event. This is a
problem of document matching. In chapter 4, we propose the Concept Interaction
Graph to represent an article as a graph of concepts. We then match a pair of articles
by comparing the sentences that enclose the same concept vertex through a series of
encoding techniques, and aggregate the matching signals over each vertex and get a
final matching result.

Concept interaction graph turns the problem of long document matching into
short sentence matching over different vertices. In chapter 5, we propose Hierarchical
Sentence Factorization—a technique to factorize a sentence into a hierarchical rep-
resentation, with the components at each different scale reordered into a “predicate-
argument” form. We then apply our techniques to text-pair similarity estimation and
text-pair relationship classification tasks.
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Chapter 3

Story Forest: Extracting Events and
Telling Stories from Breaking News

Extracting events accurately from vast news corpora and organize events logically
is critical for news apps and search engines, which aim to organize news informa-
tion collected from the Internet and present it to users in the most sensible forms.
Intuitively speaking, an event is a group of news documents that report the same
news incident possibly in different ways. In this chapter, we describe our experience
of implementing a news content organization system at Tencent to discover events
from vast streams of breaking news and to evolve news story structures in an online
fashion. Our real-world system faces unique challenges in contrast to previous stud-
ies on topic detection and tracking (TDT) and event timeline or graph generation, in
that we 1) need to accurately and quickly extract distinguishable events from massive
streams of long text documents, and 2) must develop the structures of event stories
in an online manner, in order to guarantee a consistent user viewing experience. In
solving these challenges, we propose Story Forest, a set of online schemes that auto-
matically clusters streaming documents into events, while connecting related events
in growing trees to tell evolving stories. A core novelty of our Story Forest system
is EventX, a semi-supervised scheme to extract events from massive Internet news
corpora. EventX relies on a two-layered, graph-based clustering procedure to group
documents into fine-grained events. We conducted extensive evaluation based on 1)
60 GB of real-world Chinese news data, 2) a large Chinese Internet news dataset that
contains 11, 748 news articles with ground truth event labels, and 3) the 20 News
Groups English dataset, through detailed pilot user experience studies. The results
demonstrate the superior capabilities of Story Forest to accurately identify events
and organize news text into a logical structure that is appealing to human readers.
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3.1 Introduction

With information explosion in a fast-paced modern society, tremendous volumes
of news articles are constantly being generated on the Internet by different media
providers, e.g., Yahoo! News, Tencent News, CNN, BBC, etc. In the meantime, it
becomes increasingly difficult for average readers to digest the huge volumes of daily
news articles, which may cover diverse topics and contain redundant or overlapping
information. Many news app users have the common experience that they are over-
whelmed by highly redundant information about a number of ongoing hot events,
while still being unable to get information about the events they are truly interested
in. Furthermore, search engines perform document retrieval from large corpora based
on user-entered queries. However, they do not provide a natural way for users to view
trending topics or breaking news.

An emerging alternative way to visualize news corpora without pre-specified queries
is to organize and present news articles through event timelines [Yan et al., 2011; Wang
et al., 2016], event threads [Nallapati et al., 2004], event evolution graphs [Yang et
al., 2009], or information maps [Shahaf et al., 2012; Shahaf et al., 2013; Xu et al., 2013].
All of these approaches require the extraction of conceptually clean events from a large
number of messy news documents, which involves automated event extraction and vi-
sualization as a crucial step toward intelligent news systems. However, few existing
news information organization techniques successfully achieve this goal due to several
reasons:

First of all, prior research on Topic Detection and Tracking (TDT) [Allan, 2012]
as well as text clustering [Aggarwal and Zhai, 2012; Jain, 2010] mainly focused on
grouping related documents into topics—it is much harder to cluster articles by events,
where articles depicting the same event should be grouped together, since the number
of events that occur daily in the real world is unpredictable. As a result, we cannot use
some of the popular clustering algorithms, e.g., K-means, that require predefining the
number of clusters, to extract events. In addition, the sizes of event clusters are highly
skewed, because hot events may be extensively discussed by tens or even hundreds
of news articles on the Internet. In contrast, regular events will be reported by only
a few or even one article. These single-document events, however, constitute the
majority of daily news collections, and should also be accurately discovered to appeal
to the diverse interests of readers.

Second, many recently proposed event graphs or information maps try to link
events in an evolution graph [Yang et al., 2009] or permitting intertwining branches in
the information map [Shahaf et al., 2013]. However, we would like to argue that such
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overly complex graph structures do not make it easy for users to quickly visualize and
understand news data. In fact, most breaking news follows a much simpler storyline.
Using complex graphs to represent breaking news may complicate and even blur the
story structure.

Third, most existing event time-line or event graph generation schemes are based
on offline optimization over the entire news corpora. However, for an automated
event extraction system that aids the visualization of breaking news, it is desirable
to “grow” the stories in an online fashion as news articles are published, without
disrupting or restructuring the previously generated storylines. On one hand, given
the vast amount of daily news data, incremental and online computation will incur
less computation overhead by avoiding repeated processing of older documents. On
the other hand, an online scheme can deliver a consistent story development structure
to users, so that users can quickly follow newly trending events.

In this chapter, we propose the Story Forest, a novel news organization system
that addresses the aforementioned challenges. To extract conceptually clean events,
each of which is essentially a cluster of news documents describing the same physical
breaking news event, Story Forest incorporates a novel, semi-supervised, two-layered
document clustering procedure that leverages a wide range of feature engineering and
machine learning techniques, including keyword extraction, community detection,
and graph-based clustering. We call this clustering procedure EventX. To the best of
our knowledge, it is the first document clustering scheme specially tailored for event
extraction among breaking news documents in the open domain.

We start with the observation that documents focusing on the same topic usually
contain overlapping keywords. Therefore, in the first layer of the clustering procedure
in EventX, we utilize a classifier trained on over 10, 000 news articles to distinguish
keywords from non-keywords for each document. We then apply an existing commu-
nity detection algorithm onto a keyword co-occurrence graph constructed from news
corpora and extract subgraphs [Sayyadi and Raschid, 2013] of keywords to represent
topics. Each document is assigned a topic by finding out its most similar keyword
subgraph. However, a keyword community or a topic is still coarse-grained and may
cover many events. In the second layer of EventX, documents within each topic
are further clustered into fine-grained events. We construct a document relationship
graph within each topic, where the relationship between each pair of documents, i.e.,
whether they describe the same event, is predicted by a supervised document pair
relationship classifier trained on carefully handcrafted features. Finally, we apply
the graph-based community detection algorithm again to decompose the document
relationship graph of each topic into conceptually separate events.
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To enhance event visualization, our Story Forest system further groups the dis-
covered events into stories, where each story is represented by a tree of interconnected
events. A link between two events indicates the temporal evolution or a causal rela-
tionship between the two events. In contrast with existing story generation systems
such as StoryGraph [Yang et al., 2009] and MetroMap [Shahaf et al., 2012], we pro-
pose an online algorithm to evolve story trees incrementally as breaking news articles
arrive. Consequently, each story (called a story tree) is presented in one of several
easy-to-view structures, i.e., either a linear timeline, a flat structure, or a tree with
possibly multiple branches, which we believe are succinct and sufficient to represent
story structures of most breaking news.

Currently, access to the related public data for event extraction and organization
is extremely limited. Therefore, to facilitate evaluation and further research on the
problem of event clustering and story formation for breaking news, we have created
multiple datasets, with the effort of dedicated editors. First, we have created the
Chinese News Corpus dataset which contains 60 GB of Chinese news documents
collected from all major Internet news providers in China (including Tencent, Sina,
WeChat, Sohu, etc.) in a 3-month period from October 1, 2016 to December 31, 2016,
covering very much diversified topics in the open domain. Second, we further created
the Chinese News Events dataset, where each article is manually labeled with the true
event label and story label by editors and product managers at Tencent. It is also, to
the best of our knowledge, the first Chinese dataset for event extraction evaluation.
The new datasets have been made publicly available for research purposes.1

We evaluated the performance of Story Forest based on the Chinese News Corpus
dataset, and compared our EventX news document clustering algorithm with other
approaches on the Chinese News Events dataset. We also conducted a detailed and
extensive pilot user experience study for (long) news document clustering and news
story generation to evaluate how our system as well as several baseline schemes appeal
to the habit of human readers. According to the pilot user experience study, our
system outperforms multiple state-of-the-art news clustering and story generation
systems, such as KeyGraph [Sayyadi and Raschid, 2013] and StoryGraph [Yang et
al., 2009], in terms of logical validity of the generated story structures, as well as
the conceptual cleanness of each identified event/story. Experiments show that the
average time for our Java-based system to finish event clustering and story structure
generation based on the daily news data is less than 30 seconds on a MacBook Pro

1Our Chinese News Events dataset is currently available
at:https://pan.baidu.com/s/12vWHHTD8gQLPvVftm6LQdg. For the Chinese News Corpus
dataset, we are currently under the process of publishing it to the public for research purposes.
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with a 2 GHz Intel Core i7 processor, and 8 GB memory. Therefore, our system
proves to be highly efficient and practical.

To summarize, we make the following contributions in this chapter:

• We formally define the problem of event extraction for breaking news articles
in the open domain, where the granularity of an event must conform to the
physical events described by the articles and can be implicitly guided by the
labeled dataset in our semi-supervised algorithms. We will describe it in more
details in Sec. 3.2.

• We propose the EventX algorithm, which is a two-layered, graph-based docu-
ment clustering algorithm that can perform fast event extraction from a large
volume of news documents in a semi-supervised manner. Note that the main
novelty of EventX includes a layered clustering scheme to separate the problem
of topic discovery from that of finer-grained event extraction. Such a two-layered
graph-based clustering scheme significantly improves the overall time efficiency
and scalability of the algorithm, making it applicable for industry practice.

• We explore a tree-of-events representation for visualizing news documents. We
also introduce an online algorithm to dynamically incorporate new events into
the existing trees. Combining this approach with the EventX algorithm, we
create the Story Forest system, for intelligent and efficient news story structure
formation.

• We have collected and labeled a large amount of data for the study and eval-
uation of event extraction and story structure organization, since to our best
knowledge, there is no publicly available dataset specifically dedicated to news
event clustering or extraction and story formation.

Our algorithm has been successfully integrated into the hot event discovery feature
of Tencent QQ browser, which is one of the most popular mobile browsers that serves
over 100 millions of daily active users.

The remainder of this chapter is organized as follows. Sec. 3.2 formally describes
the problem of event extraction and organization from massive news data. In Sec. 3.3,
we propose the main design of Story Forest system and EventX algorithm. In Sec. 3.4,
we describe the Chinese News Events dataset collected and created specifically for
evaluating event extraction algorithms. We then compare and discuss the experi-
mental results of EventX and Story Forest among other baselines. This chapter is
concluded in Sec. 3.5.
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3.2 Problem Definition and Notations

In this section, we will first describe key concepts and notations used in this chapter,
and formally define our problem. Then, we conduct a case study to clearly illustrate
the idea of story trees.

3.2.1 Problem Definition

We first present the definitions of some key concepts in a bottom-up hierarchy, event
→ story tree → topic, to used in this chapter.

Definition 1. Event: an event E is a set of news documents reporting a same piece
of real-world breaking news.

Definition 2. Story tree: a story S is a tree of related events that report a series of
evolving real-world breaking news. A story usually revolves around a group of specific
persons and happen at certain places during specific times. Each node in the tree is a
story, and each unidirectional edge in the tree indicates the time sequence of events.
Each branch in the tree represents a subset of events that are talking about the same
sub-story. The granularity of a story is subjective and can be implicitly determined
by a training dataset.

Definition 3. Topic: a topic consists of a set of stories that are highly correlated or
similar to each other.

In this work, we assume that two news articles are describing the same event as
long as the incident they cover/report has the same time of occurrence and involves
the same participating entities. This assumption is highly justifiable for breaking
news articles on the Internet, which unlike fictions, are usually short, succinct and
focusing on reporting the incident of a group of specific persons, organizations or other
types of entities, taking actions at one or several locations. We do not consider the
stance, perspective or the publishing date of an article. Additionally, we do not model
relationships between events, other than the weightless temporal evolution required
for building story trees. This allows each event to be conceptually cleaner and more
specific.

In contrast, a topic is usually determined in a subjective manner, and is usually
more vague and broader compared to an event. For example, both American pres-
idential election and 2016 U.S. presidential election can be considered topics, with
the second topic being a subset of the first topic. We also make the assumption that
each event has a single most appropriate corresponding topic. This ensures that an
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event cannot appear under multiple topic clusters, which significantly simplifies the
clustering procedure. This assumption is also realistic for most breaking news arti-
cles, where an article is usually written for timeliness to report only one real-world
incident.

Each topic may contain multiple story trees, and each story tree consists of mul-
tiple logically connected events. In our work, events (instead of news documents) are
the smallest atomic units. Each event is also assumed to belong to a single story
and contributes partial information to the overall story. For instance, considering the
topic American presidential election, 2016 U.S. presidential election is a story within
this topic, and Trump and Hilary’s first television debate is an event within this story.

The boundaries between events, stories and topics do not have to be explicitly
defined. In real-world applications, the labeled training dataset often implicitly cap-
tures and reflects their differences. In this way, even documents that are not related
to evolving physical events can be clustered in according to a specific granularity, as
long as the labeled training dataset contains such kind of samples to help defining
the boundary. Therefore, our EventX Event Extraction algorithm defines a general
framework to cluster documents into events that implicitly defined by any training
dataset.

Note that prior studies on text clustering usually focus on clustering at the gran-
ularity of topics [Allan, 2012; Aggarwal and Zhai, 2012], which are clusters of related
articles. In contrast, the event extraction problem is much more challenging, because
on top of clustering documents that belong to the same topic, we also need to utilize
key information within each document to ensure that all documents within an event
cluster are reporting the same physical event.

3.2.2 Notations

We now introduce some notations and describe our problem formally. Given a news
document stream D = {D1,D2, . . . ,Dt, . . .}, where Dt is the set of news documents
collected on time period t, our objective is to: a) cluster all news documents D into a
set of events E = {E1, . . . , E|E|}, and b) connect the extracted events to form a set of
stories S = {S1, ...,S|S|}. Each story S = (E,L) contains a set of events E and a set
of links L, where Li,j :=< Ei, Ej > denotes a directed link from event Ei to Ej, which
indicates a temporal evolution or logical connection relationship.

Furthermore, we require the events and story trees to be extracted in an online or
incremental manner. For online, it means that we extract events from each Dt in an
online manner as soon as the news corpus Dt arrives in time period t. For incremental,
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Figure 3.1: The story tree of “2016 U.S. presidential election.”

we will merge or insert the discovered events into the existing story trees that were
found at time t − 1 without changing the existing tree structures. This is a unique
strength of our scheme as compared to prior work, since we do not need to repeatedly
process older documents and can deliver the complete set of evolving yet logically
consistent story trees to users on-demand.

3.2.3 Case Study

To give readers more intuition on what the stories or events look like, here we use an
illustrative example to help further clarify the concept of stories vs. events. Fig. 3.1
showcases the story tree of “2016 U.S. presidential election”. The story contains 20

nodes, where each node indicates an event in 2016 U.S. election, and each link indi-
cates a temporal evolution or a logical connection between two events. For example,
event 19 says America votes to elect new president, and event 20 says Donald Trump
is elected president. The index number on each node represents the event sequence
over the timeline. There are 6 paths within this story tree, where the path 1 → 20

capture the whole presidential election process, branch 3 → 6 are about Hilary’s
health conditions, branch 7 → 13 are about television debates, 14 → 18 are related
to the “mail door” investigation, etc. As we can see, by modeling the evolutionary
and logical structure of a story into a story tree, users can easily grasp the logic of
news stories and learn the main information quickly. Let us consider the following
4 events under the topic 2016 U.S. presidential election: 1) First election television
debate; 2) Second election television debate; 3) FBI restarts “mail door" investigation;
4) America votes to elect the new president. Intuitively, these 4 events should having
no overlapping information between them. A news article about Trump and Hillary’s
First election television debate is conceptually separate from another article that is
reporting Trump and Hillary’s Second election television debate. For news articles,
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Figure 3.2: Different structures to characterize a story.

different events under the same topic should be clearly distinguishable, because they
usually follow the progressing timeline of real-world affairs.

Let us represent each story by an empty root node s from which the story is
originated, and denote each event by an event node e. The events in a story can be
organized in one of the following four structures shown in Fig. 3.2: a) a flat struc-
ture that does not include dependencies between events; b) a timeline structure that
organizes events by their timestamps; c) a graph structure that checks the connec-
tion between all pairs of events and maintains a subset of most strong connections;
d) a tree structure to reflect the structures of evolving events within a story. Com-
pared with a tree structure, sorting events by timestamps omits the logical connection
between events, while using directed acyclic graphs to model event dependencies with-
out considering the evolving consistency of the whole story can leads to unnecessary
connections between events. Through extensive user experience studies in Sec. 3.4,
we show that tree structures are the most effective way to represent breaking news
stories.

3.3 The Story Forest System

In this section, we start with an overview of the proposed Story Forest system. Then,
we separately introduce the detailed procedures of event extraction from news docu-
ments, and how we model stories’ evolutionary structure by story trees.

An overview of our Story Forest system is shown in Fig. 3.3, which mainly consists
of four components: preprocessing, keyword graph construction, clustering documents
to events, and growing story trees with events. The overall process is divided into 8
steps. First, the input news document stream will be processed by a variety of NLP
and machine learning tools, including document filtering and word segmentation.
Then we perform keyword extraction, construct/update keyword co-occurrence graph,
and split the graph into sub-graphs. After that, we utilize our proposed EventX
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Figure 3.3: An overview of the system architecture of Story Forest.

algorithm to cluster documents into fine-grained events. Finally, we update the story
trees (formed previously) by either inserting each discovered event into an existing
story tree at the right place, or creating a new story tree if the event does not belong
to any existing story. Note that each topic may contain multiple story trees and each
story tree consists of logically connected events. We will explain the design choices
of each component in detail in the following subsections.

3.3.1 Preprocessing

When new documents arrive, the first task Story Forest performs is document pre-
processing, which includes the following sequential steps:

Document filtering: documents with content length smaller than a threshold
(20 characters) will be discarded.

Word segmentation: we segment the title and body of each document using
Stanford Chinese Word Segmenter Version 3.6.0 [Chang et al., 2008], which has
proved to yield excellent performance on Chinese word segmentation tasks. Note
that for data in a different language, the corresponding word segmentation tool in
that language can be used.
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Figure 3.4: The structure of keyword classifier.

Type Features

Word feature Named entity or not, location name or not, con-
tains angle brackets or not.

Structural
feature

TF-IDF, whether appear in title, first occurrence
position in document, average occurrence posi-
tion in document, distance between first and last
occurrence positions, average distance between
word adjacent occurrences, percentage of sen-
tences that contains the word, TextRank score.

Semantic fea-
ture

LDA

Table 3.1: Features for the keyword classifier.

Keyword extraction: extracting appropriate keywords to represent the main
ideas of a document is critical to the performance of the system. We have found that
traditional keyword extraction approaches, such as TF-IDF based keyword extrac-
tion and TextRank [Mihalcea and Tarau, 2004], cannot produce satisfying results on
real-world news data. For example, the TF-IDF based method measures a word’s
importance by its frequency in the document. Therefore, it is unable to extract key-
words that have a relatively low frequency. The TextRank algorithm utilizes the
word co-occurrence information and is able to handle such cases. However, its com-
putation time increases significantly as document length increases. Another idea is
to fine-tune a rule-based system to combine multiple keyword extraction strategies.
Still, such type of system heavily relies on the quality of the rules and often generalizes
poorly.

To efficiently and accurately extract keywords, we trained a binary classifier to
determine whether a word is a keyword to a document. In particular, we manually
labeled the keywords of 10, 000+ documents, including 20, 000+ positive keyword
samples and 350, 000+ negative samples. Each word is transformed into a multi-view
feature vector. Table 3.1 lists the main features that we found to be critical to the
binary classifier. For the LDA feature vector, we trained a 1000-dimensional LDA
model based on news data collected from January 1, 2016 to May 31, 2016 that
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contains 300, 000+ documents. The training process costs 30 hours.
After acquiring the features for each word. A straightforward idea is to input

them directly to a Logistic Regression (LR) classifier. However, as a linear classifier,
Logistic Regression relies on careful feature engineering. To reduce the impact of
human bias in handcrafted features, we combine a Gradient Boosting Decision Tree
(GBDT) with a LR classifier to get a keyword/non-keyword classification result, as
shown in Fig. 3.4. The GBDT component is trained to automatically discover useful
cross features or combinations and discretize continuous features. The output of the
GBDT will serve as the input to the LR classifier. The LR classifier will determine
whether a word is a keyword for the current document. We also tried SVM as the
classifier in the second stage instead of LR and observed similar performance. It
is also worth mentioning that on another Chinese keyword extraction dataset, our
classifier achieved a precision of 0.83 and a recall of 0.76, while they are 0.72 and
0.76 respectively if we exclude the GBDT component. Note that we can still employ
off-the-shelf tools, such as RAKE [Rose et al., 2010], to perform keyword extraction.
When abundant training data is available, our proposed keyword extraction approach
could enhance the performance of event extraction in later stages, but it is not required
by Story Forest system.

3.3.2 Event Extraction by EventX

After document preprocessing, we need to extract events. Event extraction here is
essentially a fine-tuned document clustering procedure to group conceptually similar
documents into events. Although clustering studies are often subjective in nature, we
show that our carefully designed procedure can significantly improve the accuracy of
event clustering, conforming to human understanding, based on a manually labeled
news dataset. To handle the high accuracy requirement for long news text clustering,
we propose EventX, a 2-layer clustering approach based on both keyword graphs and
document graphs. The major steps in EventX include keyword co-occurrence graph
construction, first-layer topic clustering based on keyword co-occurrence graph, and
second-layer event extraction based on document relationship graph.

Note that the concept of “event" in this chapter and our proposed dataset is fun-
damentally different from the “event mentions” in cross-document event coreference
[Lee et al., 2012]. In our case, no matter how many event mentions can be found in an
article, there is always a single major event that the news article is intended to report
and cover or that triggers this report, with its narratives focusing on this major event.
The task of EventX is to extract events by identify whether a group of documents are
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ALGORITHM 1: EventX Event Extraction Algorithm
Input: A set of news documents D = {d1, d2, ..., d|D|}, with extracted features described in

Sec. 3.3.1; a pre-trained document pair relationship classifier.
Output: A set of events E = {E1, E2, ..., E|E|}.
1: Construct a keyword co-occurrence graph G of all documents’ keywords. Connect wi

and wj by an undirected edge ei,j if the times that the keywords wi and wj co-occur
exceed a certain threshold δe, and Pr{wj |wi}, Pr{wi|wj} are bigger than another
threshold δp.

2: Split G into a set of small and strongly connected keyword communities
C = {C1, C2, ..., C|C|}, based on the community detection algorithm [Ohsawa et
al., 1998]. The algorithm keeps splitting a graph by iteratively delete edges with high
betweenness centrality score, until a stop condition is satisfied.

3: for each keyword community Ci, i = 1, . . . , |C| do
4: Retrieve a subset of documents Di which is highly related to this keyword

community by calculating the cosine similarity between the TF-IDF vector of each
document and that of the keyword community, and comparing it to a threshold δ.

5: Connect document pairs in Di to form a document relationship graph Gdi using the
document pair relationship classifier.

6: Split Gdi into a set of document communities Cdi = {Cdi,1, Cdi,2, ..., Cdi,|Cdi |}, based on the
community detection algorithm. Each community represents an event.

7: end for

reporting the same breaking news with different narratives or paraphrasing, instead
of identifying what event mentions a document contains. In the following, we provide
a detailed description on the inner workings of EventX.

Construct Keyword Co-occurrence Graph

Algorithm 1 shows the detailed steps of EventX. We show that our two-layered
approach significantly improves the accuracy of event clustering on long news articles.

Given a news corpus D, we construct a keyword co-occurrence graph [Sayyadi and
Raschid, 2013] G. Each node in G is a keyword w extracted by the scheme described
in Sec. 3.3.1, and each undirected edge ei,j indicates that wi and wj have co-occurred
in a same document. Edges that satisfy two conditions will remain and other edges
will be pruned: the times of co-occurrence shall be above a minimum threshold δe (we
set δe = 2 in our experiments), and the conditional probabilities of the occurrence
Pr{wj|wi} and Pr{wi|wj} also need to be greater than a predefined threshold δp (we
use 0.15). The conditional probability Pr{wj|wi} is calculated as

Pr{wi|wj} =
DFi,j
DFj

, (3.1)

where DFi,j represents the number of documents that contain both keyword wi and
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wj, and DFj is the document frequency of keyword wj. It represents the probability
that wi occurs in a document if that document contains wj.

Topic Clustering on Keyword Co-occurrence Graph

Next, we perform community detection on the constructed keyword co-occurrence
graph. The goal is to split the whole keyword graph G into communities C =

{C1, C2, ..., C|C|}, where each community (or subgraph) Ci contains the keywords for a
certain topic i (to which multiple events may be associated). The intuition is that
keywords related to a common topic usually will appear frequently in documents be-
longing to that topic. For example, documents belonging to the topic “2016 U.S. pres-
idential election” will frequently mention keywords such as “Donald Trump”, “Hillary
Clinton”, “election” and so on. Such highly related keywords will be connected to
each other in the keyword graph and form dense subgraphs, while keywords that are
not highly related will have sparse connections or no connection. Our objective here
is to extract dense keyword subgraphs associated with different topics.

The benefit of using community detection in the keyword graph is that it allows
each keyword to appear in multiple communities. In reality it is not unusual to
have one keyword appearing under multiple topics. We also tried another method
of clustering keywords by Word2Vec. But the performance is worse than community
detection based on co-occurrence graphs. The main reason is that when clustering
with pre-trained word vectors, words with similar semantic meanings are more likely
be grouped together. However, unlike articles in a specialized domain, news topics
from the open domain often contain keywords with diverse semantic meanings.

To detect keyword communities, we utilize the betweenness centrality score [Sayyadi
and Raschid, 2013] of edges to measure the strength of each edge in the keyword graph.
The betweenness score of an edge is defined as the number of shortest paths between
all pairs of nodes that pass through it. An edge between two communities is expected
to have a high betweenness score. Edges with high betweenness score will be removed
iteratively to divide the communities. If two edges have the same betweenness score,
the one with lower conditional probability will be removed. The conditional proba-
bility of edge ei,j is calculated as (Pr{wi|wj}+ Pr{wj |wi})/2. We calculate the betweenness
score of edges using breadth first search (BFS) and iteratively remove edges with the
highest betweenness score. Once a keyword graph is no longer fully connected, we
continue the same process recursively on each connected component of the keyword
graph. The splitting process ends if the number of nodes in each subgraph is smaller
than a predefined threshold δg (we use 3), or the maximum betweenness score of all
edges in the subgraph is smaller than a threshold based on the subgraph’s size. We
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Feature type Description

Keyword Number of common keywords in titles or contents,
percentage of common keywords in titles or contents.

Textual simi-
larity

TF-IDF (and TF) similarities of titles or contents,
TF-IDF (and TF) similarities of the first N (N=1,2,3)
sentences.

Semantic LDA cosine similarity of two documents, the absolute
value of the difference between the LDA vectors of the
two documents.

Table 3.2: Features for document pair relationship classification.

refer interested readers to [Sayyadi and Raschid, 2013] for more details about commu-
nity detection. We notice that the betweenness-based community detection algorithm
is used as an off-the-shelf tool in EventX algorithm. There exist other community
detection algorithms that are more efficient in terms of time complexity [Radicchi et
al., 2004], and we can easily switch to these algorithms if time efficiency is a concern.

After obtaining the keyword communities, we calculate the cosine similarities be-
tween each document and each keyword community. The documents are represented
as TF-IDF vectors. Given a keyword community is essentially a bag of words, it can
also be considered as a document. We assign each document to the keyword commu-
nity with the highest similarity, as long as the similarity is also above a predefined
threshold δ. At this point, we have finished clustering in the first layer, i.e., the
documents are now grouped by topics.

Event Extraction based on Document Relationship Graph

After we partition documents into topics, we perform the second-layer document
clustering within each topic to obtain fine-grained events. We also call this process
event clustering. An event cluster only contains documents that talk about the same
event. As mentioned before, since event clusters could vary dramatically in sizes,
traditional unsupervised learning based algorithms, such as K-means, Non-negative
Matrix Factorization, Hierarchical clustering, are not appropriate. Instead, we adopt
a supervised-learning-guided clustering procedure in the second layer.

Specifically, in contrast with the keyword graph in the first layer, now we consider
each document as a graph node, and try to connect document pairs that discuss the
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same event [Liu et al., 2019a]. In keyword co-occurrence graph, judging whether two
keywords are related is achieved through the co-occurrence of keywords in documents.
This is feasible because the granularity of a topic is relatively coarse and subjective
compared with an event. However, simply combining unsupervised strategies to judge
whether two documents are talking about the same event cannot produce satisfying
results, because events are highly diverse and the clustering granularity should be
adjusted accordingly.

To address the above challenges, we propose a semi-supervised clustering scheme
which incorporates a document pair relationship classifier to construct a document
relationship graph, and performs event extraction on that graph. Given a set of doc-
uments D = {d1, d2, ..., d|D|} within a topic cluster, for each pair of documents 〈di, dj〉
that belongs to D, we add an edge edi,j if they are talking about the same event. We
trained a SVM classifier to determine whether a pair of documents are talking about
the same event using multiple document pair features, such as cosine similarity of TF-
IDF vectors, number of common keywords, LDA cosine similarity, as the input vector.
Table 3.2 lists the main features we utilized to train the document pair relationship
classifier. For each pair of documents within a same topic, we decide whether to draw
an edge between them based on the prediction made by the document pair relation-
ship classifier. Hence, documents in each topic D will form a document relationship
graph Gd. We then apply the same community detection algorithm mentioned above
to such graphs. Naturally, each community within a topic cluster now represents an
event. Note that the graph-based clustering on the second layer is highly efficient,
since the number of documents contained in each topic is significantly less after the
first-layer document clustering.

In a nutshell, our two-layered scheme first groups documents into topics based on
keyword community detection and then further groups the documents within each
topic into fine-grained events. It has multiple advantages compared with a number
of existing clustering algorithms:

1. It does not require a pre-defined number of event clusters. This is critical in
real-world applications, as for real-world data such as daily news, the exact
number of events is almost always unknown and varies dramatically. Most ex-
isting clustering algorithms require the number of clusters as a parameter, or
need to carefully choose parameters that control the clustering granularity. For
EventX, even though we still need to specify a stopping criteria in the commu-
nity detection algorithm, the threshold hyper parameters in our algorithm are
much more stable and insensitive to different sizes of news documents. There-
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fore, these thresholds can be selected using grid search, and do not require to
be updated frequently for news articles from a different date.

2. Our algorithm can adaptively determine the granularity of different events based
on the pre-trained document pair relationship classifier, as well as community
detection on the document relationship graph.

3. The performance of our algorithm is less sensitive to the parameter settings
in the first layer, because the granularity of a topic is usually subjective. We
can set relatively low thresholds in the first layer to ensure that documents
belonging to the same event are grouped together, then extract the fine-grained
events in the second layer.

4. The performance of event clustering can be improved by adding more features
and training data to the document pair relationship classifier, without affecting
keyword extraction and topic clustering.

5. The two-layered scheme of our algorithm makes event clustering highly efficient.
Directly performing relationship classification within a document corpora is not
feasible, as the time complexity is at least O(n2

d) where nd is the number of
documents. By utilizing the two-layered scheme, the documents will be split into
multiple topics (each topic usually contains 1 to 100 documents). Therefore, the
time complexity for the second-layer event extraction is approximately O(nd).
The total time complexity that taking both two layers of clustering into account
is still much smaller than O(n2

d), as we will discuss in Sec. 3.4.4

3.3.3 Growing Story Trees Online

Given the set of extracted events for a particular topic, we further organize these
events into multiple stories under this topic in an online manner. Each story is
represented by a Story Tree to characterize the evolving structure of that story. Upon
the arrival of a new event and given an existing story forest, our online algorithm to
grow the story forest mainly involves two steps: a) identifying the story tree to which
the event belongs; b) updating the found story tree by inserting the new event at the
right place. If this event does not belong to any existing story, we create a new story
tree.

a) Identifying the related story tree. Given a set of new events Et =

{E1, E2, ..., E|Et|} at time period t and an existing story forest Ft−1 = {S1,S2, ...,S|Ft−1|}
that has been formed during previous t − 1 time periods, our objective is to assign
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Figure 3.5: Three types of operations to place a new event into its related story tree.

each new event E ∈ Et to an existing story tree S ∈ Ft−1. If no story in the current
story forest matches that event, a new story tree will be created and added to the
story forest.

We apply a two-step strategy to decide whether a new event E belongs to an
existing story tree S formed previously. First, as described at the end of Sec. 3.3.2,
event E has its own keyword set CE . Similarly, for the existing story tree S, there is
an associated keyword set CS that is a union of all the keyword sets of the events in
that tree.

Then, we can calculate the compatibility between event E and story tree S as
the Jaccard similarity coefficient between CS and CE : compatibility(CS , CE) = |CS∩CE |

|CS∪CE |
.

If the compatibility is bigger than a threshold, we further check whether at least a
document in event E and at least a document in story tree S share n or more common
words in their titles (with stop words removed). If yes, we assign event E to story
tree S. Otherwise, they are not related. In our experiments, we set n = 1. If the
event E is not related to any existing story tree, a new story tree will be created.

b) Updating the related story tree. After a related story tree S has been
identified for the incoming event E , we perform one of the 3 types of operations to
place event E in the tree: merge, extend or insert, as shown in Fig. 3.5. The merge
operation merges the new event E into an existing event node in the tree. The extend
operation will append event E as a child node to an existing event node in the tree.
Finally, the insert operation directly appends event E to the root node of story tree
S. Our system chooses the most appropriate operation to process the incoming event
based on the following procedures.

Merge : we merge E with an existing event in the tree, if they essentially talk about
the same event. This can be achieved by checking whether the centroid documents of
the two events are talking about the same thing using the document-pair relationship
classifier described in Sec. 3.3.2. The centroid document of an event is simply the
concatenation of all the documents in the event.
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Extend and Insert : if event E does not overlap with any existing event, we will
find the parent event node in S to which it should be appended. We calculate the
connection strength between the new event E and each existing event Ej ∈ S based
on three factors: 1) the time distance between E and Ej, 2) the compatibility of the
two events, and 3) the storyline coherence if E is appended to Ej in the tree, i.e.,

ConnectionStrength(Ej, E) := compatibility(Ej, E)×
coherence(LS→Ej→E)× timePenalty(Ej, E).

(3.2)

Now we explain the three components in the above equation one by one. First,
the compatibility between two events Ei and Ej is given by

compatibility(Ei, Ej) =
TF(dci) · TF(dcj)
‖TF(dci)‖ · ‖TF(dcj)‖

, (3.3)

where dci is the centroid document of event Ei.
Furthermore, the storyline of Ej is defined as the path in S starting from the

root node of S ending at Ej itself, denoted by LS→Ej . Similarly, the storyline of E
appended to Ej is denoted by LS→Ej→E . For a storyline L represented by a path
E0 → . . . → E |L|, where E0 := S, its coherence [Xu et al., 2013] measures the theme
consistency along the storyline, and is defined as

coherence(L) = 1

|L|

|L|−1∑
i=0

compatibility(E i, E i+1), (3.4)

Finally, the bigger the time gap between two events, the less possible that the two
events are connected. We thus calculate time penalty by

timePenalty(Ej, E) =
{
eδ·(tEj−tE) if tEj − tE < 0

0 otherwise
(3.5)

where tEj and tE are the timestamps of event Ej and E respectively. The timestamp
of an event is the minimum timestamp of all the documents in the event.

We calculate the connection strength between the new event E and every event
node Ej ∈ S using (3.2), and append event E to the existing Ej that leads to the
maximum connection strength. If the maximum connection strength is lower than a
threshold value, we insert E into story tree S by directly appending it to the root
node of S. In other words, insert is a special case of extend.

3.4 Performance Evaluation

We conduct two groups of experiments. The first group independently evaluates
EventX, since it is a core novelty within our Story Forest system. We report the
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Figure 3.6: The characteristics of the introduced Chinese News Event and Story
dataset.

performance of EventX on a manually labeled Chinese News Events dataset and the
openly available 20 Newsgroups dataset. We then compare EventX against several
clustering baselines. In the second group, we add the story visualization structures
and examine the overall performance of Story Forest on a much larger news documents
dataset, i.e., the Chinese News Corpus dataset. We also investigate the effects of
various hyper-parameters in EventX as well as the algorithm complexity of the entire
system.

3.4.1 News Datasets

To help evaluate Story Forest, we create the Chinese News Corpus dataset by collect-
ing 60 GB of Chinese news documents (approximately 1.5 millions of news articles)
from major Internet news providers in China, such as Tencent and Sina, in a three-
month period from October 1, 2016 to December 31, 2016 covering different topics
in the open domain. The entire Story Forest system is tested on the full 60 GB
of Chinese news documents and we employ human evaluators to analyze its overall
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performance.
We then sample a smaller subset from these documents to create the Chinese

News Events dataset, which is manually labeled with the truth events and stories, by
editors and product managers at Tencent. It is also, to the best of our knowledge, the
first Chinese dataset for event extraction evaluation. In the creation of Chinese News
Events dataset, we assume that 1) each article only has one event ID, i.e., associated
with the breaking news that leads to this article; 2) different events from the same
story are clearly distinguishable, partly because they usually follow the progressing
timeline of real-world affairs; 3) each article only belongs to one news story indicated
by a unique story ID (we ignore the complex storylines and entangled plots such
as those in a fiction). We train and evaluate the EventX algorithm on this labeled
dataset of 11, 748 Chinese news articles. When evaluating the whole Story Forest
system on the Chinese News Corpus dataset, documents belonging to the Chinese
News Events dataset are removed.

Fig. 3.6 shows some statistics of the new dataset. Fig. 3.6(a), Fig. 3.6(b) and
Fig. 3.6(c) demonstrate how many documents, events and stories each topic contains.
We can see that the distributions are highly skewed. The top 3 largest topics are
“entertainment”, “sports” and “current events”. Fig. 3.6(d) shows the histogram of
word counts in documents. The average number of words in a document is 733.67

and the longest document has 21, 791 words. From Fig. 3.6(g), we can see that the
average number of keywords extracted from each document is 19.8. In terms of the
sizes of events and stories, the histograms of the number of documents in each event
and that in each story are shown in Fig. 3.6(e) and Fig. 3.6(f), respectively. We can
easily observe that for real-world news data, a majority of events only contain a single
document: the average size of an event is 1.26 (documents), while the largest event
contains 277 documents. The average size of a story is 3.15 (documents) and the
largest story contains 322 documents. Finally, Fig. 3.6(h) and Fig. 3.6(i) plot the
distributions of the time spans of each event and story. The average time span of an
event is 0.26 days, and that of a story is 2.15 days. These statistics help to justify the
assumptions we made above when labeling the dataset—most breaking news events
and stories have relatively short lifespans with simple narratives (in contrast to fictions
or scientific articles).

3.4.2 Evaluation of EventX

Evaluation Datasets

We utilize the following datasets for evaluating EventX :

42



• Chinese News Events (CNE). This is the full dataset that contains 11, 748
news articles belonging to 9, 327 events. The average number of words in doc-
uments is 733.67.

• Chinese News Events Subset 1. It is created by removing events contain-
ing less than 2 documents in the Chinese News Events dataset. It contains
3, 557 news articles belonging to 1, 136 events. The average number of words in
documents is 768.07.

• Chinese News Events Subset 2. We further filter events that contain less
than 4 documents in the Chinese News Events dataset. This dataset contains
1, 456 news articles belonging to 176 events. The average length of documents
is 760.04 words.

• 20 Newsgroups2. This is a classic dataset for the evaluation of text clustering
algorithms. It consists of 18, 821 documents that belong to 20 different news
groups. The average length of documents is 137.85 words.

For Chinese datasets, after word segmentation, we extract keywords from each
document using the supervised approach mentioned in Sec. 3.3.1. The binary clas-
sifier to classify whether a word is a keyword to a document is trained on a dataset
that we manually labeled. It contains the keywords of 10, 000+ documents, including
20, 000+ positive keyword samples and 350, 000+ negative samples. On another Chi-
nese keyword extraction evaluation dataset, our classifier achieved a precision of 0.83
and a recall of 0.76, while they are 0.72 and 0.76 respectively if we exclude the GBDT
component. The average number of keywords for each document in our proposed
Chinese News Events dataset is 19.8. For English documents, we extracted keywords
using RAKE [Rose et al., 2010].

Evaluation Metrics

The evaluation metrics we used include: Homogeneity (H), Completeness (C), V-
measure score (V) [Rosenberg and Hirschberg, 2007] and Normalized Mutual Infor-
mation (NMI). Homogeneity and completeness are intuitive evaluation metrics based
on conditional entropy analysis. Homogeneity is larger if each cluster contains only
members from a single class. The completeness is maximized if all members of a
ground truth class are assigned to the same cluster. Homogeneity and completeness

2http://qwone.com/~jason/20Newsgroups/

43



scores are defined as:

H = 1−
∑

c,k nc,k log
nc,k
nk∑

c nc log
nc
N

, (3.6)

C = 1−
∑

c,k nc,k log
nc,k
nc∑

k nk log
nk
N

, (3.7)

where nc is the number of documents in class c, and nk is the number of documents
in cluster k. nc,k is the number of documents in class c as well as in cluster k, and
N is the number of total documents in the dataset. The V-measure is the harmonic
mean between homogeneity and completeness:

V =
2× H× C
H+ C

. (3.8)

Normalized mutual information [Estévez et al., 2009] is also widely used for text
clustering evaluation. It measures the amount of statistical information shared by the
ground truth cluster labels and the cluster assignment results. The NMI is 1 if the
cluster results perfectly match the truth labels, and it is close to 0 when the cluster
labels are randomly generated. Normalized mutual information is formally defined
as:

NMI =

∑
c,k nc,k log

nc,k·N
nc·nk√

(
∑

c nc log
nc
N
)(
∑

k nk log
nk
N
)

(3.9)

Methods for Comparison

We compare EventX to other document clustering methods, as well as methods that
utilize both word and document clusters:

• KeyGraph: the KeyGraph algorithm [Sayyadi and Raschid, 2013] clusters
documents based on a keyword co-occurrence graph, without the second-layer
clustering based on document relationship graphs and document pair relation-
ship classifier.

• Co-clustering: this algorithm takes in a term-document matrix and simulta-
neously maps rows to row-clusters and columns to column-clusters. Then, it
calculates the mutual information difference between the current row and col-
umn clusters and iteratively updates both clusters until this difference is below
a threshold [Dhillon et al., 2003].

• Word-to-Doc Clustering: this algorithm takes in a joint probability distri-
bution, typically a term-document matrix. It first computes word-clusters to
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Table 3.3: Comparing different algorithms on Chinese News Events (CNE) dataset.

CNE (K = 2331) CNE (K = 4663) CNE (K = 9327)
Algorithm H C V NMI H C V NMI H C V NMI

EventX 0.990 0.954 0.972 0.972 0.990 0.954 0.972 0.972 0.990 0.954 0.972 0.972
KeyGraph 0.811 0.959 0.879 0.882 0.811 0.959 0.879 0.882 0.811 0.959 0.879 0.882
Co-Clustering 0.962 0.773 0.857 0.863 0.960 0.839 0.896 0.898 0.958 0.901 0.929 0.929
Word-Doc 0.965 0.820 0.887 0.890 0.964 0.891 0.926 0.927 0.959 0.974 0.966 0.966
NMF 0.514 0.954 0.668 0.700 0.403 0.940 0.564 0.615 0.231 0.910 0.368 0.458
K-means+LDA 0.266 0.105 0.151 0.167 0.355 0.126 0.186 0.211 0.466 0.147 0.224 0.262
K-means+TF-IDF 0.445 0.173 0.250 0.278 0.470 0.166 0.245 0.279 0.485 0.154 0.234 0.273

Table 3.4: Comparing different algorithms on Chinese News Events Subset 1.

CNE Subset 1 (K = 568) CNE Subset 1 (K = 1136) CNE Subset 1 (K = 2272)
Algorithm H C V NMI H C V NMI H C V NMI

EventX 0.973 0.841 0.902 0.905 0.973 0.841 0.902 0.905 0.973 0.841 0.902 0.905
KeyGraph 0.837 0.846 0.842 0.842 0.837 0.846 0.842 0.842 0.837 0.846 0.842 0.842
Co-Clustering 0.868 0.777 0.820 0.821 0.860 0.850 0.855 0.855 0.847 0.911 0.878 0.879
Word-to-Doc 0.897 0.822 0.858 0.859 0.876 0.914 0.895 0.895 0.850 0.979 0.910 0.912
NMF 0.491 0.913 0.638 0.669 0.351 0.931 0.510 0.572 0.156 0.714 0.256 0.334
K-means+LDA 0.886 0.351 0.503 0.558 0.956 0.340 0.502 0.570 0.989 0.314 0.477 0.558
K-means+TF-IDF 0.928 0.363 0.522 0.580 0.975 0.338 0.502 0.574 0.991 0.313 0.476 0.557

capture the most information about the documents. Relying on this new cluster-
document matrix, the algorithm recursively merges the documents into bigger
clusters, such that the mutual information loss between document clusters and
word clusters is minimized [Slonim and Tishby, 2000].

• Non-negative Matrix Factorization (NMF): this algorithm coverts a cor-
pus into a term-document matrix where each element in the matrix is the TF-
IDF value of a word in a document. The factorized basis vectors correspond
to different clusters. By examining the largest component of a document along
any of the vectors, we can decide the cluster membership of that document [Xu
et al., 2003].

• K-means with LDA: extract the 1000-dimensional LDA vector of each docu-
ment, and cluster them by the K-means algorithm [Jain, 2010], which is prob-
ably the most widely used method for clustering.

• K-means with TF-IDF: represent each document by TF-IDF vector, and
cluster by K-means.

For the compared baseline methods, we vary the number of clusters for each
dataset. For algorithms that require iterative updates, we set a maximum iteration
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Table 3.5: Comparing different algorithms on Chinese News Events Subset 2.

CNE Subset 2 (K = 88) CNE Subset 2 (K = 176) CNE Subset 2 (K = 352)
Algorithm H C V NMI H C V NMI H C V NMI

EventX 0.964 0.680 0.798 0.810 0.964 0.680 0.798 0.810 0.964 0.680 0.798 0.810
KeyGraph 0.691 0.767 0.717 0.728 0.691 0.767 0.717 0.728 0.691 0.767 0.717 0.728
Co-Clustering 0.783 0.728 0.755 0.755 0.750 0.801 0.775 0.775 0.723 0.867 0.788 0.792
Word-to-Doc 0.886 0.765 0.821 0.823 0.805 0.865 0.834 0.835 0.731 0.927 0.817 0.823
NMF 0.753 0.853 0.800 0.802 0.801 0.809 0.805 0.805 0.745 0.802 0.773 0.773
K-means+LDA 0.783 0.430 0.555 0.581 0.890 0.408 0.559 0.602 0.940 0.380 0.541 0.598
K-means+TF-IDF 0.857 0.469 0.606 0.634 0.928 0.424 0.582 0.627 0.959 0.379 0.543 0.603

Table 3.6: Comparing different algorithms on 20 Newsgroups dataset.

20 Newsgroups (K = 10) 20 Newsgroups (K = 20) 20 Newsgroups (K = 40)
Algorithm H C V NMI H C V NMI H C V NMI

EventX 0.996 0.340 0.507 0.582 0.996 0.340 0.507 0.582 0.996 0.340 0.507 0.582
KeyGraph 0.995 0.340 0.507 0.581 0.995 0.340 0.507 0.581 0.995 0.340 0.507 0.581
Co-Clustering 0.421 0.318 0.362 0.366 0.374 0.368 0.371 0.371 0.351 0.423 0.384 0.386
Word-to-Doc 0.578 0.306 0.400 0.421 0.540 0.390 0.453 0.459 0.515 0.464 0.488 0.489
NMF 0.315 0.529 0.395 0.408 0.396 0.468 0.429 0.431 0.456 0.413 0.433 0.434
K-means+LDA 0.245 0.352 0.368 0.293 0.333 0.352 0.342 0.342 0.321 0.279 0.298 0.299
K-means+TF-IDF 0.350 0.282 0.312 0.194 0.368 0.264 0.308 0.159 0.332 0.301 0.316 0.236

of 20 (which proved to be enough for convergence). Notice that our EventX algorithm
and the KeyGraph algorithm do not require a pre-defined number of clusters.

The EventX algorithm needs to pre-train a document relationship classifier. For
the Chinese News Events dataset and subsets, we trained a document-pair relationship
classifier using 5, 000 labeled news pairs, collected from the web from January 01,
2017 to April 04, 2017. For the 20 Newsgroups dataset, we used the training set3 to
construct a document-pair relationship dataset and trained a classifier, then evaluated
the algorithms on the test set.

Comparison with Existing Methods

Table 3.3 shows the performance of different algorithms on the four datasets with dif-
ferent number of clustersK. As we can see, our approach achieves the best V-measure
and NMI scores in most cases. And our method achieves overall high homogeneity
scores among all datasets. This implies that most event clusters we obtain are pure:
each event only contains documents that talk about the same event. In comparison,
the homogeneity for other methods varies widely across datasets. The reason is that
we adopted two layers of graph-based clustering algorithms to extract events at a

3The splitting of training and testing set for the 20 Newsgroups is the same with http:
//csmining.org/index.php/id-20-newsgroups.html.
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more appropriate granularity. For completeness, even though our approach scored a
little bit lower than KeyGraph, it is more or less expected. As we further split the
topic clusters in the second layer document relationship graph, it is more likely for
documents labeled as one class to appear in different clusters, simply because with
a two-layered clustering scheme we have more clusters. Considering the significant
improvements of homogeneity, we believe the slightly lower completeness score would
not strongly affect the real-world performance of our model.

The performance of Word-to-Doc Clustering algorithm is slightly better than our
algorithm on the Chinese News Events Subset 2. However, our algorithm does not
need the number of clusters ahead of time, while the performance of the Word-to-
Doc Clustering algorithm is highly dependent on this parameter. For real-world news
data, the event size distribution is highly skewed like the Chinese News Events full
dataset, rather than the subsets.

Considering the results on the 20 Newsgroups dataset. Our algorithm achieves
better performance than the other algorithms in terms of the Homogeneity, V-measure
score and NMI. We can also observe that the completeness of our algorithm is rel-
atively low on the 20 Newsgroups dataset, while the homogeneity is still high. The
reason is that the documents in 20 Newsgroups dataset are grouped according to
topics rather than events. Therefore, two documents belonging to the same cluster
may have entirely different keywords, and our algorithm will assign them two different
cluster labels. For the same reason, we can see that the performance of KeyGraph
is similar to EventX on the 20 Newsgroups dataset. After the first layer keyword
co-occurrence graph based clustering, the clusters are already pure and the second
layer document relationship graph based clustering would not further split it.

Influence of Parameters

The main parameter that will influence the final clustering result of EventX is the
threshold δ that assigns each document to a keyword subgraph in the fist layer clus-
tering step. Fig. 3.7 shows its influence to the clustering performance on the Chinese
News Events dataset. As we can see, the performance is quite robust when δ ≤ 0.3.
If we keep increasing δ, the number of clusters increases, leading to an increase in
homogeneity and a decrease in completeness. The reason is that, when δ is within
a reasonable range (usually between 0.1 to 0.3), the performance of our algorithm is
insensitive to it, as the first layer keyword co-occurrence graph based clustering will
split documents into topics, and the value of δ will only influence the granularity of
the clustered topics. The events within each topic will not be divided, and they will
be extracted by the second layer clustering procedure. If δ keeps increasing, at some
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Figure 3.7: The influence of parameter δ to the clustering performance and number
of clusters on the Chinese News Events dataset.

Figure 3.8: The number of documents on different days in the Story Forest evaluation
dataset.

point, events will split in the first layer, resulting in an increase in homogeneity and a
decrease in completeness. For other parameters, such as the δe, δp and δg we defined
in Sec. 3.3.2 and Sec. 3.3.2, they are parameters that influence the construction of
keyword co-occurrence graph and subgraphs. Our event extraction algorithm is also
insensitive to these parameters as long as they are within a reasonable range. The
reason is the same with δ.

3.4.3 Evaluation of Story Forest

Now we evaluate the complete Story Forest system. Fig. 3.8 shows the amounts of
documents on different days in the larger 60 GB dataset. The average number of
documents in one day during that period is 164, 922. For the following experiments,
we use the data in the first 7 days for parameter tuning. The remaining data serves
as the test set.

We test different event timeline and story generation algorithms on the large
3-month news dataset through pilot user evaluation. To make fair comparisons, the
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Tree Flat Thread Timeline Graph

Correct edges 82.8% 73.7% 66.8% 58.3% 32.9%
Consistent paths 77.4% − 50.1% 29.9% −
Best structure 187 88 84 52 19

Table 3.7: Comparing different story structure generation algorithms.

same preprocessing and event extraction procedures before developing story structures
are adopted for all methods, with 261 stories detected from the dataset. The only
difference is how to construct the story structure given a set of event nodes. We
compare our online Story Forest system with the following existing algorithms:

• Flat Cluster (Flat): this method clusters related events into a story without
revealing the relationships between events, which approximates some previous
works in TDT [Yang et al., 2002; Allan et al., 1998].

• Story Timeline (Timeline): this method organizes events linearly according
to the timestamps of events [Sayyadi et al., 2009; Sayyadi and Raschid, 2013].

• Story Graph (Graph): this method calculates a connection strength for
every pair of events and connect the pair if the score exceeds a threshold [Yang
et al., 2009].

• Event Threading (Thread): this algorithm appends each new event to its
most similar earlier event [Nallapati et al., 2004]. The similarity between two
events is measured by the TF-IDF cosine similarity of the event centroids.

We enlisted 10 human reviewers, including product managers, software engineers
and senior undergraduate students, to blindly evaluate the results given by different
approaches. Each individual story was reviewed by 3 different reviewers. When the
reviewers’ opinions are different, they will discuss to give a final result. For each story,
the reviewers answered the following questions for each of the 5 different structures
generated by different schemes:

1. Do all the documents in each story cluster truly talk about the same story (yes
or no)? Continue if yes.

2. Do all the documents in each event node truly talk about the same event (yes
or no)? Continue if yes.
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(a) Percentage of incorrect edges

(b) Percentage of inconsistent paths

(c) Number of times rated as the most readable structure

Figure 3.9: Comparing the performance of different story structure generation algo-
rithms.
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(a) Histogram of the number of events in each story

(b) Histogram of the number of paths in each story

(c) Numbers of different story structures

Figure 3.10: The characteristics of the story structures generated by the Story Forest
system.
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3. For each story structure given by different algorithms, how many edges correctly
represent the event connections?

4. For each story structure given by story forest, event threading and story time-
line, how many paths from ROOT to any leaf node exist in the graph? And
how many such paths are logically coherent?

5. Which algorithm generates the structure that is the best in terms of revealing
the story’s underlying logical structure?

Note that for question (3), the total number of edges for each tree equals to the
number of events in that tree. Therefore, to make a fair comparison, for the story
graph algorithm, we only retain the n edges with the top scores, where n is the number
of events in that story graph.

We first report the clustering effectiveness of our system in the pilot user evaluation
on the 3-month dataset. Among the 261 stories, 234 of them are pure story clusters
(yes to question 1), and furthermore there are 221 stories only contains pure event
nodes (yes to question 2). Therefore, the final accuracy to extract events (yes to both
question 1 and 2) is 84.7%.

Next, we compare the output story structures given by different algorithms from
three aspects: the correct edges between events, the logical coherence of paths, and
the overall readability of different story structures. Fig. 3.9(a) compares the CDFs
of incorrect edge percentage under different algorithms. As we can see, Story Forest
significantly outperforms the other 4 baseline approaches. As shown in Table 3.7, for
58% story trees, all the edges in each tree are reviewed as correct, and the average
percentage of correct edges for all the story trees is 82.8%. In contrast, the average
correct edge percentage given by the story graph algorithm is 32.9%.

An interesting observation is that the average percentage of correct edges given
by the simple flat structure is 73.7%, which is a special case of our tree structures.
This can be explained by the fact that most real-world breaking news that last for a
constrained time period are not as complicated as a novel with rich logical structure,
and a flat structure is often enough to depict their underlying logic. However, for
stories with richer structures and a relatively longer timeline, Story Forest gives better
result than other algorithms by comprehensively considering the event similarity, path
coherence and time gap, while other algorithms only consider parts of all the factors.

For path coherence, Fig. 3.9(b) shows the CDFs of percentages of inconsistent
paths under different algorithms. Story Forest gives significantly more coherent paths:
the average percentage of coherent paths is 77.4% for our algorithm, and is 50.1% and

52



Figure 3.11: The running time of our system on the 3-month news dataset.

29.9%, respectively, for event threading and story timeline. Note that path coherence
is meaningless for flat or graph structure.

Fig. 3.9(c) plots overall readability of different story structures. Among the 221

stories, the tree-based Story Forest system gives the best readability on 187 stories,
which is much better than all other approaches. Different algorithms can generate
the same structure. For example, the Story Forest system can also generate a flat
structure, a timeline, or a same structure as the event threading algorithm does.
Therefore, the sum of the numbers of best results given by different approaches is
bigger than 221. It’s worth noting that the flat and timeline algorithms also give
88 and 52 most readable results, which again indicates that the logic structures of a
large portion of real-world news stories can be characterized by simple flat or timeline
structures, which are special cases of story trees. And complex graphs are often an
overkill.

We further inspect the story structures generated by Story Forest. Fig. 3.10(a)
and Fig. 3.10(b) plot the distributions of the number of events and the number of
paths in each story tree, respectively. The average numbers of events and paths
are 4.07 and 2.71, respectively. Although the tree structure includes the flat and
timeline structures as special cases, among the 221 stories, Story Forest generates
77 flat structures and 54 timelines, while the remaining 90 structures generated are
still story trees. This implies that Story Forest is versatile and can generate diverse
structures for real-world news stories, depending on the logical complexity of each
story.

3.4.4 Algorithm Complexity and System Overhead

In this section, we discuss the complexity of each step in the Story Forest. For a time
slot (e.g., in our case is one day), let Nd be the number of documents, Nw the number
of unique words in corpora, note Nw << Nd, Ne the number of different events, Ns
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the number of different stories, and Nk represents the maximum number of unique
keywords in a document.

As discussed in [Sayyadi and Raschid, 2013], building keyword graph requires
O(NdNk+N

2
w) complexity, and community detection based on betweenness centrality

requires O(N3
w). The complexity of assigning documents to keyword communities

is O(NdNkNe). So by far the total complexity is O(NdNkNe + N3
w). There exist

other community detection algorithms requiring only O(N2
w), such as the algorithm

in [Radicchi et al., 2004]. Thus we can further improve efficiency by using faster
community detection algorithms.

After clustering documents by keyword communities, for each cluster the aver-
age number of documents is Nd/Ne. The pair-wise document relation classification is
implemented in O((Nd/Ne)2). The complexity of the next document graph splitting op-
eration is O((Nw/Ne)3). Therefore, the total complexity is O(Ne((Nd/Ne)

2+(Nw/Ne)3)).
Our experiments show that usually 1 ≤ Nd/Ne ≤ 100. Combining with Nw << Nd,
the complexity is now approximately O(Ne).

To grow story trees with new events, the complexity of finding the related story
tree for each event is of O(NsT ), where T is the history length to keep existing stories
and delete older stories. If no existing related story, creating a new story requires
O(1) operations. Otherwise, the complexity of updating a story tree is O(TNe/Ns). In
summary, the complexity of growing story trees is O(NeT (Ns+Ne/Ns)) ≈ O(TNeNs),
as our experience on the Tencent news dataset shows that 1 ≤ Ne/Ns ≤ 200. Our
online algorithm to update story structure requires O(Ne/Ns) complexity and delivers
a consistent story development structure, while most existing offline optimization
based story structure algorithms require at least O((Ne/Ns)2) complexity and disrupt
the previously generated story structures.

Fig. 3.11 shows the running time of our Story Forest system on the 3 months news
dataset. The average time of processing each day’s news is around 26 seconds, and
increases linearly with number of days. For the offline keyword extraction module,
the processing efficiency is approximately 50 documents per second. The performance
of keyword extraction module is consistent with time and doesn’t require frequently
retraining. The LDA model is incrementally retrained every day to handle new words.
For keyword extraction, the efficiency of event clustering and story structure genera-
tion can be further improved by a parallel implementation.
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3.5 Concluding Remarks and Future Works

In this chapter, we describe our experience of implementing Story Forest, a news
content organization system at Tencent, which is designed to discover events from
vast streams of trending and breaking news and organize events in sensible story
trees in an online manner. Our system is specifically tailored for fast processing
massive amounts of breaking news data, whose story structures can most likely be
captured by either a tree, a timeline or a flat structure. We proposed EventX, a semi-
supervised text clustering algorithm designed to efficiently extract events from vast
news corpora. EventX is a two-layered, graph-based document clustering scheme.
In the first layer, we leveraged keyword co-occurrence graphs to cluster documents
into topics, while in the second layer, we utilized a novel document relationship graph
constructed through supervised learning to further split each topic into events, leading
to an overall semi-supervised learning procedure. Our system further organizes the
events into story trees with efficient online algorithms upon the arrival of daily news
data.

We conducted extensive performance evaluation based on 60 GB of real-world
(Chinese) news data, although our ideas are not language-dependent and can easily
be extended to other languages, through detailed pilot user experience studies. To
stimulate future research in event extraction, we also created a large Chinese News
Events dataset that contains 11, 748 long news articles collected from all major Inter-
net news portals in China from October 01, 2016 to November 30, 2016, with ground
truth event labels. We evaluated EventX on the Chinese News Events dataset, as well
as the 20 Newsgroups English dataset. Extensive results suggest that our clustering
procedure is significantly more effective at accurate event extraction than existing al-
gorithms. For event extraction, the V-measure score and NMI of the clustering results
on the Chinese News Events dataset are both 0.972, demonstrating the effectiveness
of EventX to extract conceptually clean event clusters from vast and unstructured
Internet news data. For story generation, 83% of the event links generated by Story
Forest are logically correct as compared to an accuracy of 33% generated by more
complex story graphs, demonstrating the ability of our system to organize trending
news events into a logical structure that appeals to human readers.

In our future work, we will extend our proposed Story Forest and EventX frame-
work to make it applicable to a continuous stream of news documents. Currently, we
can use EventX in a batch-based manner: for example, we can extract the events for
each batch of documents collected in different hours, and merge a new event with an
existing event if they are talking about the same one. We can further improve our
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framework by maintaining a dynamic keyword graph, performing dynamic keyword
community detection, and run incremental event extraction based on such a dynamic
keyword graph. Whenever new document stream comes in, we update the keyword
graph to find out new keyword communities, and cluster new documents into new
events or assign them to existing events. In this way, our framework can be directly
applied to a continuous stream of news documents, rather than processing them in
batches.
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Chapter 4

Matching Article Pairs with
Graphical Decomposition and
Convolutions

The EventX algorithm we proposed in the Story Forest system requires us to clas-
sify the relationship between a pair of articles and construct a document graph for
the second-layer clustering. Identifying the relationship between two articles, e.g.,
whether two articles published from different sources describe the same breaking news,
is critical to many document understanding tasks. However, it is a challenging task.
Existing approaches for modeling and matching sentence pairs do not perform well in
matching longer documents, which embody more complex interactions between the
enclosed entities than a sentence does.

To model article pairs, we propose the Concept Interaction Graph to represent
an article as a graph of concepts. We then match a pair of articles by comparing
the sentences that enclose the same concept vertex through a series of encoding tech-
niques, and aggregate the matching signals through a graph convolutional network.
To facilitate the evaluation of long article matching, we have created two datasets,
each consisting of about 30K pairs of breaking news articles covering diverse topics in
the open domain. Extensive evaluations of the proposed methods on the two datasets
demonstrate significant improvements over a wide range of state-of-the-art methods
for natural language matching.

4.1 Introduction

Identifying the relationship between a pair of articles is an essential natural lan-
guage understanding task, which is critical to news systems and search engines. For
example, a news system needs to cluster various articles on the Internet reporting
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the same breaking news (probably in different ways of wording and narratives), re-
move redundancy and form storylines [Shahaf et al., 2013; Liu et al., 2017; Zhou et
al., 2015; Vossen et al., 2015; Bruggermann et al., 2016]. The rich semantic and logic
structures in longer documents have made it a different and more challenging task to
match a pair of articles than to match a pair of sentences or a query-document pair
in information retrieval.

Traditional term-based matching approaches estimate the semantic distance be-
tween a pair of text objects via unsupervised metrics, e.g., via TF-IDF vectors, BM25
[Robertson et al., 2009], LDA [Blei et al., 2003] and so forth. These methods have
achieved success in query-document matching, information retrieval and search. In
recent years, a wide variety of deep neural network models have also been proposed
for text matching [Hu et al., 2014; Qiu and Huang, 2015; Wan et al., 2016; Pang
et al., 2016], which can capture the semantic dependencies (especially sequential de-
pendencies) in natural language through layers of recurrent or convolutional neural
networks. However, existing deep models are mainly designed for matching sentence
pairs, e.g., for paraphrase identification, answer selection in question-answering, omit-
ting the complex interactions among keywords, entities or sentences that are present
in a longer article. Therefore, article pair matching remains under-explored in spite
of its importance.

In this chapter, we apply the divide-and-conquer philosophy to matching a pair of
articles and bring deep text understanding from the currently dominating sequential
modeling of language elements to a new level of graphical document representation,
which is more suitable for longer articles. Specifically, we have made the following
contributions:

First, we propose the so-called Concept Interaction Graph (CIG) to represent
a document as a weighted graph of concepts, where each concept vertex is either a
keyword or a set of tightly connected keywords. The sentences in the article associated
with each concept serve as the features for local comparison to the same concept
appearing in another article. Furthermore, two concept vertices in an article are also
connected by a weighted edge which indicates their interaction strength. The CIG
does not only capture the essential semantic units in a document but also offers a
way to perform anchored comparison between two articles along the common concepts
found.

Second, we propose a divide-and-conquer framework to match a pair of articles
based on the constructed CIGs and graph convolutional networks (GCNs). The idea
is that for each concept vertex that appears in both articles, we first obtain the
local matching vectors through a range of text pair encoding schemes, including both
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neural encoding and term-based encoding. We then aggregate the local matching
vectors into the final matching result through graph convolutional layers [Kipf and
Welling, 2016; Defferrard et al., 2016]. In contrast to RNN-based sequential modeling,
our model factorizes the matching process into local matching sub-problems on a
graph, each focusing on a different concept, and by using GCN layers, generates
matching results based on a holistic view of the entire graph.

Although there exist many datasets for sentence matching, the semantic matching
between longer articles is a largely unexplored area. To the best of our knowledge,
to date, there does not exist a labeled public dataset for long document matching.
To facilitate evaluation and further research on document and especially news ar-
ticle matching, we have created two labeled datasets1, one annotating whether two
news articles found on Internet (from different media sources) report the same break-
ing news event, while the other annotating whether they belong to the same news
story (yet not necessarily reporting the same breaking news event). These articles
were collected from major Internet news providers in China, including Tencent, Sina,
WeChat, Sohu, etc., covering diverse topics, and were labeled by professional editors.
Note that similar to most other natural language matching models, all the approaches
proposed in this chapter can easily work on other languages as well.

Through extensive experiments, we show that our proposed algorithms have achieved
significant improvements on matching news article pairs, as compared to a wide range
of state-of-the-art methods, including both term-based and deep text matching al-
gorithms. With the same encoding or term-based feature representation of a pair of
articles, our approach based on graphical decomposition and convolutions can improve
the classification accuracy by 17.31% and 23.09% on the two datasets, respectively.

4.2 Concept Interaction Graph

In this section, we present our Concept Interaction Graph (CIG) to represent a docu-
ment as an undirected weighted graph, which decomposes a document into subsets of
sentences, each subset focusing on a different concept. Given a document D, a CIG is
a graph GD, where each vertex in GD is called a concept, which is a keyword or a set
of highly correlated keywords in document D. Each sentence in D will be attached
to the single concept vertex that it is the most related to, which most frequently is
the concept the sentence mentions. Hence, vertices will have their own sentence sets,
which are disjoint. The weight of the edge between a pair of concepts denotes how
much the two concepts are related to each other and can be determined in various

1Our code and datasets are available at: https://github.com/BangLiu/ArticlePairMatching
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Text: Concept Interaction Graph:

[1] Rick asks Morty to travel with him
      in the universe.
[2] Morty doesn't want to go as Rick always
      brings him dangerous experiences.
[3] However, the destination of this journey
      is the Candy Planet, which is an fascinating
      place that attracts Morty.
[4] The planet is full of delicious candies.
[5] Summer wishes to travel with Rick.
[6] However, Rick doesn't like to travel with Summer.

Rick
Morty

Rick
Summer

Morty
Candy 
Planet

[1, 2] [5, 6]

[3, 4]

Figure 4.1: An example to show a piece of text and its Concept Interaction Graph
representation.
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Figure 4.2: An overview of our approach for constructing the Concept Interaction
Graph (CIG) from a pair of documents and classifying it by Graph Convolutional
Networks.

ways.
As an example, Fig. 4.1 illustrates how we convert a document into a Concept

Interaction Graph. We can extract keywords Rick, Morty, Summer, and Candy Planet
from the document using standard keyword extraction algorithms, e.g., TextRank
[Mihalcea and Tarau, 2004]. These keywords are further clustered into three concepts,
where each concept is a subset of highly correlated keywords. After grouping keywords
into concepts, we attach each sentence in the document to its most related concept
vertex. For example, in Fig. 4.1, sentences 1 and 2 are mainly talking about the
relationship between Rick and Morty, and are thus attached to the concept (Rick,
Morty). Other sentences are attached to vertices in a similar way. The attachment of
sentences to concepts naturally dissects the original document into multiple disjoint
sentence subsets. As a result, we have represented the original document with a graph
of key concepts, each with a sentence subset, as well as the interaction topology among
them.
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Fig 4.2 (a) illustrates the construction of CIGs for a pair of documents aligned by
the discovered concepts. Here we first describe the detailed steps to construct a CIG
for a single document:

KeyGraph Construction. Given a document D, we first extract the named
entities and keywords by TextRank [Mihalcea and Tarau, 2004]. After that, we con-
struct a keyword co-occurrence graph, called KeyGraph, based on the set of found
keywords. Each keyword is a vertex in the KeyGraph. We connect two keywords by
an edge if they co-occur in a same sentence.

We can further improve our model by performing co-reference resolution and syn-
onym analysis to merge keywords with the same meaning. However, we do not apply
these operations due to the time complexity.

Concept Detection (Optional). The structure of KeyGraph reveals the con-
nections between keywords. If a subset of keywords are highly correlated, they will
form a densely connected sub-graph in the KeyGraph, which we call a concept. Con-
cepts can be extracted by applying community detection algorithms on the con-
structed KeyGraph. Community detection is able to split a KeyGraph Gkey into
a set of communities C = {C1, C2, ..., C|C|}, where each community Ci contains the
keywords for a certain concept. By using overlapping community detection, each
keyword may appear in multiple concepts. As the number of concepts in different
documents varies a lot, we utilize the betweenness centrality score based algorithm
[Sayyadi and Raschid, 2013] to detect keyword communities in KeyGraph.

Note that this step is optional, i.e., we can also use each keyword directly as a
concept. The benefit brought by concept detection is that it reduces the number of
vertices in a graph and speeds up matching, as will be shown in Sec. 4.4.

Sentence Attachment. After the concepts are discovered, the next step is to
group sentences by concepts. We calculate the cosine similarity between each sentence
and each concept, where sentences and concepts are represented by TF-IDF vectors.
We assign each sentence to the concept which is the most similar to the sentence.
Sentences that do not match any concepts in the document will be attached to a
dummy vertex that does not contain any keywords.

Edge Construction. To construct edges that reveal the correlations between
different concepts, for each vertex, we represent its sentence set as a concatenation of
the sentences attached to it, and calculate the edge weight between any two vertices
as the TF-IDF similarity between their sentence sets. Although edge weights may
be decided in other ways, our experience shows that constructing edges by TF-IDF
similarity generates a CIG that is more densely connected.

When performing article pair matching, the above steps will be applied to a pair
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of documents DA and DB, as is shown in Fig. 4.2 (a). The only additional step is that
we align the CIGs of the two articles by the concept vertices, and for each common
concept vertex, merge the sentence sets from DA and DB for local comparison.

4.3 Article Pair Matching through Graph Convolu-
tions

Given the merged CIG GAB of two documents DA and DB described in Sec. 4.2, we
match a pair of articles in a “divide-and-conquer” manner by matching the sentence
sets from DA and DB associated with each concept and aggregating local matching
results into a final result through multiple graph convolutional layers. Our approach
overcomes the limitation of previous text matching algorithms, by extending text
representation from a sequential (or grid) point of view to a graphical view, and can
therefore better capture the rich semantic interactions in longer text.

Fig. 4.2 illustrates the overall architecture of our proposed method, which con-
sists of four steps: a) representing a pair of documents by a single merged CIG,
b) learning multi-viewed matching features for each concept vertex, c) structurally
transforming local matching features by graph convolutional layers, and d) aggre-
gating local matching features to get the final result. Steps (b)-(d) can be trained
end-to-end.

Encoding Local Matching Vectors. Given the merged CIG GAB, our first
step is to learn an appropriate matching vector of a fixed length for each individual
concept v ∈ GAB to express the semantic similarity between SA(v) and SB(v), the
sentence sets of concept v from documents DA and DB, respectively. This way, the
matching of two documents is converted to match the pair of sentence sets on each
vertex of GAB. Specifically, we generate local matching vectors based on both neural
networks and term-based techniques.

Siamese Encoder : we apply a Siamese neural network encoder [Neculoiu et al.,
2016] onto each vertex v ∈ GAB to convert the word embeddings [Mikolov et al., 2013]
of {SA(v),SB(v)} into a fixed-sized hidden feature vector mAB(v), which we call the
match vector.

We use a Siamese structure to take SA(v) and SB(v)} (which are two sequences
of word embeddings) as inputs, and encode them into two context vectors through
the context layers that share the same weights, as shown in Fig. 4.2 (b). The context
layer usually contains one or multiple bi-directional LSTM (BiLSTM) or CNN layers
with max pooling layers, aiming to capture the contextual information in SA(v) and
SB(v)}.
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Let cA(v) and cB(v) denote the context vectors obtained for SA(v) and SB(v),
respectively. Then, the matching vector mAB(v) for vertex v is given by the subse-
quent aggregation layer, which concatenates the element-wise absolute difference and
the element-wise multiplication of the two context vectors, i.e.,

mAB(v) = (|cA(v)− cB(v)|, cA(v) ◦ cB(v)), (4.1)

where ◦ denotes Hadamard product.
Term-based Similarities : we also generate another matching vector for each v

by directly calculating term-based similarities between SA(v) and SB(v), based on 5
metrics: the TF-IDF cosine similarity, TF cosine similarity, BM25 cosine similarity,
Jaccard similarity of 1-gram, and Ochiai similarity measure. These similarity scores
are concatenated into another matching vector m′AB(v) for v, as shown in Fig. 4.2
(b).

Matching Aggregation via GCN The local matching vectors must be aggre-
gated into a final matching score for the pair of articles. We propose to utilize the
ability of the Graph Convolutional Network (GCN) filters [Kipf and Welling, 2016]
to capture the patterns exhibited in the CIG GAB at multiple scales. In general,
the input to the GCN is a graph G = (V , E) with N vertices vi ∈ V , and edges
eij = (vi, vj) ∈ E with weights wij. The input also contains a vertex feature matrix
denoted by X = {xi}Ni=1, where xi is the feature vector of vertex vi. For a pair of
documents DA and DB, we input their CIG GAB (with N vertices) with a (concate-
nated) matching vector on each vertex into the GCN, such that the feature vector of
vertex vi in GCN is given by

xi = (mAB(vi),m
′
AB(vi)).

Now let us briefly describe the GCN layers [Kipf and Welling, 2016] used in Fig. 4.2
(c). Denote the weighted adjacency matrix of the graph as A ∈ RN×N where Aij = wij

(in CIG, it is the TF-IDF similarity between vertex i and j). Let D be a diagonal
matrix such that Dii =

∑
j Aij. The input layer to the GCN is H(0) = X, which

contains the original vertex features. Let H(l) ∈ RN×Ml denote the matrix of hidden
representations of the vertices in the lth layer. Then each GCN layer applies the
following graph convolutional filter onto the previous hidden representations:

H(l+1) = σ(D̃−
1
2 ÃD̃−

1
2H(l)W (l)), (4.2)

where Ã = A + IN , IN is the identity matrix, and D̃ is a diagonal matrix such that
D̃ii =

∑
j Ãij. They are the adjacency matrix and the degree matrix of graph G,

respectively.
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W (l) is the trainable weight matrix in the lth layer. σ(·) denotes an activation
function such as sigmoid or ReLU function. Such a graph convolutional rule is moti-
vated by the first-order approximation of localized spectral filters on graphs [Kipf and
Welling, 2016] and when applied recursively, can extract interaction patterns among
vertices.

Finally, the hidden representations in the final GCN layer is merged into a single
vector (called a graphically merged matching vector) of a fixed length, denoted by
mAB, by taking the mean of the hidden vectors of all vertices in the last layer. The
final matching score will be computed based onmAB, through a classification network,
e.g., a multi-layered perceptron (MLP).

In addition to the graphically merged matching vector mAB described above, we
may also append other global matching features to mAB to expand the feature set.
These additional global features can be calculated, e.g., by encoding two documents
directly with state-of-the-art language models like BERT [Devlin et al., 2018] or by
directly computing their term-based similarities. However, we show in Sec. 4.4 that
such global features can hardly bring any more benefit to our scheme, as the graphi-
cally merged matching vectors are already sufficiently expressive in our problem.

4.4 Evaluation

Tasks. We evaluate the proposed approach on the task of identifying whether a
pair of news articles report the same breaking news (or event) and whether
they belong to the same series of news story , which is motivated by a real-world
news app. In fact, the proposed article pair matching schemes have been deployed in
the anonymous news app for news clustering, with more than 110 millions of daily
active users.

Note that traditional methods to document clustering include unsupervised text
clustering and text classification into predefined topics. However, a number of break-
ing news articles emerge on the Internet everyday with their topics/themes unknown,
so it is not possible to predefine their topics. Thus, supervised text classification can-
not be used here. It is even impossible to determine how many news clusters there
exist. Therefore, the task of classifying whether two news articles are reporting the
same breaking news event or belong to the same story is critical to news apps and
search engines for clustering, redundancy removal and topic summarization.

In our task, an “event” refers to a piece of breaking news on which multiple media
sources may publish articles with different narratives and wording. Furthermore, a
“story” consists of a series of logically related breaking news events. It is worth noting

64



2016-10-28

!"#$%&'()%(

*+),-$.//%0

,12&'(,3)(,/1

2016-10-29

!"#$&45-),1

6/%$%&'()%(,13

*+),-$.//%0

,12&'(,3)(,/1

2016-10-30

7,-)%8$9:&'(,/1'

!"#;'$+/(,2)(,/1

6/%$%&'()%(,13

,12&'(,3)(,/1

2016-11-06

!"#$.,%&<(/%=

>/$<?)%3&'

)6(&%$1&@

%&2,&@$/6

7,-)%8$&+),-'

Hilary’s “mail door’’

2016-09-11

7,-)%8$)((&1.'

(?&$ABB

C11,2&%')%8

)1.$-&)2&$&)%-8

2016-09-12

D/<(/%$')8

7,-)%8$?)'

51&:+/1,)

2016-09-14

7,-)%8$')8

'?&$@)'

?&)-(?8

2016-09-16

7,-)%8$,'

%&</2&%&.

Hilary’s health condition

2016-10-07

E)'?,13(/1$F/'(

%&2&)-'$G%:+5;'

'5&&<?$)H/:(

</1(&+5(

6/%$@/+&1

2016-10-08

G%:+5$5:H-,<-8

)5/-/3,I&'$6/%$?,'

</1(%/2&%',)-$'5&&<?

)H/:($@/+&1

2016-11-02

7,-)%8$</1.&+1'

G%:+5$6/%

H:--8,13$@/+&1

Trump's speech about contempt for woman

2016-09-26

!,%'($&-&<(,/1

(&-&2,',/1

.&H)(&

2016-10-10

J&</1.$&-&<(,/1

(&-&2,',/1

.&H)(&

2016-10-19

G?,%.$&-&<(,/1

(&-&2,',/1

.&H)(&

Election television debates

2016-07-19

Trump become

presidential

candidate

2016-07-26

Hilary become

presidential

candidate

Presidential candidates

2016-09-28

7,-)%8$)<<:'&'

G%:+5$/6

%&6:',13$(/

.,'<-/'&$()4

,16/%+)(,/1

2016-10-02

>&@$K/%L$G,+&'

&45/':%&'$G%:+5

()4$)2/,.)1<&$$

Trump avoid tax

2016-11-09

D/1)-.$G%:+5

,'$&-&<(&.

5%&',.&1(

2016-11-08

C+&%,<)$2/(&'

(/$&-&<($1&@

5%&',.&1(

Voting for new president

2016 U.S. presidential election

Figure 4.3: The events contained in the story “2016 U.S. presidential election”.

that our objective is fundamentally different from the traditional event coreference
literature, e.g., [Bejan and Harabagiu, 2010; Lee et al., 2013; Lee et al., 2012] or
SemEval-2018 Task 5 (Counting Events) [Postma et al., 2018], where the task is to
detect all the events (or in fact, “actions” like shooting, car crashes) a document
mentions.

In contrast, although a news article may mention multiple entities and even pre-
vious physical events, the “event” in our dataset always refers to the breaking news
that the article intends to report or the incident that triggers the media’s coverage.
And our task is to identify whether two articles intend to report the same break-
ing news. For example, two articles “University of California system libraries break
off negotiations with Elsevier, will no longer order their journals” and “University of
California Boycotts Publishing Giant Elsevier” from two different sources are appar-
ently intended to report the same breaking news event of UC dropping subscription
to Elsevier, although other actions may be peripherally mentioned in these articles,
e.g., “eight months of unsuccessful negotiations.” In addition, we do not attempt
to perform reading comprehension question answering tasks either, e.g., finding out
how many killing incidents or car crashes there are in a year (SemEval-2018 Task 5
[Postma et al., 2018]).
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Dataset Pos Samples Neg Samples Train Dev Test

CNSE 12865 16198 17438 5813 5812
CNSS 16887 16616 20102 6701 6700

Table 4.1: Description of evaluation datasets.

As a typical example, Fig. 4.3 shows the events contained in the story 2016 U.S.
presidential election, where each tag shows a breaking news event possibly reported by
multiple articles with different narratives (articles not shown here). We group highly
coherent events together. For example, there are multiple events about Election
television debates. One of our objectives is to identify whether two news articles
report the same event, e.g., a yes when they are both reporting Trump and Hilary’s
first television debate, though with different wording, or a no, when one article is
reporting Trump and Hilary’s second television debate while the other is talking about
Donald Trump is elected president.

Datasets. To the best of our knowledge, there is no publicly available dataset
for long document matching tasks. We created two datasets: the Chinese News Same
Event dataset (CNSE) and Chinese News Same Story dataset (CNSS), which are
labeled by professional editors. They contain long Chinese news articles collected from
major Internet news providers in China, covering diverse topics in the open domain.
The CNSE dataset contains 29, 063 pairs of news articles with labels representing
whether a pair of news articles are reporting about the same breaking news event.
Similarly, the CNSS dataset contains 33, 503 pairs of articles with labels representing
whether two documents fall into the same news story. The average number of words
for all documents in the datasets is 734 and the maximum value is 21791.

In our datasets, we only labeled the major event (or story) that a news article
is reporting, since in the real world, each breaking news article on the Internet must
be intended to report some specific breaking news that has just happened to attract
clicks and views. Our objective is to determine whether two news articles intend to
report the same breaking news.

Note that the negative samples in the two datasets are not randomly generated:
we select document pairs that contain similar keywords, and exclude samples with
TF-IDF similarity below a certain threshold. The datasets have been made publicly
available for research purpose.

Table 4.1 shows a detailed breakdown of the two datasets. For both datasets, we
use 60% of all the samples as the training set, 20% as the development (validation)
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Baselines CNSE CNSS Our models CNSE CNSS
Acc F1 Acc F1 Acc F1 Acc F1

I. ARC-I 53.84 48.68 50.10 66.58 XI. CIG-Siam 74.47 73.03 75.32 78.58
II. ARC-II 54.37 36.77 52.00 53.83 XII. CIG-Siam-GCN 74.58 73.69 78.91 80.72
III. DUET 55.63 51.94 52.33 60.67 XIII. CIGcd-Siam-GCN 73.25 73.10 76.23 76.94
IV. DSSM 58.08 64.68 61.09 70.58 XIV. CIG-Sim 72.58 71.91 75.16 77.27
V. C-DSSM 60.17 48.57 52.96 56.75 XV. CIG-Sim-GCN 83.35 80.96 87.12 87.57
VI. MatchPyramid 66.36 54.01 62.52 64.56 XVI. CIGcd-Sim-GCN 81.33 78.88 86.67 87.00
VII. BM25 69.63 66.60 67.77 70.40 XVII. CIG-Sim&Siam-GCN 84.64 82.75 89.77 90.07
VIII. LDA 63.81 62.44 62.98 69.11 XVIII. CIG-Sim&Siam-GCN-Simg 84.21 82.46 90.03 90.29
IX. SimNet 71.05 69.26 70.78 74.50 XIX. CIG-Sim&Siam-GCN-BERTg 84.68 82.60 89.56 89.97
X. BERT fine-tuning 81.30 79.20 86.64 87.08 XX. CIG-Sim&Siam-GCN-Simg&BERTg 84.61 82.59 89.47 89.71

Table 4.2: Accuracy and F1-score results of different algorithms on CNSE and CNSS
datasets.

set, and the remaining 20% as the test set. We carefully ensure that different splits
do not contain any overlaps to avoid data leakage. The metrics used for performance
evaluation are the accuracy and F1 scores of binary classification results. For each
evaluated method, we perform training for 10 epochs and then choose the epoch with
the best validation performance to be evaluated on the test set.

Baselines. We test the following baselines:

• Matching by representation-focused or interaction-focused deep neural network
models : DSSM [Huang et al., 2013], C-DSSM [Shen et al., 2014], DUET [Mitra
et al., 2017], MatchPyramid [Pang et al., 2016], ARC-I [Hu et al., 2014], ARC-II
[Hu et al., 2014]. We use the implementations from MatchZoo [Fan et al., 2017]
for the evaluation of these models.

• Matching by term-based similarities : BM25 [Robertson et al., 2009], LDA [Blei
et al., 2003] and SimNet (which is extracting the five text-pair similarities men-
tioned in Sec. 4.3 and classifying by a multi-layer feedforward neural network).

• Matching by a large-scale pre-training language model : BERT [Devlin et al.,
2018].

Note that we focus on the capability of long text matching. Therefore, we do not
use any short text information, such as titles, in our approach or in any baselines.
In fact, the “relationship" between two documents is not limited to "whether the
same event or not". Our algorithm is able to identify a general relationship between
documents, e.g., whether two episodes are from the same season of a TV series. The
definition of the relationship (e.g., same event/story, same chapter of a book) is solely
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defined and supervised by the labeled training data. For these tasks, the availability
of other information such as titles can not be assumed.

As shown in Table 4.2, we evaluate different variants of our own model to show the
effect of different sub-modules. In model names, “CIG” means that in CIG, we directly
use keywords as concepts without community detection, whereas “CIGcd” means that
each concept vertex in the CIG contains a set of keywords grouped via community
detection. To generate the matching vector on each vertex, “Siam” indicates the use
of Siamese encoder, while “Sim” indicates the use of term-based similarity encoder,
as shown in Fig. 4.2. “GCN” means that we convolve the local matching vectors
on vertices through GCN layers. Finally, “BERTg” or “Simg” indicates the use of
additional global features given by BERT or the five term-based similarity metrics
mentioned in Sec. 4.3, appended to the graphically merged matching vector mAB, for
final classification.

Implementation Details. We use Stanford CoreNLP [Manning et al., 2014] for
word segmentation (on Chinese text) and named entity recognition. For Concept
Interaction Graph construction with community detection, we set the minimum com-
munity size (number of keywords contained in a concept vertex) to be 2, and the
maximum size to be 6.

Our neural network model consists of word embedding layer, Siamese encoding
layer, Graph transformation layers, and classification layer. For embedding, we load
the pre-trained word vectors and fix it during training. The embeddings of out of
vocabulary words are set to be zero vectors. For the Siamese encoding network, we use
1-D convolution with number of filters 32, followed by an ReLU layer and Max Pooling
layer. For graph transformation, we utilize 2 layers of GCN [Kipf and Welling, 2016]
for experiments on the CNSS dataset, and 3 layers of GCN for experiments on the
CNSE dataset. When the vertex encoder is the five-dimensional features, we set the
output size of GCN layers to be 16. When the vertex encoder is the Siamese network
encoder, we set the output size of GCN layers to be 128 except the last layer. For the
last GCN layer, the output size is always set to be 16. For the classification module,
it consists of a linear layer with output size 16, an ReLU layer, a second linear layer,
and finally a Sigmoid layer. Note that this classification module is also used for the
baseline method SimNet.

As we mentioned in Sec. 4.1, our code and datasets have been open sourced.
We implement our model using PyTorch 1.0 [Paszke et al., 2017]. The experiments
without BERT are carried out on an MacBook Pro with a 2 GHz Intel Core i7
processor and 8 GB memory. We use L2 weight decay on all the trainable variables,
with parameter λ = 3 × 10−7. The dropout rate between every two layers is 0.1.
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We apply gradient clipping with maximum gradient norm 5.0. We use the ADAM
optimizer [Kingma and Ba, 2014] with β1 = 0.8, β2 = 0.999, ε = 10−8. We use a
learning rate warm-up scheme with an inverse exponential increase from 0.0 to 0.001
in the first 1000 steps, and then maintain a constant learning rate for the remainder
of training. For all the experiments, we set the maximum number of training epochs
to be 10.

4.4.1 Results and Analysis

Table 4.2 summarizes the performance of all the compared methods on both datasets.
Our model achieves the best performance on both two datasets and significantly
outperforms all other methods. This can be attributed to two reasons. First, as
the input of article pairs are re-organized into Concept Interaction Graphs, the two
documents are aligned along the corresponding semantic units for easier concept-wise
comparison. Second, our model encodes local comparisons around different semantic
units into local matching vectors, and aggregate them via graph convolutions, taking
semantic topologies into consideration. Therefore, it solves the problem of matching
documents via divide-and-conquer, which is suitable for handling long text.

Impact of Graphical Decomposition. Comparing method XI with methods
I-VI in Table 4.2, they all use the same word vectors and use neural networks for text
encoding. The key difference is that our method XI compares a pair of articles over a
CIG in per-vertex decomposed fashion. We can see that the performance of method
XI is significantly better than methods I-VI. Similarly, comparing our method XIV
with methods VII-IX, they all use the same term-based similarities. However, our
method achieves significantly better performance by using graphical decomposition.
Therefore, we conclude that graphical decomposition can greatly improve long text
matching performance.

Note that the deep text matching models I-VI lead to bad performance, because
they were invented mainly for sequence matching and can hardly capture meaningful
semantic interactions in article pairs. When the text is long, it is hard to get an ap-
propriate context vector representation for matching. For interaction-focused neural
network models, most of the interactions between words in two long articles will be
meaningless.

Impact of Graph Convolutions. Compare methods XII and XI, and compare
methods XV and XIV. We can see that incorporating GCN layers has significantly
improved the performance on both datasets. Each GCN layer updates the hidden
vector of each vertex by integrating the vectors from its neighboring vertices. Thus,
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the GCN layers learn to graphically aggregate local matching features into a final
result.

Impact of Community Detection. By comparing methods XIII and XII, and
comparing methods XVI and XV, we observe that using community detection, such
that each concept is a set of correlated keywords instead of a single keyword, leads
to slightly worse performance. This is reasonable, as using each keyword directly
as a concept vertex provides more anchor points for article comparison . However,
community detection can group highly coherent keywords together and reduces the
average size of CIGs from 30 to 13 vertices. This helps to reduce the total training and
testing time of our models by as much as 55%. Therefore, one may choose whether
to apply community detection to trade accuracy off for speedups.

Impact of Multi-viewed Matching. Comparing methods XVII and XV, we
can see that the concatenation of different graphical matching vectors (both term-
based and Siamese encoded features) can further improve performance. This demon-
strates the advantage of combining multi-viewed matching vectors.

Impact of Added Global Features. Comparing methods XVIII, XIX, XX
with method XVII, we can see that adding more global features, such as global simi-
larities (Simg) and/or global BERT encodings (BERTg) of the article pair, can hardly
improve performance any further. This shows that graphical decomposition and con-
volutions are the main factors that contribute to the performance improvement. Since
they already learn to aggregate local comparisons into a global semantic relationship,
additionally engineered global features cannot help.

Model Size and Parameter Sensitivity: Our biggest model without BERT
is XVIII, which contains only ∼34K parameters. In comparison, BERT contains
110M-340M parameters. However, our model significantly outperforms BERT.

We tested the sensitivity of different parameters in our model. We found that 2
to 3 layers of GCN layers gives the best performance. Further introducing more GCN
layers does not improve the performance, while the performance is much worse with
zero or only one GCN layer. Furthermore, in GCN hidden representations of a size
between 16 and 128 yield good performance. Further increasing this size does not
show obvious improvement.

For the optional community detection step in CIG construction, we need to choose
the minimum size and the maximum size of communities. We found that the final
performance remains similar if we vary the minimum size from 2∼3 and the maximum
size from 6∼10. This indicates that our model is robust and insensitive to these
parameters.

Time complexity. For keywords of news articles, in real-world industry applica-
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tions, they are usually extracted in advance by highly efficient off-the-shelf tools and
pre-defined vocabulary. For CIG construction, let Ns be the number of sentences in
two documents, Nw be the number of unique words in documents, and Nk represents
the number of unique keywords in a document. Building keyword graph requires
O(NsNk+N

2
w) complexity [Sayyadi and Raschid, 2013], and betweenness-based com-

munity detection requires O(N3
k ). The complexity of sentence assignment and weight

calculation is O(NsNk +N2
k ). For graph classification, our model size is not big and

can process document pairs efficiently.

4.5 Conclusion

We propose the Concept Interaction Graph to organize documents into a graph of
concepts, and introduce a divide-and-conquer approach to matching a pair of articles
based on graphical decomposition and convolutional aggregation. We created two new
datasets for long document matching with the help of professional editors, consisting
of about 60K pairs of news articles, on which we have performed extensive evaluations.
In the experiments, our proposed approaches significantly outperformed an extensive
range of state-of-the-art schemes, including both term-based and deep-model-based
text matching algorithms. Results suggest that the proposed graphical decomposition
and the structural transformation by GCN layers are critical to the performance
improvement in matching article pairs.
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Chapter 5

Matching Natural Language
Sentences with Hierarchical Sentence
Factorization

In the previous chapter, our concept interaction graph turns the problem of long doc-
ument matching into short sentence matching over different vertices. Such a decom-
position helps us to overcome the difficulty brought by the length of documents. How-
ever, how to estimate the semantic relatedness between short sentence pairs remains
a challenging problem. Semantic matching of natural language sentences or identify-
ing the relationship between two sentences is also a core research problem underlying
many natural language tasks. Depending on whether training data is available, prior
research has proposed both unsupervised distance-based schemes and supervised deep
learning schemes for sentence matching. However, previous approaches either omit
or fail to fully utilize the ordered, hierarchical, and flexible structures of language
objects, as well as the interactions between them.

In this chapter, we propose Hierarchical Sentence Factorization—a technique to
factorize a sentence into a hierarchical representation, with the components at each
different scale reordered into a “predicate-argument” form. The proposed sentence fac-
torization technique leads to the invention of: 1) a new unsupervised distance metric
which calculates the semantic distance between a pair of text snippets by solving a
penalized optimal transport problem while preserving the logical relationship of words
in the reordered sentences, and 2) new multi-scale deep learning models for supervised
semantic training, based on factorized sentence hierarchies. We apply our techniques
to text-pair similarity estimation and text-pair relationship classification tasks, based
on multiple datasets such as STSbenchmark, the Microsoft Research paraphrase iden-
tification (MSRP) dataset, the SICK dataset, etc. Extensive experiments show that
the proposed hierarchical sentence factorization can be used to significantly improve
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the performance of existing unsupervised distance-based metrics as well as multiple
supervised deep learning models based on the convolutional neural network (CNN)
and long short-term memory (LSTM).

5.1 Introduction

Semantic matching, which aims to model the underlying semantic similarity or dis-
similarity among different textual elements such as sentences and documents, has
been playing a central role in many Natural Language Processing (NLP) applica-
tions, including information extraction [Grishman, 1997], top-k re-ranking in machine
translation [Brown et al., 1993], question-answering [Yu et al., 2014], automatic text
summarization [Ponzanelli et al., 2015]. However, semantic matching based on ei-
ther supervised or unsupervised learning remains a hard problem. Natural language
demonstrates complicated hierarchical structures, where different words can be orga-
nized in different orders to express the same idea. As a result, appropriate semantic
representation of text plays a critical role in matching natural language sentences.

Traditional approaches represent text objects as bag-of-words (BoW), term fre-
quency inverse document frequency (TF-IDF) [Wu et al., 2008] vectors, or their en-
hanced variants [Paltoglou and Thelwall, 2010; Robertson and Walker, 1994]. How-
ever, such representations can not accurately capture the similarity between individ-
ual words, and do not take the semantic structure of language into consideration.
Alternatively, word embedding models, such as word2vec [Mikolov et al., 2013] and
Glove [Pennington et al., 2014], learn a distributional semantic representation of each
word and have been widely used.

Based on the word-vector representation, a number of unsupervised and super-
vised matching schemes have been recently proposed. As an unsupervised learning
approach, the Word Mover’s Distance (WMD) metric [Kusner et al., 2015] measures
the dissimilarity between two sentences (or documents) as the minimum distance to
transport the embedded words of one sentence to those of another sentence. However,
the sequential and structural nature of sentences is omitted in WMD. For example,
two sentences containing exactly the same words in different orders can express to-
tally different meanings. On the other hand, many supervised learning schemes based
on deep neural networks have also been proposed for sentence matching [Mueller
and Thyagarajan, 2016; Severyn and Moschitti, 2015; Wang et al., 2017b; Pang et
al., 2016]. A common characteristic of many of these neural network models is that
they adopt a Siamese architecture, taking the word embedding sequences of a pair of
sentences (or documents) as the input, transforming them into intermediate contex-
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tual representations via either convolutional or recurrent neural networks, and per-
forming scoring over the contextual representations to yield final matching results.
However, these methods rely purely on neural networks to learn the complicated rela-
tionships among sentences, and many obvious compositional and hierarchical features
are often overlooked or not explicitly utilized.

In this chapter, however, we argue that a successful semantic matching algorithm
needs to best characterize the sequential, hierarchical and flexible structure of natu-
ral language sentences, as well as the rich interaction patterns among semantic units.
We present a technique named Hierarchical Sentence Factorization (or Sentence Fac-
torization in short), which is able to represent a sentence in a hierarchical semantic
tree, with each node (semantic unit) at different depths of the tree reorganized into
a normalized “predicate-argument” form. Such normalized sentence representation
enables us to propose new methods to both improve unsupervised semantic matching
by taking the structural and sequential differences between two text entities into ac-
count, and enhance a range of supervised semantic matching schemes, by overcoming
the limitation of the representation capability of convolutional or recurrent neural
networks, especially when labelled training data is limited. Specifically, we make the
following contributions:

First, the proposed Sentence Factorization scheme factorizes a sentence recur-
sively into a hierarchical tree of semantic units, where each unit is a subset of words
from the original sentence. Words are then reordered into a “predicate-argument”
structure. Such form of sentence representation offers two benefits: i) the flexible
syntax structures of the same sentence, for example, active and passive sentences,
can be normalized into a unified representation; ii) the semantic units in a pair of
sentences can be aligned according to their depth and order in the factorization tree.

Second, for unsupervised text matching, we combine the factorized and reordered
representation of sentences and the Order-preserving Wasserstein Distance [Su and
Hua, 2017] (which was originally proposed to match hand-written characters in com-
puter vision) to propose a new semantic distance metric between text objects, which
we call Ordered Word Mover’s Distance. Compared with the recently proposed Word
Mover’s Distance [Kusner et al., 2015], our new metric achieves significant improve-
ment by taking the sequential structures of sentences into account. For example,
without considering the order of words, the Word Mover’s Distance between the sen-
tences “Tom is chasing Jerry” and “Jerry is chasing Tom” is zero. In contrast, our
new metric is able to penalize such order mismatch between words, and identify the
difference between the two sentences.

Third, for supervised semantic matching, we extend the existing Siamese network
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architectures (both for CNN and LSTM) to multi-scaled models, where each scale
adopts an individual Siamese network, taking as input the vector representations of
the two sentences at the corresponding depth in the factorization trees, ranging from
the coarse-grained scale to fine-grained scales. When increasing the number of layers
in the corresponding neural network can hardly improve performance, hierarchical
sentence factorization provides a novel means to extend the original deep networks to
a “richer” model that matches a pair of sentences through a multi-scaled semantic unit
matching process. Our proposed multi-scaled deep neural networks can effectively
improve existing deep models by measuring the similarity between a pair of sentences
at different semantic granularities. For instance, Siamese networks based on CNN
and BiLSTM [Mueller and Thyagarajan, 2016; Shao, 2017] that originally only take
the word sequences as the inputs.

We extensively evaluate the performance of our proposed approaches on the task of
semantic textual similarity estimation and paraphrase identification, based on multi-
ple datasets, including the STSbenchmark dataset, the Microsoft Research Paraphrase
identification (MSRP) dataset, the SICK dataset and the MSRvid dataset. Exper-
imental results have shown that our proposed algorithms and models can achieve
significant improvement compared with multiple existing unsupervised text distance
metrics, such as the Word Mover’s Distance [Kusner et al., 2015], as well as super-
vised deep neural network models, including Siamese Neural Network models based
on CNN and BiLSTM [Mueller and Thyagarajan, 2016; Shao, 2017].

The remainder of this chapter is organized as follows. Sec. 5.2 presents our hierar-
chical sentence factorization algorithm. Sec. 5.3 presents our Ordered Word Mover’s
Distance metric based on sentence structural reordering. In Sec. 5.4, we propose our
multi-scaled deep neural network architectures based on hierarchical sentence repre-
sentation. In Sec. 5.5, we conduct extensive evaluations of the proposed methods
based on multiple datasets on multiple tasks. The chapter is concluded in Sec. 5.6.

5.2 Hierarchical Sentence Factorization and Reorder-
ing

In this section, we present our Hierarchical Sentence Factorization techniques to
transform a sentence into a hierarchical tree structure, which also naturally pro-
duces a reordering of the sentence at the root node. This multi-scaled representation
form proves to be effective at improving both unsupervised and supervised semantic
matching, which will be discussed in Sec. 5.3 and Sec. 5.4, respectively.

We first describe our desired factorization tree structure before presenting the

75



Sentence A: The little Jerry is being chased by Tom in the big yard.

Sentence B: The blue cat is catching the brown mouse in the forecourt.
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Figure 5.1: An example of the sentence factorization process. Here we show: A. The
original sentence pair; B. The procedures of creating sentence factorization trees; C.
The predicate-argument form of original sentence pair; D. The alignment of semantic
units with the reordered form.

steps to obtain it. Given a natural language sentence S, our objective is to transform
it into a semantic factorization tree denoted by T fS . Each node in T fS is called a
semantic unit, which contains one or a few tokens (tokenized words) from the original
sentence S, as illustrated in Fig. 5.1 (a4), (b4). The tokens in every semantic unit in
T fS is re-organized into a “predicate-argument” form. For example, a semantic unit
for “Tom catches Jerry” in the “predicate-argument” form will be “catch Tom Jerry”.

Our proposed factorization tree recursively factorizes a sentence into a hierarchy
of semantic units at different granularities to represent the semantic structure of that
sentence. The root node in a factorization tree contains the entire sentence reordered
in the predicate-argument form, thus providing a “normalized” representation for
sentences expressed in different ways (e.g., passive vs. active tenses). Moreover,
each semantic unit at depth d will be further split into several child nodes at depth
d+1, which are smaller semantic sub-units. Each sub-unit also follows the predicate-
argument form.

For example, in Fig. 5.1, we convert sentence A into a hierarchical factorization
tree (a4) using a series of operations. The root node of the tree contains the semantic
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(o  /  observe-01

    :ARG0  (i  /  i)

    :ARG1  (m  /  move-01

                                    :ARG0  (a  /  army)

                                    :manner  (q  /  quick))

I observed that the army moved quickly.

0.0 0 0.1.0 0.1 0.1.1

Figure 5.2: An example of a sentence and its Abstract Meaning Representation
(AMR), as well as the alignment between the words in the sentence and the nodes in
AMR.

unit “chase Tom Jerry little yard big”, which is the reordered representation of the
original sentence “The little Jerry is being chased by Tom in the big yard” in a
semantically normalized form. Moreover, the semantic unit at depth 0 is factorized
into four sub-units at depth 1: “chase”, “Tom”, “Jerry little” and “yard big”, each in
the “predicate-argument” form. And at depth 2, the semantic sub-unit “Jerry little”
is further factorized into two sub-units “Jerry” and “little”. Finally, a semantic unit
that contains only one token (e.g., “chase” and “Tom” at depth 1) can not be further
decomposed. Therefore, it only has one child node at the next depth through self-
duplication.

We can observe that each depth of the tree contains all the tokens (except mean-
ingless ones) in the original sentence, but re-organizes these tokens into semantic units
of different granularities.

5.2.1 Hierarchical Sentence Factorization

We now describe our detailed procedure to transform a natural language sentence to
the desired factorization tree mentioned above. Our Hierarchical Sentence Factoriza-
tion algorithm mainly consists of five steps: 1) AMR parsing and alignment, 2) AMR
purification, 3) index mapping, 4) node completion, and 5) node traversal. The latter
four steps are illustrated in the example in Fig. 5.1 from left to right.

AMR parsing and alignment. Given an input sentence, the first step of our
hierarchical sentence factorization algorithm is to acquire its Abstract Meaning Rep-
resentation (AMR), as well as perform AMR-Sentence alignment to align the concepts
in AMR with the tokens in the original sentence.

Semantic parsing [Baker et al., 1998; Kingsbury and Palmer, 2002; Berant and
Liang, 2014; Banarescu et al., 2013; Damonte et al., 2016] can be performed to gener-
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ate the formal semantic representation of a sentence. Abstract Meaning Representa-
tion (AMR) [Banarescu et al., 2013] is a semantic parsing language that represents a
sentence by a directed acyclic graph (DAG). Each AMR graph can be converted into
an AMR tree by duplicating the nodes that have more than one parent.

Fig. 5.2 shows the AMR of the sentence “I observed that the army moved quickly.”
In an AMR graph, leaves are labeled with concepts, which represent either English
words (e.g., “army”), PropBank framesets (e.g., “observe-01”) [Kingsbury and Palmer,
2002], or special keywords (e.g., dates, quantities, world regions, etc.). For example,
“(a / army)” refers to an instance of the concept army, where “a” is the variable name
of army (each entity in AMR has a variable name). “ARG0”, “ARG1”, “:manner” are
different kinds of relations defined in AMR. Relations are used to link entities. For
example, “:manner” links “m / move-01” and “q / quick”, which means “move in a
quick manner”. Similarly, “:ARG0” links “m / move-01” and “a / army”, which means
that “army” is the first argument of “move”.

Each leaf in AMR is a concept rather than the original token in a sentence. The
alignment between a sentence and its AMR graph is not given in the AMR annotation.
Therefore, AMR alignment [Pourdamghani et al., 2014] needs to be performed to link
the leaf nodes in the AMR to tokens in the original sentence. Fig. 5.2 shows the
alignment between sentence tokens and AMR concepts by the alignment indexes.
The alignment index 0 is for the root node, 0.0 for the first child of the root node, 0.1
for the second child of the root node, and so forth. For example, in Fig. 5.2, the word
“army” in sentence is linked with index “0.1.0”, which represents the concept node “a
/ army” in its AMR. We refer interested readers to [Banarescu et al., 2013; Banarescu
et al., 2012] for more detailed description about AMR.

Various parsers have been proposed for AMR parsing and alignment [Flanigan et
al., 2014; Wang et al., 2015a]. We choose the JAMR parser [Flanigan et al., 2014] in
our algorithm implementation.

AMR purification. Unfortunately, AMR itself cannot be used to form the
desired factorization tree. First, it is likely that multiple concepts in AMR may
link to the same token in the sentence. For example, Fig. 5.3 shows AMR and its
alignment for the sentence “Three Asian kids are dancing.”. The token “Asian” is
linked to four concepts in the AMR graph: “ continent (0.0.0)”, “name (0.0.0.0)”,
“Asia (0.0.0.0.0)” and “wiki Asia (0.0.0.1)”. This is because AMR will match a named
entity with predefined concepts which it belongs to, such as “c / continent” for “Asia”,
and form a compound representation of the entity. For example, in Fig.5.3, the token
“Asian” is represented as a continent whose name is Asia, and its Wikipedia entity
name is also Asia.
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Figure 5.3: An example to show the operation of AMR purification.

In this case, we select the link index with the smallest tree depth as the token’s
position in the tree. Suppose Pw = {p1, p2, · · · , p|P|} denotes the set of alignment
indexes of token w. We can get the desired alignment index of w by calculating
the longest common prefix of all the index strings in Pw. After getting the alignment
index for each token, we then replace the concepts in AMR with the tokens in sentence
by the alignment indexes, and remove relation names (such as “:ARG0”) in AMR,
resulting into a compact tree representation of the original sentence, as shown in the
right part of Fig. 5.3.

Index mapping. A purified AMR tree for a sentence obtained in the previous
step is still not in our desired form. To transform it into a hierarchical sentence
factorization tree, we perform index mapping and calculate a new position (or index)
for each token in the desired factorization tree given its position (or index) in the
purified AMR tree. Fig. 5.1 illustrates the process of index mapping. After this step,
for example, the purified AMR trees in Fig. 5.1 (a1) and (b1) will be transformed into
(a2) and (b2).

Specifically, let T pS denote a purified AMR tree of sentence S, and T fS our desired
sentence factorization tree of S. Let IpN = i0.i1.i2. · · · .id denote the index of node N
in T pS , where d is the depth of N in T pS (where depth 0 represents the root of a tree).
Then, the index IfN of node N in our desired factorization tree T fS will be calculated
as follows:

IfN :=

{
0.0 if d = 0,

i0.(i1 + 1).(i2 + 1). · · · .(id + 1) otherwise.
(5.1)

After index mapping, we add an empty root node with index 0 in the new factorization
tree, and link all nodes at depth 1 to it as its child nodes. Note that the i0 in every
node index will always be 0.

Node completion. We then perform node completion to make sure each branch

79



of the factorization tree have the same maximum depth and to fill in the missing
nodes caused by index mapping, illustrated by Fig. 5.1 (a3) and (b3).

First, given a pre-defined maximum depth D, for each leaf node N l with depth
d < D in the current T fS after index mapping, we duplicate it for D − d times and
append all of them sequentially to N l, as shown in Fig. 5.1 (a3), (b3), such that
the depths of the ending nodes will always be D. For example, in Fig. 5.1 with
D = 2, the node “chase (0.0)” and “Tom (0.1)” will be extended to reach depth 2 via
self-duplication.

Second, after index mapping, the children of all the non-leaf nodes, except the
root node, will be indexed starting from 1 rather than 0. For example, in Fig. 5.1
(a2), the first child node of “Jerry (0.2)” is “little (0.2.1)”. In this case, we duplicate
“Jerry (0.2)” itself to “Jerry (0.2.0)” to fill in the missing first child of “Jerry (0.2)”.
Similar filling operations are done for other non-leaf nodes after index mapping as
well.

Node traversal to complete semantic units. Finally, we complete each se-
mantic unit in the formed factorization tree via node traversal, as shown in Fig. 5.1
(a4), (b4). For each non-leaf node N , we traverse its sub-tree by Depth First Search
(DFS). The original semantic unit in N will then be replaced by the concatenation
of the semantic units of all the nodes in the sub-tree rooted at N , following the order
of traversal.

For example, for sentence A in Fig. 5.1, after node traversal, the root node of the
factorization tree becomes “chase Tom Jerry little yard big” with index “0”. We can
see that the original sentence has been reordered into a predicate-argument structure.
A similar structure is generated for the other nodes at different depths. Until now,
each depth of the factorization tree T fS can express the full sentence S in terms of
semantic units at different granularity.

5.3 Ordered Word Mover’s Distance

The proposed hierarchical sentence factorization technique naturally reorders an input
sentence into a unified format at the root node. In this section, we introduce the
Ordered Word Mover’s Distance metric which measures the semantic distance between
two input sentences based on the unified representation of reordered sentences.

Assume X ∈ Rd×n is a word2vec embedding matrix for a vocabulary of n words,
and the i-th column xi ∈ Rd represents the d-dimensional embedding vector of i-th
word in vocabulary. Denote a sentence S = a1a2 · · · aK where ai represents the i-
th word (or the word embedding vector). The Word Mover’s Distance considers a
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Morty is laughing at Rick

Mortyis laughing atRick

Morty is laughing at Rick

WMD Matching

OWMD Matching

Figure 5.4: Compare the sentence matching results given by Word Mover’s Distance
and Ordered Word Mover’s Distance.

sentence S as its normalized bag-of-words (nBOW) vectors where the weights of the
words in S is α = {α1, α2, · · · , αK}. Specifically, if word ai appears ci times in S,
then αi = ci∑K

j=1 cj
.

The Word Mover’s Distance metric combines the normalized bag-of-words rep-
resentation of sentences with Wasserstein distance (also known as Earth Mover’s
Distance [Rubner et al., 2000]) to measure the semantic distance between two sen-
tences. Given a pair of sentences S1 = a1a2 · · · aM and S2 = b1b2 · · · bN , where
bj ∈ Rd is the embedding vector of the j-th word in S2. Let α = {α1, · · · , αM}
and β = {β1, · · · , βN} represents the normalized bag-of-words vectors of S1 and S2.
We can calculate a distance matrix D ∈ RM×N where each element Dij = ‖ai − bj‖2
measures the distance between word ai and bj (we use the same notation to denote
the word itself or its word vector representation). Let T ∈ RM×N be a non-negative
sparse transport matrix where Tij denotes the portion of word ai ∈ S1 that transports
to word bj ∈ S2. The Word Mover’s Distance between sentences S1 and S2 is given by∑

i,j TijDij. The transport matrix T is computed solving the following constrained
optimization problem:

minimize
T∈RM×N+

∑
i,j

TijDij

subject to
M∑
i=1

Tij = βj 1 ≤ j ≤ N,

N∑
j=1

Tij = αi 1 ≤ i ≤M.

(5.2)

Where the minimum “word travel cost” between two bags of words for a pair of
sentences is calculated to measure the their semantic distance.

However, the Word Mover’s Distance fails to consider a few aspects of natural
language. First, it omits the sequential structure. For example, in Fig. 5.4, the pair
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of sentences “Morty is laughing at Rick” and “Rick is laughing at Morty” only differ
in the order of words. The Word Mover’s Distance metric will then find an exact
match between the two sentences and estimate the semantic distance as zero, which
is obviously false. Second, the normalized bag-of-words representation of a sentence
can not distinguish duplicated words shown in multiple positions of a sentence.

To overcome the above challenges, we propose a new kind of semantic distance
metric named Ordered Word Mover’s Distance (OWMD). The Ordered Word Mover’s
Distance combines our sentence factorization technique with Order-preservingWasser-
stein Distance proposed in [Su and Hua, 2017]. It casts the calculation of semantic
distance between texts as an optimal transport problem while preserving the sequen-
tial structure of words in sentences. The Ordered Word Mover’s Distance differs from
the Word Mover’s Distance in multiple aspects.

First, rather than using normalized bag-of-words vector to represent a sentence,
we decompose and re-organize a sentence using the sentence factorization algorithm
described in Sec. 5.2. Given a sentence S, we represent it by the reordered word
sequence S ′ in the root node of its sentence factorization tree. Such representation
normalizes a sentence into “predicate-argument” structure to better handle syntactic
variations. For example, after performing sentence factorization, sentences “Tom is
chasing Jerry” and “Jerry is being chased by Tom” will both be normalized as “chase
Tom Jerry”.

Second, we calculate a new transport matrix T by solving the following optimiza-
tion problem

minimize
T∈RM×N+

∑
i,j

TijDij − λ1I(T ) + λ2KL(T ||P )

subject to
M∑
i=1

Tij = β′j 1 ≤ j ≤ N ′,

N∑
j=1

Tij = α′i 1 ≤ i ≤M ′,

(5.3)

where λ1 > 0 and λ2 > 0 are two hyper parameters. M ′ and N ′ denotes the number
of words in S ′1 and S ′2. α′i denotes the weight of the i-th word in normalized sentence
S ′1 and β′j denotes the weight of the j-th word in normalized sentence S ′2. Usually
we can set α′ = ( 1

M ′
, · · · , 1

M ′
) and β′ = ( 1

N ′
, · · · , 1

N ′
) without any prior knowledge of

word differences.
The first penalty term I(T ) is the inverse difference moment [Albregtsen et al.,

2008] of the transport matrix T that measures local homogeneity of T . It is defined
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as:

I(T ) =
M ′∑
i=1

N ′∑
j=1

Tij

( i
M ′
− j

N ′
)2 + 1

. (5.4)

I(T ) will have a relatively large value if the large values of T mainly appear near its
diagonal.

Another penalty term KL(T ||P ) denotes the KL-divergence between T and P . P
is a two-dimensional distribution used as the prior distribution for values in T . It is
defined as

Pij =
1

σ
√
2π
e−

l2(i,j)

2σ2 (5.5)

where l(i, j) is the distance from position (i, j) to the diagonal line, which is calculated
as

l(i, j) =
|i/M ′ − j/N ′|√
1/M ′2 + 1/N ′2

. (5.6)

As we can see, the farther a word in one sentence is from the other word in an-
other sentence in terms of word orders, the less likely it will be transported to that
word. Therefore, by introducing the two penalty terms I(T ) andKL(T ||P ) into prob-
lem (5.3), we encourage words at similar positions in two sentences to be matched.
Words at distant positions are less likely to be matched by T .

The problem (5.3) has a unique optimal solution T λ1,λ2 since both the objective
and the feasible set are convex. It has been proved in [Su and Hua, 2017] that the
optimal T λ1,λ2 has the same form with diag(k1) ·K · diag(k2), where diag(k1) ∈ RM ′

and diag(k2) ∈ RN ′ are two diagonal matrices with strictly positive diagonal elements.
K ∈ RM ′×N ′ is a matrix defined as

Kij = Pije
1
λ2

(S
λ1
ij −Dij), (5.7)

where

Sij =
λ1

( i
M ′
− j

N ′
)2 + 1

. (5.8)

The two matrices k1 and k2 can be efficiently obtained by the Sinkhorn-Knopp iter-
ative matrix scaling algorithm [Knight, 2008]:

k1 ← α′./Kk2,

k2 ← β′./KTk1.
(5.9)
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Aggregation Layer
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(a) Siamese Architecture for Sentence Matching (b) Siamese Architecture with Factorized Multi-scale Sentence Representation 

Depth 0 Depth 1 Depth 2

Output Output

Figure 5.5: Extend the Siamese network architecture for sentence matching by feeding
into the multi-scale representations of sentence pairs.

where ./ is the element-wise division operation. Compared with Word Mover’s Dis-
tance, the Ordered Word Mover’s Distance considers the positions of words in a sen-
tence, and is able to distinguish duplicated words at different locations. For example,
in Fig. 5.4, while the WMD finds an exact match and get a semantic distance of zero
for the sentence pair “Morty is laughing at Rick” and “Rick is laughing at Morty”, the
OWMD metric is able to find a better match relying on the penalty terms, and gives
a semantic distance greater than zero.

The computational complexity of OWMD is also effectively reduced compared to
WMD. With the additional constraints, the time complexity is O(dM ′N ′) where d is
the dimension of word vectors [Su and Hua, 2017], while it is O(dp3 log p) for WMD,
where p denotes the number of uniques words in sentences or documents [Kusner et
al., 2015].

5.4 Multi-scale Sentence Matching

Our sentence factorization algorithm parses a sentence S into a hierarchical factoriza-
tion tree T fS , where each depth of T fS contains the semantic units of the sentence at a
different granularity. In this section, we exploit this multi-scaled representation of S
present in T fS to propose a multi-scaled Siamese network architecture that can extend
any existing CNN or RNN-based Siamese architectures to leverage the hierarchical
representation of sentence semantics.

Fig. 5.5 (a) shows the network architecture of the popular Siamese “matching-
aggregation” framework [Wang and Jiang, 2016; Mueller and Thyagarajan, 2016; Sev-
eryn and Moschitti, 2015; Neculoiu et al., 2016; Baudiš et al., 2016] for sentence
matching tasks. The matching process is usually performed as follows: First, the
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sequence of word embeddings in two sentences will be encoded by a context repre-
sentation layer, which usually contains one or multiple layers of LSTM, bi-directional
LSTM (BiLSTM), or CNN with max pooling layers. The goal is to capture the con-
textual information of each sentence into a context vector. In a Siamese network,
every sentence is encoded by the same context representation layer. Second, the con-
text vectors of two sentences will be concatenated in the aggregation layer. They
may be further transformed by more layers of neural network to get a fixed length
matching vector. Finally, a prediction layer will take in the matching vector and
outputs a similarity score for the two sentences or the probability distribution over
different sentence-pair relationships.

Compared with the typical Siamese network shown in Fig. 5.5 (a), our proposed
architecture shown in Fig. 5.5 (b) differs in two aspects. First, our network contains
three Siamese sub-modules that are similar to (a). They correspond to the factorized
representations from depth 0 (the root layer) to depth 2. We only select the semantic
units from the top 3 depths of the factorization tree as our input, because usually most
semantic units at depth 2 are already single words and can not be further factorized.
Second, for each Siamese sub-module in our network architecture, the input is not
the embedding vectors of words from the original sentences. Instead, we use semantic
units at different depths of sentence factorization tree for matching. We sum up the
embedding vectors of the words contained in a semantic unit to represent that unit.
Assuming each semantic unit at depth d can be factorized into k semantic sub-units
at depth d + 1. If a semantic unit has less than k sub-units, we add empty units as
its child node to make each non-leaf node in a factorization tree has exactly k child
nodes. The empty units are embedded with a vector of zeros. After this procedure,
the number of semantic units at depth d of a sentence factorization tree is kd.

Taking Fig. 5.1 as an example. We set k = 4 in Fig. 5.1. For sentence A “The
little Jerry is being chased by Tom in the big yard”, the input at depth 0 is the sum
of word embedding {chase, Tom, Jerry, little, yard, big}. The input at depth 1 are
the embedding vectors of four semantic units: {chase, Tome, Jerry little, yard big}.
Finally, at depth 2, the semantic units are {chase, -, -, -, Tom, -, -, -, Jerry, little, -,
-, yard, big, -, -}, where “−” denotes an empty unit.

As we can see, based on this factorized sentence representation, our network ar-
chitecture explicitly matches a pair of sentences at several semantic granularities. In
addition, we align the semantic units in two sentences by mapping their positions in
the tree to the corresponding indices in the input layer of the neural network. For
example, as shown in Fig. 5.1, the semantic units at depth 2 are aligned according
to their unit indices: “chase” matches with “catch”, “Tom” matches with “cat blue”,
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Dataset Task Train Dev Test

STSbenchmark Similarity scoring 5748 1500 1378
SICK Similarity scoring 4500 500 4927
MSRP Paraphrase identification 4076 - 1725
MSRvid Similarity scoring 750 - 750

Table 5.1: Description of evaluation datasets.

“Jerry little” matches with “mouse brown”, and “yard big” matches with “forecourt”.

5.5 Evaluation

In this section, we evaluate the performance of our unsupervised Ordered Word
Mover’s Distance metric and supervised Multi-scale Sentence Matching model with
factorized sentences as input. We apply our algorithms to semantic textual similar-
ity estimation tasks and sentence pair paraphrase identification tasks, based on four
datasets: STSbenchmark, SICK, MSRP and MSRvid.

5.5.1 Experimental Setup

We will start with a brief description for each dataset:

• STSbenchmark[Cer et al., 2017]: it is a dataset for semantic textual similarity
(STS) estimation. The task is to assign a similarity score to each sentence pair
on a scale of 0.0 to 5.0, with 5.0 being the most similar.

• SICK[Marelli et al., 2014]: it is another STS dataset from the SemEval 2014
task 1. It has the same scoring mechanism as STSbenchmark, where 0.0 repre-
sents the least amount of relatedness and 5.0 represents the most.

• MSRvid: the Microsoft Research Video Description Corpus contains 1500 sen-
tences that are concise summaries on the content of a short video. Each pair of
sentences is also assigned a semantic similarity score between 0.0 and 5.0.

• MSRP[Quirk et al., 2004]: the Microsoft Research Paraphrase Corpus is a
set of 5800 sentence pairs collected from news articles on the Internet. Each
sentence pair is labeled 0 or 1, with 1 indicating that the two sentences are
paraphrases of each other.
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Table 5.1 shows a detailed breakdown of the datasets used in evaluation. For
STSbenchmark dataset we use the provided train/dev/test split. The SICK dataset
does not provide development set out of the box, so we extracted 500 instances from
the training set as the development set. For MSRP and MSRvid, since their sizes are
relatively small to begin with, we did not create any development set for them.

One metric we used to evaluate the performance of our proposed models on the
task of semantic textual similarity estimation is the Pearson Correlation coefficient,
commonly denoted by r. Pearson Correlation is defined as:

r = cov(X, Y )/(σXσY ), (5.10)

where cov(X, Y ) is the co-variance between distributions X and Y, and σX , σY are the
standard deviations of X and Y. The Pearson Correlation coefficient can be thought
as a measure of how well two distributions fit on a straight line. Its value has range
[-1, 1], where a value of 1 indicates that data points from two distribution lie on the
same line with a positive slope.

Another metric we utilized is the Spearman’s Rank Correlation coefficient. Com-
monly denoted by rs, the Spearman’s Rank Correlation coefficient shares a similar
mathematical expression with the Pearson Correlation coefficient, but it is applied to
ranked variables. Formally it is defined as [Wikipedia, 2017]:

ρ = cov(rgX , rgY )/(σrgXσrgY ), (5.11)

where rgX , rgY denotes the ranked variables derived from X and Y . cov(rgX , rgY ),
σrgX , σrgY corresponds to the co-variance and standard deviations of the rank vari-
ables. The term ranked simply means that each instance in X is ranked higher or
lower against every other instances in X and the same for Y. We then compare the
rank values of X and Y with 5.11. Like the Pearson Correlation coefficient, the Spear-
man’s Rank Correlation coefficient has an output range of [-1, 1], and it measures the
monotonic relationship between X and Y. A Spearman’s Rank Correlation value of
1 implies that as X increases, Y is guaranteed to increase as well. The Spearman’s
Rank Correlation is also less sensitive to noise created by outliers compared to the
Pearson Correlation.

For the task of paraphrase identification, the classification accuracy of label 1 and
the F1 score are used as metrics.

In the supervised learning portion, we conduct the experiments on the aforemen-
tioned four datasets. We use training sets to train the models, development set to
tune the hyper-parameters and each test set is only used once in the final evaluation.
For datasets without any development set, we will use cross-validation in the training
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process to prevent overfitting, that is, use 10% of the training data for validation and
the rest is used in training. For each model, we carry out training for 10 epochs. We
then choose the model with the best validation performance to be evaluated on the
test set.

5.5.2 Unsupervised Matching with OWMD

To evaluate the effectiveness of our Ordered Word Mover’s Distance metric, we first
take an unsupervised approach towards the similarity estimation task on the STS-
benchmark, SICK and MSRvid datasets. Using the distance metrics listed in Table
5.2 and 5.3, we first computed the distance between two sentences, then calculated the
Pearson Correlation coefficients and the Spearman’s Rank Correlation coefficients be-
tween all pair’s distances and their labeled scores. We did not use the MSRP dataset
since it is a binary classification problem.

In our proposed Ordered Word Mover’s Distance metric, distance between two
sentences is calculated using the order preserving Word Mover’s Distance algorithm.
For all three datasets, we performed hyper-parameter tuning using the training set
and calculated the Pearson Correlation coefficients on the test and development set.
We found that for the STSbenchmark dataset, setting λ1 = 10, λ2 = 0.03 produces
the most optimal result. For the SICK dataset, a combination of λ1 = 3.5, λ2 =

0.015 works best. And for the MSRvid dataset, the highest Pearson Correlation is
attained when λ1 = 0.01, λ2 = 0.02. We maintain a max iteration of 20 since in
our experiments we found that it is sufficient for the correlation result to converge.
During hyper-parameter tuning we discovered that using the Euclidean metric along
with σ = 10 produces better results, so all OWMD results summarized in Table 5.2
and 5.3 are acquired under these parameter settings. Finally, it is worth mentioning
that our OWMDmetric calculates the distances using factorized versions of sentences,
while all other metrics use the original sentences. Sentence factorization is a necessary
preprocessing step for the OWMD metric.

We compared the performance of Ordered Word Mover’s Distance metric with the
following methods:

• Bag-of-Words (BoW): in the Bag-of-Words metric, distance between two
sentences is computed as the cosine similarity between the word counts of the
sentences.

• LexVec [Salle et al., 2016]: calculate the cosine similarity between the averaged
300-dimensional LexVec word embedding of the two sentences.
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Algorithm STSbenchmark SICK MSRvid
Test Dev Test Dev Test

BoW 0.5705 0.6561 0.6114 0.6087 0.5044
LexVec 0.5759 0.6852 0.6948 0.6811 0.7318
GloVe 0.4064 0.5207 0.6297 0.5892 0.5481
Fastext 0.5079 0.6247 0.6517 0.6421 0.5517

Word2vec 0.5550 0.6911 0.7021 0.6730 0.7209
WMD 0.4241 0.5679 0.5962 0.5953 0.3430
OWMD 0.6144 0.7240 0.6797 0.6772 0.7519

Table 5.2: Pearson Correlation results on different distance metrics.

Algorithm STSbenchmark SICK MSRvid
Test Dev Test Dev Test

BoW 0.5592 0.6572 0.5727 0.5894 0.5233
LexVec 0.5472 0.7032 0.5872 0.5879 0.7311
GloVe 0.4268 0.5862 0.5505 0.5490 0.5828
Fastext 0.4874 0.6424 0.5739 0.5941 0.5634

Word2vec 0.5184 0.7021 0.6082 0.6056 0.7175
WMD 0.4270 0.5781 0.5488 0.5612 0.3699
OWMD 0.5855 0.7253 0.6133 0.6188 0.7543

Table 5.3: Spearman’s Rank Correlation results on different distance metrics.

• GloVe [Pennington et al., 2014]: calculate the cosine similarity between the
averaged 300-dimensional GloVe 6B word embedding of the two sentences.

• Fastext [Joulin et al., 2016]: calculate the cosine similarity between the aver-
aged 300-dimensional Fastext word embedding of the two sentences.

• Word2vec [Mikolov et al., 2013]: calculate the cosine similarity between the
averaged 300-dimensional Word2vec word embedding of the two sentences.

• Word Mover’s Distance (WMD) [Kusner et al., 2015]: estimating the se-
mantic distance between two sentences by WMD introduced in Sec. 5.3.

Table 5.2 and Table 5.3 compare the performance of different metrics in terms of
the Pearson Correlation coefficients and the Spearman’s Rank Correlation coefficients.
We can see that the result of our OWMD metric achieves the best performance on
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Model MSRP SICK MSRvid STSbenchmark
Acc.(%) F1(%) r ρ r ρ r ρ

MaLSTM 66.95 73.95 0.7824 0.71843 0.7325 0.7193 0.5739 0.5558
Multi-scale MaLSTM 74.09 82.18 0.8168 0.74226 0.8236 0.8188 0.6839 0.6575

HCTI 73.80 80.85 0.8408 0.7698 0.8848 0.8763 0.7697 0.7549
Multi-scale HCTI 74.03 81.76 0.8437 0.7729 0.8763 0.8686 0.7269 0.7033

Table 5.4: A comparison among different supervised learning models in terms of
accuracy, F1 score, Pearson’s r and Spearman’s ρ on various test sets.

all the datasets in terms of the Spearman’s Rank Correlation coefficients. It also
produced the best Pearson Correlation results on the STSbenchmark and the MSRvid
dataset, while the performance on SICK datasets are close to the best. This can
be attributed to the two characteristics of OWMD. First, the input sentence is re-
organized into a predicate-argument structure using the sentence factorization tree.
Therefore, corresponding semantic units in the two sentences will be aligned roughly
in order. Second, our OWMD metric takes word positions into consideration and
penalizes disordered matches. Therefore, it will produce less mismatches compared
with the WMD metric.

5.5.3 Supervised Multi-scale Semantic Matching

The use of sentence factorization can improve both existing unsupervised metrics and
existing supervised models. To evaluate how the performance of existing Siamese neu-
ral networks can be improved by our sentence factorization technique and the multi-
scale Siamese architecture, we implemented two types of Siamese sentence matching
models, HCTI [Mueller and Thyagarajan, 2016] and MaLSTM [Shao, 2017]. HCTI
is a Convolutional Neural Network (CNN) based Siamese model, which achieves the
best Pearson Correlation coefficient on STSbenchmark dataset in SemEval2017 com-
petition (compared with all the other neural network models). MaLSTM is a Siamese
adaptation of the Long Short-Term Memory (LSTM) network for learning sentence
similarity. As the source code of HCTI is not released in public, we implemented it
according to [Shao, 2017] by Keras [Chollet et al., 2015]. With the same parameter
settings listed in paper [Shao, 2017] and tried our best to optimize the model, we got
a Pearson correlation of 0.7697 (0.7833 in paper [Shao, 2017]) in STSbencmark test
dataset.

We extended HCTI and MaLSTM to our proposed Siamese architecture in Fig.
5.5, namely the Multi-scale MaLSTM and the Multi-scale HCTI. To evaluate the
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performance of our models, the experiment is conducted on two tasks: 1) semantic
textual similarity estimation based on the STSbenchmark, MSRvid, and SICK2014
datasets; 2) paraphrase identification based on the MSRP dataset.

Table 5.4 shows the results of HCTI, MaLSTM and our multi-scale models on
different datasets. Compared with the original models, our models with multi-scale
semantic units of the input sentences as network inputs significantly improved the
performance on most datasets. Furthermore, the improvements on different tasks
and datasets also proved the general applicability of our proposed architecture.

Compared with MaLSTM, our multi-scaled Siamese models with factorized sen-
tences as input perform much better on each dataset. For MSRvid and STSbenmark
dataset, both Pearson’s r and Spearman’s ρ increase about 10% with Multi-scale
MaLSTM. Moreover, the Multi-scale MaLSTM achieves the highest accuracy and F1
score on the MSRP dataset compared with other models listed in Table 5.4.

There are two reasons why our Multi-scale MaLSTM significantly outperforms
MaLSTM model. First, for an input sentence pair, we explicitly model their semantic
units with the factorization algorithm. Second, our multi-scaled network architecture
is specifically designed for multi-scaled sentences representations. Therefore, it is able
to explicitly match a pair of sentences at different granularities.

We also report the results of HCTI and Multi-scale HCTI in Table 5.4. For the
paraphrase identification task, our model shows better accuracy and F1 score on
MSRP dataset. For the semantic textual similarity estimation task, the performance
varies across datasets. On the SICK dataset, the performance of Multi-scale HCTI is
close to HCTI with slightly better Pearson’ r and Spearman’s ρ. However, the Multi-
scale HCTI is not able to outperform HCTI on MSRvid and STSbenchmark. HCTI is
still the best neural network model on the STSbenchmark dataset, and the MSRvid
dataset is a subset of STSbenchmark. Although HCTI has strong performance on
these two datasets, it performs worse than our model on other datasets. Overall, the
experimental results demonstrated the general applicability of our proposed model
architecture, which performs well on various semantic matching tasks.

5.6 Conclusion

In this chapter, we propose a technique named Hierarchical Sentence Factorization
that is able to transform a sentence into a hierarchical factorization tree. Each node
in the tree is a semantic unit consists of one or several words in the sentence and
reorganized into the form of “predicate-argument” structure. Each depth in the tree
factorizes the sentence into semantic units of different scales. Based on the hierarchical
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tree-structured representation of sentences, we propose both an unsupervised metric
and two supervised deep models for sentence matching tasks. On one hand, we
design a new unsupervised distance metric, named Ordered Word Mover’s Distance
(OWMD), to measure the semantic difference between a pair of text snippets. OWMD
takes the sequential structure of sentences into account, and is able to handle the
flexible syntactical structure of natural language sentences. On the other hand, we
propose the multi-scale Siamese neural network architecture which takes the multi-
scale representation of a pair of sentences as network input and matches the two
sentences at different granularities.

We apply our techniques to the task of text-pair similarity estimation and the
task of text-pair paraphrase identification, based on multiple datasets. Our exten-
sive experiments show that both the unsupervised distance metric and the supervised
multi-scale Siamese network architecture can achieve significant improvement on mul-
tiple datasets using the technique of sentence factorization.
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Part II

Text Mining: Recognizing User
Attentions for Searching and

Recommendation
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How to infer users’ interests or attentions based on his/her historical behaviors,
and how to identify the relationships between different user interests are critical re-
search problems for recommender systems.

In chapter 6, we describe ConcepT in Tencent QQ Browser. It discovers user-
centered concepts at the right granularity conforming to user interests, by mining a
large amount of user queries and interactive search click logs. The extracted con-
cepts have the proper granularity, are consistent with user language styles and are
dynamically updated.

In chapter 7, we present GIANT, a mechanism to construct a user-centered, web-
scale, structured ontology, containing a large number of natural language phrases
conforming to user attentions at various granularities, mined from the vast volume of
web documents and search click logs. Various types of edges are also constructed to
maintain a hierarchy in the ontology. Compare with ConcepT, GIANT contains more
types of user attentions, such as topics and events. Besides, it identifies various types
of relationships between user attentions instead of only isA relationship. Furthermore,
GIANT contains a unified algorithm for heterogeneous phrase mining based on a novel
Query Title Interaction Graph representation.

Both ConcepT and GIANT were deployed into real-world applications, such as
Tencent QQ Browser. They can be applied in different tasks, including query under-
standing, document tagging, story organization and so on.
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Chapter 6

A User-Centered Concept Mining
System for Query and Document
Understanding at Tencent

Concepts embody the knowledge of the world and facilitate the cognitive processes
of human beings. Mining concepts from web documents and constructing the cor-
responding taxonomy are core research problems in text understanding and support
many downstream tasks such as query analysis, knowledge base construction, recom-
mendation, and search. However, we argue that most prior studies extract formal and
overly general concepts from Wikipedia or static web pages, which are not represent-
ing the user perspective. In this chapter, we describe our experience of implementing
and deploying ConcepT in Tencent QQ Browser. It discovers user-centered concepts
at the right granularity conforming to user interests, by mining a large amount of
user queries and interactive search click logs. The extracted concepts have the proper
granularity, are consistent with user language styles and are dynamically updated. We
further present our techniques to tag documents with user-centered concepts and to
construct a topic-concept-instance taxonomy, which has helped to improve search as
well as news feeds recommendation in Tencent QQ Browser. We performed extensive
offline evaluation to demonstrate that our approach could extract concepts of higher
quality compared to several other existing methods. Our system has been deployed
in Tencent QQ Browser. Results from online A/B testing involving a large number
of real users suggest that the Impression Efficiency of feeds users increased by 6.01%
after incorporating the user-centered concepts into the recommendation framework
of Tencent QQ Browser.
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6.1 Introduction

The capability of conceptualization is a critical ability in natural language understand-
ing and is an important distinguishing factor that separates a human being from the
current dominating machine intelligence based on vectorization. For example, by ob-
serving the words “Honda Civic” and “Hyundai Elantra”, a human can immediately
link them with “fuel-efficient cars” or “economy cars”, and quickly come up with sim-
ilar items like “Nissan Versa” and probably “Ford Focus”. When one observes the
seemingly uncorrelated words “beer”, “diaper” and “Walmart”, one can extrapolate
that the article is most likely discussing topics like marketing, business intelligence or
even data science, instead of talking about the actual department store “Walmart”.
The importance of concepts is best emphasized by the statement in Gregory Murphy’s
famous book The Big Book of Concepts that “Concepts embody our knowledge of the
kinds of things there are in the world. Tying our past experiences to our present
interactions with the environment, they enable us to recognize and understand new
objects and events.”

In order to enable machines to extract concepts from text, a large amount of effort
has been devoted to knowledge base or taxonomy construction, typically represented
by DBPedia [Lehmann et al., 2015] and YAGO [Suchanek et al., 2007] which construct
taxonomies from Wikipedia categories, and Probase [Wu et al., 2012] which extracts
concepts from free text in web documents. However, we argue that these methods for
concept extraction and taxonomy construction are still limited as compared to how a
human interacts with the world and learns to conceptualize, and may not possess the
proper granularity that represents human interests. For example, “Toyota 4Runner”
is a “Toyota SUV” and “F150” is a “truck”. However, it would be more helpful if we
can infer that a user searching for these items may be more interested in “cars with
high chassis” or “off-road ability” rather than another Toyota SUV like “RAV4”—these
concepts are rare in existing knowledge bases or taxonomies. Similarly, if an article
talks about the movies “the Great Gatsby”, “Wuthering Heights” and “Jane Eyre”,
it is also hard to infer that the article is actually about “book-to-film adaptations”.
The fundamental reason is that taxonomies such as DBPedia [Lehmann et al., 2015]
and Probase [Wu et al., 2012], although maintaining structured knowledge about
the world, are not designed to conceptualize from the user’s perspective or to infer
the user intention. Neither can they exhaust all the complex connections between
different instances, concepts and topics that are discussed in different documents.
Undoubtedly, the ability for machines to conceptualize just as a user would do—to
extract trending and user-centered concept terms that are constantly evolving and are
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expressed in user language—is critical to boosting the intelligence of recommender
systems and search engines.

In this chapter, we propose ConcepT, a concept mining system at Tencent that
aims to discover concepts at the right granularity conforming to user interests. Dif-
ferent from prior work, ConcepT is not based on mining web pages only, but mining
from huge amounts of query logs and search click graphs, thus being able to under-
stand user intention by capturing their interaction with the content. We present our
design of ConcepT and our experience of deploying it in Tencent QQ Browser, which
has the largest market share in Chinese mobile browser market with more than 110
millions daily active users. ConcepT serves as the core taxonomy system in Tencent
QQ Browser to discover both time-invariant and trending concepts.

ConcepT can significantly boost the performance of both searching and con-
tent recommendation, through the taxonomy constructed from the discovered user-
centered concepts as well as a concept tagging mechanism for both short queries and
long documents that accurately depict user intention and document coverage. Up to
today, ConcepT has extracted more than 200, 000 high-quality user-centered concepts
from daily query logs and user click graphs in QQ Browser, while still growing at a
rate of 11, 000 new concepts found per day. Although our system is implemented and
deployed for processing Chinese query and documents, the proposed techniques in
ConcepT can easily be adapted to other languages.

Mining user-centered concepts from query logs and search click graphs has brought
about a number of new challenges. First, most existing taxonomy construction ap-
proaches such as Probase [Wu et al., 2012] extract concepts based on Hearst patterns,
like “such as”, “especially”, etc. However, Hearst patterns have limited extraction
power, since high-quality patterns are often missing in short text like queries and
informal user language. Moreover, existing methods extract concepts from web pages
and documents that are usually written by experts in the writer perspective. However,
search queries are often informal and may not observe the syntax of a written lan-
guage [Hua et al., 2015]. Hence, it is hard if not impossible to mine “user perspective”
concepts based on predefined syntax patterns.

There are also many studies on keyphrase extraction [Shang et al., 2018; Liu et al.,
2015; Mihalcea and Tarau, 2004]. They measure the importance or quality of all the
N -grams in a document or text corpus, and choose keyphrases from them according
to the calculated scores. As a result, such methods can only extract continuous
text chunks, whereas a concept may be discontinuous or may not even be explicitly
mentioned in a query or a document. Another concern is that most of such N -gram
keyphrase extraction algorithms yield poor performance on short text snippets such
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as queries. In addition, deep learning models, such as sequence-to-sequence, can
also be used to generate or extract concepts. However, deep learning models usually
rely on large amounts of high-quality training data. For user-centered concept mining,
manually labeling such a dataset from scratch is extremely costly and time consuming.

Furthermore, many concepts in user queries are related to recent trending events
whereas the concepts in existing taxonomies are mostly stable and time-invariant. A
user may search for “Films for New Year (贺岁大片)” or “New Japanese Animation
in April (四月新番)” in Tencent QQ Browser. The semantics of such concepts are
evolving over time, since apparently we have different new animations or films in
different years. Therefore, in contrast to existing taxonomies which mostly maintain
long-term stable knowledge, it will be challenging yet beneficial if we can also extract
time-varying concepts and dynamically update the taxonomies constructed.

We make the following novel contributions in the design of ConcepT :
First, we extract candidate user-centered concepts from vast query logs by two

unsupervised strategies: 1) bootstrapping based on pattern-concept duality: a small
number of predefined string patterns can be used to find new concepts while the
found concepts can in turn be used to expand the pool of such patterns; 2) query-
title alignment: an important concept in a query would repeat itself in the document
title clicked by the user that has input the query.

Second, we further train a supervised sequence labeling Conditional Random Field
(CRF) and a discriminator based on the initial seed concept set obtained, to gener-
alize concept extraction and control the concept quality. These methods are com-
plementary to each other and are best suited for different cases. Evaluation based
on a labeled test dataset has shown that our proposed concept discovery procedure
significantly outperforms a number of existing schemes.

Third, we propose effective strategies to tag documents with potentially complex
concepts to depict document coverage, mainly by combining two methods: 1) match-
ing key instances in a document with their concepts if their isA relationships exist
in the corresponding constructed taxonomy; 2) using a probabilistic inference frame-
work to estimate the probability of a concept provided that an instance is observed
in its context. Note that the second method can handle the case when the concept
words do not even appear in the document. For example, we may associate an arti-
cle containing “celery”, “whole wheat bread” and “tomato” with the concept “diet for
weight loss” that a lot of users are interested in, even if the document does not have
exact wording for “weight loss” but has context words such as “fibre”, “healthy”, and
“hydrated”.

Last but not least, we have constructed and maintained a three-layered topic-
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Figure 6.1: The overall process of concept mining from user queries and query logs.

concept-instance taxonomy, by identifying the isA relationships among instances,
concepts and topics based on machine learning methods, including deep neural net-
works and probabilistic models. Such a user-centered taxonomy significantly helps
with query and document understanding at varying granularities.

We have evaluated the performance of ConcepT, and observed that it can improve
both searching and recommendation results, through both offline experiments and a
large-scale online A/B test on more than 800, 000 real users conducted in the QQ
Browser mobile app. The experimental results reveal that our proposed methods
can extract concepts more accurately from Internet user queries in contrast to a
variety of existing approaches. Moreover, by performing query conceptualization
based on the extracted concepts and the correspondingly constructed taxonomy, we
can improve the results of search engine according to a pilot user experience study
in our experiments. Finally, ConcepT also leads to a higher Impression Efficiency as
well as user duration in the real world according to the large-scale online A/B test
on the recommender system in feeds stream (text digest content recommended to
users in a stream as they scroll down in the mobile app). The results suggest that
the Impression Efficiency of the users increases by 6.01% when ConcepT system is
incorporated for feeds stream recommendation.
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6.2 User-Centered Concept Mining

Our objective of user-centered concept mining is to derive a word/phrase from a
given user query which can best characterize this query and its related click logs at
the proper granularity.

Denote a user query by q = wq1w
q
2 · · ·wq|q|, which is a sequence of words. Let

Q be the set of all queries. Denote a document title by t = wt1w
t
2 · · ·wt|t|, another

sequence of words. Given a user query q and its corresponding top-ranked clicked
titles T q = {tq1, tq2, · · · , tq|T q |} from query logs, we aim to extract a concept phrase
c = wc1w

c
2 · · ·wc|c| that represents the main semantics or the intention of the query.

Each word wci ∈ c belongs to either the query q or one of the corresponding clicked
titles tqj ∈ T q.

An overview of the detailed steps of user-centered concept mining from queries and
query logs in ConcepT is shown in Fig. 6.1, which mainly consists of three approaches:
pattern-concept bootstrapping, query-title alignment, as well as supervised sequence
labeling. All the extracted concepts are further filtered by a discriminator. We
utilize bootstrapping and query-title alignment to automatically accumulate an initial
seed set of query-concept pairs, which can help to train sequence labeling and the
discriminator, to extract a larger amount of concepts more accurately.

Bootstrapping by Pattern-Concept Duality. We first extract an initial set
of seed concepts by applying the bootstrapping idea [Brin, 1998] only to the set of
user queries Q (without the clicked titles). Bootstrapping exploits Pattern-Concept
Duality, which is:

• Given a set of patterns, we can extract a set of concepts from queries following
these patterns.

• Given a set of queries with extracted concepts, we can learn a set of patterns.

Fig. 6.1 (a) illustrates how bootstrapping is performed on queries Q. First, we man-
ually define a small set of patterns which can be used to accurately extract con-
cept phrases from queries with high confidence. For example, “Top 10 XXX (十
大XXX)” is a pattern (with original Chinese expression in parenthesis) that can be
used to extract seed concepts. Based on this pattern, we can extract concepts: “fuel-
efficient cars (省油的汽车)” and “gaming phones (游戏手机)” from the queries “Top 10
fuel-efficient cars (十大省油的汽车)” and “Top 10 gaming phones (十大游戏手机)”,
respectively.

We can in turn retrieve more queries that contain these extracted concepts and
derive new patterns from these queries. For example, a query “Which gaming phones
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have the best performance? (哪款游戏手机性能好?)” also contains the concept
“gaming phones (游戏手机)”. Based on this query, a new pattern “Which XXX have
the best performance? (哪款XXX性能好?)” is found.

We also need to shortlist and control the quality of the patterns found in each
round. Intuitively speaking, a pattern is valuable if it can be used to accurately ex-
tract a portion of existing concepts as well as to discover new concepts from queries.
However, if the pattern is too general and appears in a lot of queries, it may intro-
duce noise. For example, a pattern “Is XXX good? (XXX好不好?)” underlies a
lot of queries including “Is the fuel-efficient car good? (省油的车好不好?)” and “Is
running everyday good (每天跑步好不好?)”, whereas “running everyday (每天跑步)”
does not serve as a sufficiently important concept in our system. Therefore, given
a new pattern p found in a certain round, let ns be the number of concepts in the
existing seed concept set that can be extracted from query set Q by p. Let ne be the
number of new concepts that can be extracted by p from Q. We will keep the pattern
p if it satisfies: 1) α < ns

ne
< β, and 2) ns > δ, where α, β, and δ are predefined

thresholds. (We set α = 0.6, β = 0.8, and δ = 2 in our system.)
Concept mining by query-title alignment. Although bootstrapping helps

to discover new patterns and concepts from the query set Q in an iterative manner,
such a pattern-based method has limited extraction power. Since there are a limited
number of high-quality syntax patterns in queries, the recall rate of concept extraction
has been sacrificed for precision. Therefore, we further propose to extract concepts
from both a query and its top clicked link titles in the query log.

The intuition is that a concept in a query will also be mentioned in the clicked titles
associated with the query, yet possibly in a more detailed manner. For example, “The
last Hong Kong zombie movie (香港|最后|一|部|僵尸|电影)” or “Hong Kong zombie
comedy movie (香港|搞笑|僵尸|电影)” convey more specific concepts of the query
“Hong Kong zombie movie (香港|僵尸|电影)” that leads to the click of these titles.
Therefore, we propose to find such concepts based on the alignment of queries with
their corresponding clicked titles. The steps are listed in the following:

1. Given a query q, we retrieve the top clicked titles T q = {tq1, tq2, · · · , tq|T q |} from
the query logs of q, i.e., T q consists of document titles that are clicked by users
for more than N times during the past D days (N = 5 and D = 30 in our
system).

2. For query q and each title t ∈ T q, we enumerate all the N -grams in them.

3. Let N -gram gqin = wqiw
q
i+1 · · ·wqi+n−1 denote a text chunk of length n starting

from position i of query q, and
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gtjm = wtjw
t
j+1 · · ·wtj+m−1 denote a text chunk of length m starting from position

j of title t. For each pair of such N -grams, < gqin, g
t
jm >, we identify gtjm as a

candidate concept if: i) gtjm contains all the words of gqin in the same order; ii)
wqi = wtj, and w

q
i+n−1 = wtj+m−1.

Query-title alignment extends concept extraction from query set alone to concept
discovery based on the query logs, thus incorporating some information of the user’s
interaction into the system.

Supervised sequence labeling. The above unsupervised methods are still lim-
ited in their generalizability. We further perform supervised learning and train a
Conditional Random Field (CRF) to label the sequence of concept words in a query
or a title, where the training dataset stems from the results of the bootstrapping and
query-title alignment process mentioned above, combined with human reviews as de-
tailed in the Appendix. Specifically, each word is represented by its tag features, e.g.,
Part-of-Speech or Named Entity Recognition tags, and the contextual features, e.g.,
the tag features of its previous word and succeeding word, the combination pattern
of tags of contextual words and the word itself. These features are fed into a CRF to
yield a sequence of labels, identifying the concept chunk, as shown in Fig. 6.1.

The above approaches for concept mining are complementary to each other. Our
experience shows that CRF can better extract concepts from short text when they
have clear boundary with surrounding non-concept words, e.g., “What cars are fuel-
efficient (省油的汽车有哪些)”. However, when the concept is split into multiple pieces,
e.g., “What gifts should we prepare for birthdays of parents? (父母过生日准备什
么礼物?)”, the query-title alignment approach can better capture the concept that is
scattered in a query.

A Discriminator for quality control. Given the concepts extracted by above
various strategies, we need to evaluate their value. For example, in Fig. 6.1, the
concept “The last Hong Kong zombie movie (香港|最后|一|部|僵尸|电影)” is too
fine-grained and maybe only a small amount of users are interested in searching it.
Therefore, we further train a classifier to determine whether each discovered concept
is worth keeping.

We represent each candidate concept by a variety of its features such as whether
this concept has ever appeared as a query, how many times it has been searched
and so on (more details in Appendix). With these features serving as the input, we
train a classifier, combining Gradient Boosting Decision Tree (GBDT) and Logistic
Regression, to decide whether to accept the candidate concept in the final list or not.
The training dataset for the discriminator is manually created. We manually check a
found concept to see whether it is good (positive) or not sufficiently good (negative).
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Title

See these cars with 
less than 2L/100km 
fuel consumption and
up to 1000km 
recharge mileage

Tagged Concept

Low fuel consumption 
cars

Figure 6.2: Example of concept tagging for documents in the feeds stream of Tencent
QQ Browser.
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Figure 6.3: The overall procedures of concept tagging for documents. We combine
both a matching-based approach with a scoring-based approach to handle different
situations.

Our experience reveals that we only need 300 samples to train such a discriminator.
Therefore, the creation of the dataset incurs minimum overhead.

6.3 Document Tagging and Taxonomy Construction

In this section, we describe our strategies for tagging each document with pertinent
user-centered concepts to depict its coverage. Based on document tagging, we fur-
ther construct a 3-layered topic-concept-instance taxonomy which helps with feeds
recommendation in Tencent QQ Browser.

6.3.1 Concept Tagging for Documents

While the extracted concepts can characterize the implicit intention of user queries,
they can also be used to describe the main topics of a document. Fig. 6.2 shows an
example of concept tagging in Tencent QQ Browser based on the ConcepT system.
Suppose that a document titled “See these cars with less than 2L/100km fuel con-
sumption and up to 1000km recharge mileage” can be tagged with the concept “low
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fuel-consumption cars”, even though the title never explicitly mentions these concept
words. Such concept tags for documents, if available, can help improve search and
recommendation performance. Therefore, we propose to perform concept tagging for
documents.

Given a document d and a set of concepts C = {c1, c2, · · · , c|C|}, our problem is
selecting a subset of concepts Cd = {cd1, cd2, · · · , cd|Cd|} from C that are most related
to the content of d. Fig. 6.3 presents the procedures of concept tagging for doc-
uments. To link appropriate concepts with a document, we propose a probabilistic
inference-based approach, together with a matching-based method to handle different
situations.

Specifically, our approach estimates the correlation between a concept and a doc-
ument through the key instances contained in the document. When no direct isA
relationship can be found between the key instances in the document and the con-
cepts, we use probabilistic inference as a general approach to identify relevant concepts
by utilizing the context information of the instances in the document. Otherwise, the
matching-based approach retrieves candidate concepts which have isA relationships
with the key instances in a taxonomy we have constructed (which be explained at
the end of this section). After that, it scores the coherence between a concept and a
document based on the title-enriched representation of the concept.

Key instance extraction. Fig. 6.3 shows our approach for key instance extrac-
tion. Firstly, we rank document words using GBRank [Zheng et al., 2007] algorithm,
based on word frequency, POS tag, NER tag, etc. Secondly, we represent each word
by word vectors proposed in [Song et al., 2018b], and construct a weighted undi-
rected graph for top K words (we set K = 10). The edge weight is calculated by the
cosine similarity of two word vectors. We then re-rank the keywords by TextRank
[Mihalcea and Tarau, 2004] algorithm. Finally, we only keep keywords with ranking
scores larger than δw (we use 0.5). From our experience, combining GBRank and
word-vector-based TextRank helps to extract keywords that are more coherent to the
topic of document.

Concept tagging by probabilistic inference. Denote the probability that
concept c is related to document d as p(c|d). We propose to estimate it by:

p(c|d) =
|Ed|∑
i=1

p(c|edi )p(edi |d), (6.1)

where Ed is the key instance set of d, and p(edi |d) is the document frequency of instance
edi ∈ Ed. p(c|edi ) estimates the probability of concept c given edi . However, as the
isA relationship between edi and c may be missing, we further infer the conditional
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probability by taking the contextual words of edi into account:

p(c|edi ) =
|X
Ed
|∑

j=1

p(c|xj)p(xj|edi ) (6.2)

p(xj|edi ) is the co-occurrence probability of context word xj with edi . We consider two
words as co-occurred if they are contained in the same sentence. XEd are the set of
contextual words of edi in d. Denote Cxj as the set of concepts containing xj as a
substring. p(c|xj) is defined as:

p(c|xj) =
{

1
|Cxj | . if xjis a substring of c,
0 otherwise.

(6.3)

For example, in Fig. 6.3, suppose edi extracted from d is “Toyota RAV4 (丰田RAV4)”.
We may haven’t establish any relationship between this instance and any concept.
However, we can extract contextual words “fuel-efficient (省油)” and “durable (耐
用)” from d. Based on these contextual words, we can retrieve candidate concepts
that containing these words, such as “fuel-efficient cars (省油的汽车)” and “durable
cellphones (耐用的手机)”. We then estimate the probability of each candidate concept
by above equations.

Concept tagging by matching. The probabilistic inference-based approach
decomposes the correlation between a concept and a document through the key in-
stances and their contextual words in the document. However, whenever the isA
relationship between the key instances of d and C is available, we can utilize it to get
candidate concepts directly, and calculate the matching score between each candidate
concept and d to decide which concepts are coherent to the document.

First, we introduce how the isA relationship between concept-instance pairs can
be identified. On one hand, given a concept, we retrieve queries/titles containing the
same modifier in the context and extract the instances contained in the queries/titles.
For example, given concept “fuel-efficient cars (省油的汽车)”, we may retrieve a
query/title “fuel-efficient Toyota RAV4 (省油的丰田RAV4)”, and extract instance
“Toyota RAV4 (丰田RAV4)” from the query/title, as it shares the same modifier
“fuel-efficient (省油的)” with the given concept. After we getting a candidate instance
e, we estimate p(c|e) by Eqn. (6.2). On another hand, we can also extract concept-
instance pairs from various semi-structured websites where a lot of concept-instance
pairs are stored in web tables.

Second, we describe our matching-based approach for concept tagging. Let Ed =

{ed1, ed2, · · · , ed|Ed|} donate the set of key instances extracted from d, and Cd = {cd1, cd2, · · · , cd|Cd|}
donate the retrieved candidate concepts by the isA relationship of instances in Ed.
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Figure 6.4: An example to show the extracted topic-concept-instance hierarchy.

For each candidate concept cdi , we enrich its representation by concatenating the con-
cept itself with the top N (we use 5) titles of user clicked links. We then represent
enriched concept and the document title by TF-IDF vectors, and calculate the co-
sine similarity between them. If sim(c, d) > δu (we set it as 0.58), we tag c to d;
otherwise we reject it. Note that the isA relationship between concept-instance pairs
and the enriched representation of concepts are all created in advance and stored in
a database.

Fig. 6.3 shows an example of matching-based concept tagging. Suppose we extract
key instance “Snow White (白雪公主)” from a document, we can retrieve related
concepts “bed time stories (睡前故事)” and “fairy tales (童话故事)” based on isA
relationship. The two concepts are further enriched by the concatenation of top
clicked titles. Finally, we match candidate concepts with the original document, and
keep highly related concepts.

6.3.2 Taxonomy Construction

We have also constructed a topic-concept-instance taxonomy based on the concepts
extracted from queries and query logs. It can reveal the hierarchical relationship
between different topics, concepts and instances. Currently our constructed taxonomy
consists of 31 pre-defined topics, more than 200, 000 user-centered concepts, and more
than 600, 000 instances. Among them, 40,000 concepts contain at least one instance,
and 200,000 instances have been identified with a isA relationship with at least one
concept. Based on the taxonomy, we can improve the user experience in search
engines by understanding user implicit intention via query conceptualization, as well
as enhance the recommendation performance by matching users and documents at
different semantic granularities. We will demonstrate such improvements in detail in
Sec. 6.4.
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Fig. 6.4 shows a three-layered taxonomy that consists of topics, concepts and
instances. The taxonomy is a Directed Acyclic Graph (DAG). Each node is either a
topic, a concept or an instance. We predefined a list that contains Nt = 31 different
topics, including entertainment, technology, society and so on. The directed edges
indicate isA relationships between nodes.

We have already introduced our approach for isA relationship between concept-
instance pairs. We need to further identify the relationship between topic-concept
pairs. First, we represent each document as a vector through word embedding and
pooling, and perform topic classification for documents through a carefully designed
deep neural network (see Appendix for details). After that, given a concept c and a
topic p, suppose there are nc documents that are correlated to concept c, and among
them there are nc

p documents that belong to topic p. We then estimate p(p|c) by
p(p|c) = nc

p/n
c. We identify the isA relationship between c and p if p(p|c) > δt (we

set δt = 0.3). Our experience shows that most of the concepts belong to one or two
topics.

6.4 Evaluation

In this section, we first introduce a new dataset for the problem of concept mining
from user queries and query logs, and compare our proposed approach with variety
of baseline methods. We then evaluate the accuracy of the taxonomy constructed
from extracted user-centered concepts, and show that it can improve search engine
results by query rewriting. Finally, we run large-scale online A/B testing to show
that the concept tagging on documents significantly improves the performance of
recommendation in real world.

We deploy the ConcepT system which includes the capability of concept mining,
tagging, and taxonomy construction in Tencent QQ Browser. For offline concept
mining, our current system is able to extract around 27,000 concepts on a daily basis,
where about 11,000 new concepts are new ones. For online concept tagging, our
system processes 40 documents per second. More details about implementation and
deployment can be found in appendix.

6.4.1 Evaluation of Concept Mining

The User-Centered Concept Mining Dataset (UCCM). As user-centered con-
cept mining from queries is a relative new research problem and there is no public
dataset available for evaluation, we created a large-scale dataset containing 10, 000
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samples. Our UCCM dataset is sampled from the queries and query logs of Tencent
QQ Broswer, from November 11, 2017 to July 1, 2018. For each query, we keep the
document titles clicked by more than 2 users in previous day. Each sample consists
of a query, the top clicked titles from real world query log, and a concept phrase
labeled by 3 professional product managers in Tencent and 1 PhD student. We have
published the UCCM dataset for research purposes 1.

Methodology and Compared Models. We evaluate our comprehensive con-
cept mining approach with the following baseline methods and variants of our method:

• TextRank [Mihalcea and Tarau, 2004]. The classical graph-based ranking
model for keyword extraction.2

• THUCKE [Liu et al., 2011]. It regards keyphrase extraction as a problem
of translation, and learns translation probabilities between the words in input
text and the words in keyphrases.3

• AutoPhrase [Shang et al., 2018]. A state-of-the-art quality phrase mining
algorithm that extracts quality phrases based on knowledge base and POS-
guided segmentation.4

• Pattern-based matching with query (Q-Pattern). Extract concepts from
queries based on patterns from bootstrapping.

• Pattern-based matching with title (T-Pattern). Extract concepts from
titles based on patterns from bootstrapping.

• CRF-based sequence labeling with query (Q-CRF). Extract concepts
from queries by CRF.

• CRF-based sequence labeling with titles (T-CRF). Extract concepts
from click titles by CRF.

• Query-Title alignment (QT-Align). Extract concepts by query-title align-
ment strategy.

For the T-Pattern and T-CRF approach, as each click title will give a result, we select
the most common one as the final result given a specific query. For the TextRank,
THUCKE, and AutoPhrase algorithm, we take the concatenation of user query and

1https://github.com/BangLiu/ConcepT
2https://github.com/letiantian/TextRank4ZH
3https://github.com/thunlp/THUCKE
4https://github.com/shangjingbo1226/AutoPhrase
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Method Exact Match F1 Score

TextRank 0.1941 0.7356
THUCKE 0.1909 0.7107
AutoPhrase 0.0725 0.4839

Q-Pattern 0.1537 0.3133
T-Pattern 0.2583 0.5046
Q-CRF 0.2631 0.7322
T-CRF 0.3937 0.7892
QT-Align 0.1684 0.3162

Our approach 0.8121 0.9541

Table 6.1: Compare different algorithms for concept mining.

click titles as input, and extract the top 5 keywords or phrases. We then keep the
keywords/phrases contained in the query and concatenate them in the same order as
in the query, then use it as the final result.

We use Exact Match (EM) and F1 to evaluate the performance. The exact match
score is 1 if the prediction is exactly the same as groundtruth or 0 otherwise. F1 mea-
sures the portion of overlap tokens between the predicted phrase and the groundtruth
concept.

Evaluation results and analysis. Table 6.1 compares our model with different
baselines on the UCCM dataset in terms of Exact Match and F1 score. Results
demonstrate that our method achieves the best EM and F1 score. This is because:
first, the pattern-based concept mining with bootstrapping helps us to construct a
collection of high-quality patterns which can accurately extract concepts from queries
in an unsupervised manner. Second, the combination of sequence labeling by CRF
and query-title alignment can recognize concepts from both queries and click titles
under different situations, i.e., either the concept boundary in query is clear or not.

We can see the methods based on TextRank [Mihalcea and Tarau, 2004], THUCKE
[Liu et al., 2011] and AutoPhrase [Shang et al., 2018] do not give satisfactory perfor-
mance. That is because existing keyphrases extraction approaches are better suited
for extracting keywords or phrases from a long document or a corpus. In contrast, our
approach is specially designed for the problem of concept mining from user queries and
click titles. Comparing our approach with its variants, including Q-Pattern, Q-CRF,
T-CRF and QT-Align, we can see that each component cannot achieve comparable
performance as ours independently. This demonstrates the effectiveness of combining
different strategies in our system.
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Metrics / Statistics Value

Mean #Instances per Concept 3.44
Max #Instances per Concept 59
isA Relationship Accuracy 96.59%

Table 6.2: Evaluation results of constructed taxonomy.

6.4.2 Evaluation of Document Tagging and Taxonomy Con-
struction

Evaluation of document tagging. For concept tagging on documents, our system
currently processes around 96,700 documents per day, where about 35% of them
can be tagged with at least one concept. We create a dataset containing 11, 547

documents with concept tags for parameter tuning, and we also open-source it for
research purpose (see appendix for more details). We evaluate the performance of
concept tagging based on this dataset. The result shows that the precision of concept
tagging for documents is 96%. As the correlated concept phrases may even not show
in the text, we do not evaluate the recall rate.

Evaluation of taxonomy construction. We randomly sample 1000 concepts
from our taxonomy. As the relationships between concept-instance pairs are critical
to query and document understanding, our experiment mainly focus on evaluating
them. For each concept, we check whether the isA relationship between it and its
instances is correct. We ask three human judges to evaluate them. For each concept,
we record the number of correct instances and the number of incorrect ones.

Table 6.2 shows the evaluation results. The average number of instances for each
concept is 3.44, and the maximum concept contains 59 instances. Note that the scale
of our taxonomy is keep growing with more daily user queries and query logs. For
the isA relationships between concept-instance pairs, the accuracy is 96.59%.

Table 6.3 shows a part of topic-concept-instance tuples from our taxonomy. We
can see that the extracted concepts are expressed from “user perspective”, such as
“Female stars with a beautiful smile (笑容最美的女明星)” or “Mobile game for
office workers (适合上班族玩的手游)”. At the same time, the relationships between
concepts and instances are also established based on user activities. For example,
when a certain number of users click the documents related to “Sasaki Nozomi (佐佐
木希)” when they are searching “Female stars with a beautiful smile (笑容最美的女
明星)”, our system will be able to recognize the isA relationship between the concept
and the instance.
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Topics Concepts Instances

Entertainment (娱
乐)

Movies adapted from a
novel (小说改编成的电
影)

The Great Gatsby (了不起的盖茨
比), Anna Karenina (安娜·卡列尼
娜), Jane Eyre (简爱)

Entertainment (娱
乐)

Female stars with a beau-
tiful smile (笑容最美的女
明星)

Ayase Haruka (绫濑遥), Sasaki
Nozomi (佐佐木希), Dilraba (迪
丽热巴)

Society (社
会)

Belt and Road countries
along the route (一带一
路沿线国家)

Palestine (巴勒斯坦), Syria (叙利
亚), Mongolia (蒙古), Oman (阿
曼)

Games (游
戏)

Mobile game for office
workers (适合上班族玩的
手游)

Pokemon (口袋妖怪), Invincible
Asia (东方不败)

Table 6.3: Part of the topic-concept-instance samples created by ConcepT system.

Retrieve
candidate

documents

Doc
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Profile
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documents

Rank
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by CTR
prediction Ranked

documents

Recommend

Figure 6.5: The framework of feeds recommendation in Tencent QQ Browser.

6.4.3 Online A/B Testing for Recommendation

We perform large-scale online A/B testing to show how concept tagging on documents
helps with improving the performance of recommendation in real world applications.
Fig. 6.5 illustrates the recommendation architecture based on our ConcepT system.
In our system, both users and documents are tagged with interested or related topics,
concepts and instances. We first retrieve candidate documents by matching users
with documents, then we rank candidate documents by a Click-Through Rate (CTR)
prediction model. The ranked documents are pushed to users in the feeds stream of
Tencent QQ Browser.

For online A/B testing, we split users into buckets where each bucket contains
800, 000 of users. We first observe and record the activities of each bucket for 7 days
based on the following metrics:

• Impression Page View (IPV): number of pages that matched with users.
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Metrics Percentage Lift Metrics Percentage Lift

IPV +0.69% UCR +0.04%
IUV +0.06% AUC +0.21%
CPV +0.38% UD +0.83%
CUV +0.16% IE +6.01%

Table 6.4: Online A/B testing results.

• Impression User View (IUV): number of users who has matched pages.

• Click Page View (CPV): number of pages that users clicked.

• Click User View (CUV): number of users who clicked pages.

• User Conversion Rate (UCR): CUV
IUV

.

• Average User Consumption (AUC): CPV
CUV

.

• Users Duration (UD): average time users spend on a page.

• Impression Efficiency (IE): CPV
IUV

.

We then select two buckets with highly similar activities. For one bucket, we perform
recommendation without the concept tags of documents. For another one, the concept
tags of documents are utilized for recommendation. We run our A/B testing for 3
days and compare the result by above metrics. The Impression Efficiency (IE) and
Users Duration (UD) are the two most critical metrics in real world application,
because they show how many contents users read and how much time they spend on
an application.

Table 6.4 shows the results of our online A/B testing. In the online experiment,
we observe a statistically significant IE gain (6.01%) and user duration (0.83%). The
page views and user views for click or impression, as well as user conversation rate
and average user consumptions, are all improved. These observations prove that the
concept tagging for documents greatly benefits the understanding of documents and
helps to better match users with their potential interested documents. With the help
of user-centered concepts, we can better capture the contained topics in a document
even if it does not explicitly mention them. Given more matched documents, users
spend more times and reading more articles in our feeds.
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6.4.4 Offline User Study of Query Rewriting for Searching

Here we evaluate how user-centered concept mining can help with improving the
results of search engines by query rewriting based on conceptualization. We create a
evaluation dataset which contains 108 queries from Tencent QQ Browser. For each
query q, we analyze the concept c conveyed in the query, and rewrite the query by
concatenating each of the instances {e1, e2, · · · , en} ∈ c with q. The rewritten queries
are in the format of “q ei”. For the original query, we collect the top 10 search results
returned by Baidu search engine, the largest search engine in China. Assume we
replace a query by K different instances. We collect top d10

K
e search results from

Baidu for each of the rewritten queries, combining and keeping 10 of them as the
search result after query rewriting.

We ask three human judges to evaluate the relevancy of the results. For each search
reuslt, we record majority vote, i.e., “relevant” or “not relevant”, of the human judges,
and calculate the percentage of relevance of original queries and rewritten queries.
Our evaluation results show that the percentage of relevant top 10 results increases
from 73.1% to 85.1% after rewriting the queries with our strategy. The reason is
that the concept mining for user queries helps to understand the intention of user
queries, and concatenating the instances belonging to the concept with the original
query provides the search engine more relevant and explicit keywords. Therefore, the
search results will better match user’s intention.

6.5 Information for Reproducibility

6.5.1 System Implementation and Deployment

We implement and deploy our ConcepT system in Tencent QQ Browser. The concept
mining module and taxonomy construction module are implemented in Python 2.7,
and they run as offline components. For document tagging module, it is implemented
in C++ and runs as an online service. We utilize MySQL for data storage.

In our system, each component works as a service and is deployed on Tencent
Total Application Framework (Tencent TAF)5. Tencent TAF is a high-performance
remote procedure call (RPC) framework based on name service and Tars protocol,
it also integrate administration platform, and implement hosting-service via flexible
schedule. It has been used in Tencent since 2008, and supports different programming
languages. For online document concept tagging, it is running on 50 dockers. Each
docker is configured with six 2.5 GHz Intel Xeon Gold 6133 CPU cores and 6 GB

5https://github.com/TarsCloud/Tars
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memory. For offline concept mining and taxonomy construction, they are running on
2 dockers with the same configuration.

ALGORITHM 2: Offline concept mining process.
Data: Queries and query logs in a day
Result: Concepts

1 Check whether successfully obtained the queries and logs;
2 if succeed then
3 Perform concept mining by our proposed approach;
4 else
5 Break;

ALGORITHM 3: Offline isA relationship discovery between concepts and instances.
Data: News documents, the vocabulary of instances, concepts, and the index between key

terms and concepts
Result: isA relationship between concepts and instances

1 for each document do
2 Get the instances in the document based on the vocabulary;
3 for each instance do
4 Get the intersection of concept key terms and the terms co-occurred in the same

sentence with document instances;
5 Get related concepts that containing at least one key term in the intersection;
6 Get <instance, key terms, concepts> tuples based on the results of above steps;

7 Get the co-occurrence features listed in Table 6.5, and classify whether existing isA
relationship between the instances and candidate concepts.

Algorithm 1-4 show the running processes of each component in ConcepT. For
offline concept mining from queries and search logs, the component is running on a
daily basis. It extracts around 27,000 concepts from 25 millions of query logs everyday,
and about 11,000 of the extracted concepts are new. For offline relationship discovery
in taxonomy construction, the component runs every two weeks. For online concept
tagging for documents, the processing speed is 40 documents per second. It performs
concept tagging for about 96,700 documents per day, where about 35% of them can
be tagged with at least one concept.

6.5.2 Parameter Settings and Training Process

We have described the threshold parameters in our work. Here we introduce the
features we use for different components in our system, and describe how we train
each component. Table 6.5 lists the input features we use for different sub-modules
in our ConcepT system.
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ALGORITHM 4: Online probabilistic inference-based concept tagging for documents.
Data: News documents, isA relationship between instances and concepts
Result: Documents with concept tags

1 for each document do
2 Perform word segmentation;
3 Extract key instances by the approach described in Fig. 6.3;
4 Get candidate concepts by the isA relationship between concepts and key instances;
5 for each concept do
6 Calculate the coherence between the candidate concept and the document by the

probabilistic inference-based approach;
7 Tag the concept to the document if the coherence is above a threshold;

ALGORITHM 5: Online matching-based concept tagging for documents.
Data: News documents
Result: Documents with concept tags

1 for each document do
2 Perform word segmentation;
3 Extract key terms by TF-IDF;
4 Get candidate concepts containing above key terms;
5 Get the title-enriched representation of candidate concepts;
6 Represent document and each candidate concept by TF-IDF vector;
7 for each concept do
8 Calculate cosine similarity between the candidate concept and the document;
9 Tag the concept to the document if the similarity is above a threshold;

Training process. For concept mining, we randomly sample 15,000 query search
logs in Tencent QQ Browser within one month. We extract concepts for these query
logs using approaches introduced in Sec. 6.2, and the results are manually checked
by Tencent product managers. The resulting dataset is used to train the classifier
in query-title alignment-based concept mining, and the Conditional Random Field in
our model. We utilize CRF++ v0.58 to train our model. 80% of the dataset is used
as training set, 10% as development set and the remaining 10% as test set.

For concept tagging, we randomly sample 10,000 news articles from the feeds
stream of Tencent QQ browser during a three-month period, where each topic contains
abut 800 to 1000 articles. We iteratively perform concept tagging for documents based
on the approaches described in Sec. 6.3. After each iteration, we manually check
whether the tagged concepts are correlated or not. Then we update our dataset and
retrain the models of concept tagging. The iteration process is topped until no more
new concepts can be tagged to documents. The resulting dataset is used to train
the classifiers and set the hyper-parameters in concept tagging. We use 80% of the
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Task Features

Document key in-
stance extraction

Whether the topic of instance is the same with the topic of
document; whether it is the same with the instance in title;
whether the title contains the instance topic; the frequency
of the instance among all instances in the document; the
percentage of sentences containing the instance.

Classify whether
a short text is a
concept

Whether the short text ever shown as a user query; how
many times it has been searched; Bag-of-Word representa-
tion of the text; the topic distribution of user clicked docu-
ments given that short text as query.

Train CRF for
concept mining
from query

word, NER, POS, <previous word, word>, <previous word,
next word>, <previous POS, POS>, <POS, next POS>,
<previous POS, word>, <word, next POS>.

Table 6.5: The features we use for different tasks in ConcepT.

dataset as training set, 10% as development set and the remaining 10% as test set.

6.5.3 Publish Our Datasets

We have published our datasets for research purpose and they can be accessed from
https://github.com/BangLiu/ConcepT. Specifically, we open source the following
datasets:

• The UCCM dataset. It is used to evaluate the performance of our approach
for concept mining and it contains 10, 000 samples.

• The document tagging dataset. It is used to evaluate the document tagging
accuracy of ConcepT, and it contains 11,547 documents with concept tags.

• Topic-concept-instance taxonomy. It contains 1000 topic-concept-instance
samples from our constructed taxonomy.

• The seed concept patterns for bootstrapping-based concept mining.
It contains the seed string patterns we utilized for bootstrapping-based concept
mining from queries.

• Pre-defined topic list. It contains our 31 pre-defined topics for taxonomy
construction.
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Figure 6.6: Document topic classification.

Query Concept

What are the Qianjiang specialties (黔
江的特产有哪些)

Qianjiang specialties (黔江特产)

Collection of noodle snacks cooking
methods (面条小吃的做法大全)

noodle snacks cooking methods (面条小
吃的做法)

Which cars are cheap and fuel-efficient?
(有什么便宜省油的车)

cheap and fuel-efficient cars (便宜省油
的车)

Jiyuan famous snacks (济源有名的小吃) Jiyuan snacks (济源小吃)
What are the symptoms of depression?
(抑郁症有什么症状)

symptoms of depression (抑郁症症状)

Large-scale games of military theme (军
事题材的大型游戏)

Military games (军事游戏)

Table 6.6: Examples of queries and the extracted concepts given by ConcepT.

6.5.4 Details about Document Topic Classification

Topic classification aims to classify a document d into our predefined Nt (it is 31 in
our system) topic categories, including entertainment, events, technology and so forth.
Fig. 6.6 illustrates our model for document topic classification. We represent the title,
author, and content of document d by word vectors. Then we apply max pooling to
title and author embeddings, and mean pooling to content embeddings. The results
of pooling operations are concatenated into a fix-length vector representation of d.
We then classify it by a feed forward neural network. The accuracy of our model is
95% on a labeled dataset containing 35,000 news articles.

6.5.5 Examples of Queries and Extracted Concepts

Table 6.6 lists some examples of user queries, together with the concepts extracted by
ConcepT. We can see that the concepts are appropriate to summarize the core user
intention in queries.
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6.6 Conclusion

In this chapter, we describe our experience of implementing ConcepT, a user-centered
concept mining and tagging system at Tencent that designed to improve the under-
standing of both queries and long documents. Our system extracts user-centered
concepts from a large amount of user queries and query logs, as well as performs
concept tagging on documents to characterize the coverage of documents from user-
perspective. In addition, ConcepT further identifies the isA relationship between
concepts, instances and topics to constructs a 3-layered topic-concept-instance taxon-
omy. We conduct extensive performance evaluation through both offline experiments
and online large-scale A/B testing in the QQ Browser mobile application on more
than 800, 000 real users. The results show that our system can extract featured, user-
centered concepts accurately from user queries and query logs, and it is quite helpful
for both search engines and recommendation systems. For search engines, the pilot
user study in our experiments shows that we improve the results of search engine by
query conceptualization. For recommendation, according to the real-world large-scale
online A/B testing, the Impression Efficiency improves by 6.01% when incorporating
ConcepT system for feeds recommendation in Tencent QQ Browser.
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Chapter 7

Scalable Creation of a Web-scale
Ontology

Understanding what online users may pay attention to on the web is key to con-
tent recommendation and search services. These services will benefit from a highly
structured and web-scale ontology of entities, concepts, events, topics and categories.
While existing knowledge bases and taxonomies embody a large volume of entities
and categories, we argue that they fail to discover properly grained concepts, events
and topics in the language style of online users. Neither is a logically structured
ontology maintained among these notions. In this chapter, we present GIANT, a
mechanism to construct a user-centered, web-scale, structured ontology, containing
a large number of natural language phrases conforming to user attentions at various
granularities, mined from the vast volume of web documents and search click logs.
Various types of edges are also constructed to maintain a hierarchy in the ontology.
We present our detailed techniques used in GIANT, and evaluate the proposed mod-
els and methods as compared to a variety of baselines, as well as deploy the resulted
Attention Ontology in real-world applications, involving over a billion users, to ob-
serve its effect on content recommendation. The online performance of the ontology
built by GIANT proves that it can significantly improve the click-through rate in
news feeds recommendation.

7.1 Introduction

In a fast-paced modern society, people have to carefully choose what they pay atten-
tion to in their overstimulated daily lives. The vast and diverse information on the
Internet makes it an ever-increasing challenge for services to increase the attention
span of online users. A variety of recommendation services [Konstan, 2008; Ado-
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mavicius and Tuzhilin, 2005; Koutrika, 2018; Bobadilla et al., 2013; Adomavicius and
Tuzhilin, 2011] have been built to find or recommend relevant information to users
based on their search queries or article viewing histories. These services could po-
tentially benefit from a large, web-based, structured, and reusable ontology created
from unstructured Internet documents, with a particular focus on points that users
pay attention to.

Content recommendation suffers from two long-standing problems: inaccurate
recommendation and monotonous recommendation. Inaccurate recommendation is
largely due to a lack of an ontology containing terms that can describe user in-
terests at a proper granularity. Most current news recommendation services rely on
keyword-based content matching. For example, if a user reads articles about “Theresa
May’s resignation speech”, recommender systems may use the entities “Theresa May”,
“Speech” and “Resignation Speech” to further retrieve articles related to these key-
words. However, the user is probably truly concerned with the topic “Brexit Nego-
tiation”. Entities are often too fine-grained and categories are too coarse-grained to
provide a suitable resolution to represent underlying user intents. On the other hand,
monotonous recommendation, which means that users may receive pushes about the
same entities or events, is rooted in the incapability of existing systems to extrapo-
late beyond the visited keywords. For example, when an article contains the words
“brown rice”, “treadmill” and “celery juice”, it is most likely discussing “weight loss
recipe” or “healthy recipe”. Categorizing “brown rice” into food and “treadmill” into
may not help recommendation the best. We argue that what is required is a web-scale
ontology that can abstract entities (keywords) into concepts, events, and topics in the
open domain, while maintaining a structured hierarchy among them to facilitate ex-
trapolation and inference of user interests.

However, mining a large volume of user-centered concepts, events or topics from
the web is a new and challenging task that has not been addressed by prior literature.
For concept mining, most existing taxonomy or knowledge bases, such as Probase
[Wu et al., 2012], DBPedia [Lehmann et al., 2015], CN-DBPedia [Xu et al., 2017],
YAGO [Suchanek et al., 2007], extract concepts/entities from Wikipedia and web
pages based on Hearst patterns, via “such as”, “especially”, “including” etc. However,
concepts that can be extracted by Hearst patterns are clearly limited. Moreover, web
pages written in the author’s perspective, such as Wikipedia, are not best at tracking
phrases from the user’s perspective, such as “top-5 restaurants for families”. For
event mining, most existing approaches [Aone and Ramos-Santacruz, 2000; Miwa et
al., 2010; McClosky et al., 2011; Yang and Mitchell, 2016] rely on the ACE definition
of events [Doddington et al., 2004; Grishman et al., 2005] and perform closed-domain
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event extraction via supervised learning, which is not scalable to diverse types of
events in the open domain. There are also works attempting to extract events from
social networks such as Twitter [Watanabe et al., 2011; Ritter et al., 2012; Atefeh and
Khreich, 2015; Cordeiro and Gama, 2016]. But they represent events by clusters of
keywords or phrases, without identifying a clear hierarchy or structured ontology.

In this chapter, we propose GIANT, a web-based structured ontology construc-
tion mechanism that aims to automatically discover high-quality natural language
phrases, which we call user attentions, at the right granularity conforming to user
interests, as well as to maintain a hierarchy of them, by mining vast amounts of un-
structured web documents and search query logs. GIANT produces and maintains a
web-scale ontology, named the Attention Ontology (AO), which consists of around 2
million different kinds of nodes (i.e., categories, concepts, entities, topics, and events),
while still growing. In addition to categories (e.g., cars, technology) and fine-grained
entities (e.g., iPhone XS, Honda Civic) that appear in existing taxonomies, Attention
Ontology also contains abstractive nodes at a medium granularity, including newly
discovered concepts, events and topics, in terms of the language of web users instead
of authors. By modeling documents with abstractive terms that users would actually
pay attention to, the Attention Ontology proves to be effective in greatly improving
content recommendation in the open domain. For example, with the ontology, the
system can infer a user’s interest on the concept “economy cars” if he/she browsed
articles about “Honda Civic”, even if the exact wording of economy cars does not ap-
pear in the article. The system can also extrapolate that a user cares about all events
related to the topic “Brexit Negotiation” if he/she read an article about “Theresa
May’s resignation”.

We present our design of GIANT and our experience of deploying it in several
anonymous real world applications, involving more than one billion active users all
around the globe. GIANT currently serves as the core ontology or taxonomy construc-
tion system in these commercial applications for discovering long-term and trending
user attentions. In designing GIANT, we have made the following novel contributions:

First, instead of constructing an ontology based on Wikipedia or other author-
centered documents, we propose a framework to construct it from the click graph,
a large bipartite graph of search queries and their corresponding clicked documents,
which contains a plethora of phrases in the language style of web users as well as
information about user behavior. In addition, as compared to Wikipedia and other
existing knowledge bases, which contain general knowledge about the world, queries
from users can reflect hot events or topics at the present time. GIANT relies on the
linkage from queries to the clicked documents to discover key phrases that represent
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user attentions as well as to construct a hierarchy out of them. As an intuitive toy
example, if a query “top-5 family restaurants” frequently leads to the click-through
of a certain restaurant, we can recognize “top-5 family restaurants” as a concept and
the restaurant is an entity of the concept.

To extract a large amount of key phrases that represent user attentions from the
click graph, we propose GCTSP-Net, a general multi-task neural network model which
can extract different types of phrases (including concepts, events, and topics) at scale.
We first introduce a graphical representation, named Query Title Interaction Graph
(QTIG), to represent information in a cluster of queries and their clicked document
titles as a graph, with nodes being keywords and edges between nodes being how they
are traversed in these queries and titles. Then we employ a graph-to-sequence neural
network, i.e., the Relational Graph Convolutional Network (R-GCN) [Schlichtkrull
et al., 2018], to encode the QTIG for each query cluster, and generate a natural
language phrase as an abstractive description of the cluster, by node classification and
asymmetric traveling salesman decoding (ATSP-decoding). The extracted phrases
become the nodes in the Attention Ontology.

To maintain a hierarchy and structure for the ontology, we propose various ap-
proaches to identify the edges between nodes in the Attention Ontology and tag each
edge with one of the three types of relationships, i.e., isA, involve, and correlate.
Multiple ad-hoc and probabilistic methods are proposed to identify different types
of edges. The GCTSP-Net is also used to identify the involve relationship, that is
to recognize the key arguments in an events (i.e., triggers, entities and locations).
The constructed edges can benefit a variety of applications. For instance, we can tag
users and documents with abstractive nodes in the ontology to depict document’s
coverage by extrapolating beyond its verbatim language. We can also perform query
conceptualization based on the ontology to increase the diversity of retrieved results.
Besides, the correlation between events can leveraged to discover an evolving story,
which enables the tracking of an event series and keep the interested users updated.

Last but not least, we introduce efficient strategies to quickly build the training
data necessary for GIANT to perform phrase mining and relation identification, with
minimum human efforts. For phrase mining, we combine a bootstrapping strategy
based on pattern-phrase duality [Brin, 1998; Liu et al., 2019c] and text alignment
based on query-title conformity. For relationship identification, we utilize the co-
occurrence of different phrases in queries, documents, and consecutive queries to
extract samples of phrase pairs with target relationships. These labeled examples
automatically mined from the click graph are then used to train the proposed machine
learning models to generalize and scale up in different sub-tasks.
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Figure 7.1: An example to illustrate our Attention Ontology (AO) for user-centered
text understanding.

We have performed extensive evaluation of GIANT. The assessment of the con-
structed ontology shows that our system can extract a plethora of high-quality phrases
from search logs, with a large amount of accurately identified relationships between
these phrases, leading to a highly structured web-scale ontology system. We compare
our proposed GCTSP-Net model with a variety of baseline approaches to evaluate its
performance and superiority on multiple tasks. The experimental results show that
our approach can extract heterogeneous phrases more accurately from the click graph
as compared to existing methods. Finally, we have deployed the resulted Attention
Ontology constructed by GIANT in multiple real-world anonymous applications that
serve more than one billion users in total. We evaluate the effect of introducing At-
tention Ontology in an application that involves a news feed stream component that
pushes news articles to mobile users as they scroll down their screen on their mobile
devices. The results suggest that GIANT can significantly improve the click-through
rate in news feeds recommendation.

The rest of the chapter is organized as follows: Section 7.2 provides an overview
to the framework of GIANT system, as well as illustrates the Attention Graph con-
structed by GIANT. Section 7.3 introduce our proposed techniques for extracting the
nodes and constructing the edges in Attention Graph, as well as our strategies for
fast dataset creation. In Section 7.4, we show how to apply the constructed Attention
Graph to user interests modeling and text understanding. Section 7.6 concludes the
chapter.

7.2 The Attention Ontology

We provide an overview of the Attention Ontology (AO) to be constructed for web-
scale text understanding, with a focus on mining the terms that grab online users’
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attention and connections among them. Online users often pay attention to specific
entities or events of their interests. Existing knowledge bases and taxonomies, e.g.,
Probase [Wu et al., 2012] and DBPedia [Lehmann et al., 2015], contain general knowl-
edge about the world yet often do not incorporate terms, e.g., weight loss recipes, best
family SUVs, that online users actually spend their time on.

In the proposed Attention Ontology, each node is represented by a phrase or a
collection of phrases of the same meaning mined from Internet. We use the term
“attention” as a general name for entities, concepts, events, topics, and categories,
which represent five types of information that can capture an online user’s attention
at different semantic granularities. Such attention phrases can be utilized to concep-
tualize user interests and depict document coverages. For instance, if a user wants to
buy a family vehicle for road trips, he/she may input such a query “vehicles choices
for family road trip”. From this query, we could extract the concept, “family road
trip vehicles”, and tag it to matching entities such as “Honda Odyssey Minivan” or
“Ford Edge SUV”. We could then recommend articles related to these Honda and
Ford vehicles, even if they do not contain the exact wording of “family road trip”. In
essence, the Attention Ontology enables us to achieve a user-centered understanding
of web documents and queries, which improves the performance of search engines and
recommender systems.

Figure 7.1 shows an illustration of the Attention Ontology, which is in the form
of a Directed Acyclic Graph (DAG). Specifically, there are five types of nodes:

• Category: a category node defines a broad field that encapsulates many related
topics or concepts. For example, technology, current events, entertainment,
sports, finance and so forth. In our system, we pre-define a 3-level categories
hierarchy, which consists of 1,206 different categories.

• Concept: a concept is a group of things that share some common attributes
[Liu et al., 2019c; Wu et al., 2012], such as superheroes, MOBA games, fuel-
efficient cars and so on. In contrast with coarse-grained categories and fine-
grained entities, concepts can help better characterize users’ interests at a suit-
able semantic granularity.

• Entity: an entity is a specific instance belonging to one or multiple concepts.
For example, Iron Man is an entity belonging to the concepts “superheroes” and
“Marvel superheroes”.

• Event: an event is a real-world incident that involves a group of specific per-
sons, organizations, or entities. It is also tagged with a certain time/location of
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occurrence [Liu et al., 2017]. A hot event usually is reported by a set of news
articles with different wordings, and potentially from various perspectives. In
our work, we represent an event with four types of attributes: entities (indicat-
ing who or what are involved in the event), triggers (indicating what kind/type
of event it is), time (indicating when the event takes place), and location (indi-
cating where the event takes place).

• Topic: a topic is broader than an event. A topic represents a collection of events
sharing some common attributes. For example, both “Samsung Galaxy Note 7
Explosion in China” and “iPhone 6 Explosion in California” events belong to
the topic “Cellphone Explosion”. Similarly, events such as “Theresa May is in
Office”, “Theresa May’s Resignation Speech” can be covered by the topic “Brexit
Negotiation”.

Furthermore, we define three types of edges, i.e., relationships, between nodes:

• isA relationship, indicating that the destination node is an instance of the
source node. For example, the entity “Huawei Mate20 Pro" isAn instance of
“Huawei Cellphones".

• involve relationship, indicating that the destination node is involved in an
event/topic described by the source node.

• correlate relationship, indicating two nodes are highly correlated with each
other.

The edges in the Attention Ontology reveal the types of relationships and the
degrees of relatedness between nodes. A plethora of edges enables the inference of
more hidden interests of a user beyond the content he/she has browsed by moving
along the edges on the Attention Ontology and recommending other related nodes at
a coarser or finer granularity based on the nodes the user has visited. Furthermore,
by analyzing edges between event nodes, we could also keep track of a developing
story, which usually consists of a series of events, and keep interested users updated.

7.3 Ontology Construction

GIANT is a mechanism to discover phrases that users pay attention to from the web
as well as to build a structured hierarchy out of them. In this section, we present our
detailed techniques to construct the Attention Ontology based on neural networks and
other ad-hoc methods. The entire process consists of two phases: i) user attention
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Figure 7.2: Overview of our framework for constructing the Attention Ontology and
performing different tasks.

phrases mining, and ii) attention phrases linking. In the first phase, we define and
extract user attention phrases in different semantic granularities from a large-scale
search click graph. In the second phase, we link different extracted nodes and identify
their relationships to construct a structured ontology.

Figure 7.2 shows the overall framework of GIANT, which constructs the Attention
Ontology based on user search and click logs. The framework consists of three ma-
jor components: action, attention, and application. In the action component, when
users perform different actions (e.g., search, click, etc.), the user queries and clicked
documents form a bipartite graph [Wikipedia contributors, 2019], commonly known
as a search click graph. Based on it, we can collect highly correlated queries and
documents by aggregating documents that correspond to a query or vice versa, into
query-doc clusters. In the attention component, we can extract different types of
nodes (e.g., concepts, events, topics, entities, etc.) from the query-doc clusters, as
well as learn the relationships between different nodes to form the Attention Ontol-
ogy. In the application component, we can apply the Attention Ontology to different
applications such as query conceptualization and document tagging. On the other
hand, we can also integrate different nodes to user profiles to characterize the interest
of different users based on his/her historical viewing behavior. In this manner, we
can characterize both users and web documents based on the constructed Attention
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Ontology, which enables us to better understand and recommend documents from
users’ perspective.

7.3.1 Mining User Attentions

We propose a novel algorithm to extract various types of attention phrases (e.g., con-
cepts, topics or events), which represent user attentions or interests, from a collection
of queries and document titles.

Problem Definition. Suppose a bipartite search click graph Gsc = (Q,D,E)

records the click-through information over a set of queries Q = {q1, q2, · · · , q|Q|} and
documents D = {d1, d2, · · · , d|D|}. We use | ∗ | to denote the length of ∗. E is a set
of edges linking queries and documents. Our objective is to extract a set of phrases
P = {p1, p2, · · · , p|P |} from Q and D to represent user interests. Specifically, suppose
p consists of a sequence of words {wp1, wp2, · · · , wp|p|}. In our work, each phrase p is
extracted from a subset of queries and the titles of correlated documents, and each
word wp ∈ p is contained by at least one query or title.

ALGORITHM 6: Mining Attention Nodes
Input: a sequence of queries Q = {q1, q2, · · · , q|Q|}, search click graph Gsc.
Output: Attention phrases P = {p1, p2, · · · , p|P |}.
1: calculating the transport probabilities between connected query-doc pairs according to

Equation (7.1) and (7.2);
2: for each q ∈ Q do
3: run random walk to get ordered related queries Qq and documents Dq;
4: end for
5: P = {};
6: for each input cluster (Qq, Dq) do
7: get document titles Tq from Dq;
8: create Query-Title Interaction Graph Gqt(Qq, Tq);
9: classify the nodes in Gqt(Qq, Tq) by R-GCN to learn which nodes belong to the

output phrase;
10: sort the extracted nodes by ATSP-decoding and concatenate them into an attention

phrase paq ;
11: perform attention normalization to merge paq with its similar phrase in P into a

sublist;
12: if paq is not similar to any existing phrase, append paq to P ;
13: end for
14: derive higher-level attention phrases by performing common suffix discovery over P ,

and append the new phrases into P ;
15: create a node in the Attention Ontology for each phrase or sublist of similar phrases.

Algorithm 6 presents the pipeline of our system to extract attention phrases based
on a bipartite search click graph. In what follows, we introduce each step in detail.
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Figure 7.3: An example to show the construction of query-title interaction graph for
attention mining.

Query-Doc Clustering. Suppose c(qi, dj) represents how many times query qi
is linked to document dj in a search click graph Gsc constructed from user search click
logs within a period. For each query-doc pair < qi, dj >, suppose N(qi) denotes the
set of documents connected with qi, and N(dj) denotes the set of queries connected
with dj. Then we define the transport probabilities between qi and dj as:

P(dj|qi) =
c(qi, dj)∑

dk∈N(qi)
c(qi, dk)

, (7.1)

P(qi|dj) =
c(qi, dj)∑

qk∈N(dj)
c(qk, dj)

. (7.2)

From query q, we perform random walk [Spitzer, 2013] according to transport prob-
abilities calculated above and compute the weights of visited queries and documents.
For each visited query or document, we keep it if its visiting probability is above a
threshold δv and the number of non-stop words in q is more than a half. In this way,
we can derive a cluster of correlated queries Qq and documents Dq.

Query-Title Interaction Graph Construction. Given a set of queries Qq and
Dq, the next step is to extract a representative phrase that captures the underlying
user attentions or interests. Figure 7.3 shows a query-doc cluster and the concept
phrase extracted from it. We can extract ‘Hayao Miyazaki animated film (宫崎骏|动
画|电影)” from the input query-title cluster. An attention phrase features multiple
characteristics. First, the tokens in it may show up multiple times in the queries and
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document titles. Second, the phrase tokens are not necessarily consecutively or fully
contained by a single query or title. For example, in Figure 7.3, additional tokens
such as “famous (著名的)” will be inserted into the phrase tokens, making them not
a consecutive span. Third, the phrase tokens are syntactically dependent even if they
are not consecutively adjacent in a query or title. For example, “Hayao Miyazaki
(宫崎骏)” and “film (电影)” forms a compound noun name. Finally, the order of
phrase tokens may change in different text. In Figure 7.3, the tokens in the concept
phrase “Hayao Miyazaki animated film (宫崎骏|动画|电影)” are fully contained by
the query and two titles, while the order of the tokens varies in different queries or
titles. Other types of attention phrases such as events and topics will feature similar
characteristics.

To fully exploit the characteristics of attention phrases, we propose Query-Title
Interaction Graph (QTIG), a novel graph representation of queries and titles to reveal
the correlations between their tokens. Based on it, we further propose GCTSP-Net,
a model that takes a query-title interaction graph as input, performs node classifica-
tion with graph convolution, and finally generates a phrase by Asymmetric Traveling
Salesman Decoding (ATSP-decoding).

Figure 7.3 shows an example of query-title interaction graph constructed from a
set of queries and titles. Denote a QTIG constructed from queries Qq and the titles
Tq of documents Dq as Gqt(Qq, Tq). The queries and documents are sorted by the
weights calculated during the random walk. In Gqt(Qq, Tq), each node is a unique
token belonging to Qq or Tq. The same token present in different input text will be
merged into one node. For each pair of nodes, if they are adjacent tokens in any
query or title, they will be connected by a bi-directional “seq” edge, indicating their
order in the input. In Figure 7.3, the inverse direction of a “seq” edge points to the
preceding words, which is indicated by a hollow triangle pointer. If the pair of nodes
are not adjacent to each other, but there exists syntactical dependency between them,
they will be connected by a bi-directional dashed edge which indicates the type of
syntactical dependency relationship and the direction of it, while the inverse direction
is also indicated by a hollow triangle pointer.

Algorithm 7 shows the process of constructing a query-title interaction graph. We
construct the nodes and edges by reading the inputs in Qq and Tq in order. When
we construct the edges between two nodes, as two nodes may have multiple adjacent
relationships or syntactical relationships in different inputs, we only keep the first
edge constructed. In this way, each pair of related nodes will only be connected by
a bi-directional sequential edge or a syntactical edge. The idea is that we prefer the
“seq” relationship as it shows a stronger connection than any syntactical dependency,
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ALGORITHM 7: Constructing the Query-Title Interaction Graph
Input: a sequence of queries Q = {q1, q2, · · · , q|Q|}, document titles T = {t1, t2, · · · , t|T |}.
Output: a Query-Title Interaction Graph Gqt(Q,T ).
1: Create node set V = {sos, eos}, edge set E = {};
2: for each input text passage x ∈ Q or x ∈ T do
3: append “sos” and “eos” as the first and the last token of x;
4: construct a new node for each token in x;
5: construct a bi-directional “seq” edge for each pair of adjacent tokens;
6: append each constructed node and edge into V or E only if the node is not

contained by V , or no edge with the same source and target tokens exists in E;
7: end for
8: for each input text passage x ∈ Q or x ∈ T do
9: perform syntactic parsing over x;
10: construct a bi-directional edge for each dependency relationship;
11: append each constructed edge into E if no edge with the same source and target

tokens exists in E;
12: end for
13: construct graph Gqt(Q,T ) from node set V and edge set E.

and we prefer the syntactical relationships contained in the higher-weighted input text
instead of the relationships in lower-weighted inputs. Compared with including all
possible edges in a query-title interaction graph, empirical evidence suggests that our
graph construction approach gives better performance for phrase mining.

After constructing a graph Gqt(Qq, Tq) from a query-title cluster, we extract a
phrase p by our GCTSP-Net, which contains a classifier to predict whether a node
belong to p, and an asymmetric traveling salesman decoder to order the predicted
positive nodes.

Node Classification with R-GCN. In the GCTSP-Net, we apply Relational
Graph Convolutional Networks (R-GCN) [Kipf and Welling, 2016; Gilmer et al., 2017;
Schlichtkrull et al., 2017] to our constructed QTIG to perform node classification.

Denote a directed and labeled multi-graph as G = (V,E,R) with nodes vi, wi ∈ V ,
labeled edges evw = (v, r, w) ∈ E, where r ∈ R is a relation type. A class of graph
convolutional networks can be understood as a message-passing framework [Gilmer
et al., 2017], where the hidden states hlv of each node v ∈ G at layer l are updated
based on messages ml+1

v according to:

ml+1
v =

∑
w∈N(v)

Ml(h
l
v, h

l
w, evw), (7.3)

hl+1
v = Ul(h

l
v,m

l+1
v ), (7.4)

where N(v) denotes the neighbors of v in graph G, Ml is the message function at
layer l, and Ul is the vertex update function at layer l.
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Specifically, the message passing function of Relational Graph Convolutional Net-
works is defined as:

hl+1
v = σ

(∑
r∈R

∑
w∈Nr(v)

1

cvw
W l
rh

l
w +W l

0h
l
v

)
, (7.5)

where σ(·) is an element-wise activation function such as ReLU(·) = max(0, ·). N r(v)

is the set of neighbors under relation r ∈ R. cvw is a problem-specific normalization
constant that can be learned or pre-defined (e.g., cvw = |N r(v)|). W l

r and W l
0 are

learned weight matrices.
We can see that an R-GCN accumulates transformed feature vectors of neighboring

nodes through a normalized sum. Besides, it learns relation-specific transformation
matrices to take the type and direction of each edge into account. In addition, it
adds a single self-connection of a special relation type to each node to ensure that the
representation of a node at layer l + 1 can also be informed by its representation at
layer l.

To avoid the rapid growth of the number of parameters when increasing the num-
ber of relations |R|, R-GCN exploits basis decomposition and block-diagonal decom-
position to regularize the weights of each layer. For basis decomposition, each weight
matrix W l

r ∈ Rdl+1×dl is decomposed as:

W l
r =

B∑
b=1

alrbV
l
b , (7.6)

where V l
b ∈ Rdl+1×dl are base weight matrices. In this way, only the coefficients alrb

depend on r. For block-diagonal decomposition,W l
r is defined through the direct sum

over a set of low-dimensional matrices:

W l
r =

B⊕
b=1

Ql
br, (7.7)

whereW l
r = diag(Ql

1r, Q
l
2r, · · · , Ql

br) is a block-diagonal matrix withQl
br ∈ R(dl+1/B)×(dl/B).

The basis function decomposition introduces weight sharing between different rela-
tion types, while the block decomposition applies sparsity constraint on the weight
matrices.

In our model, we apply R-GCN with basis decomposition to query-title interaction
graphs to perform node classification. For each node in the graph, we represent it by
a feature vector consisting of the embeddings of the token’s named entity recognition
(NER) tag, part-of-speech (POS) tag, whether it is a stop word, number of characters
in the token, as well as the sequential id that indicates the order each node be added
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to the graph. Using the concatenation of these embeddings as the initial node vectors,
we pass the graph to a multi-layer R-GCN with a softmax(·) activation (per node) on
the output of the last layer. We label the nodes belonging to the target phrase p as
1 and other nodes as 0, and train the model by minimizing the binary cross-entropy
loss on all nodes.

Node Ordering with ATSP Decoding. After classified a set of tokens Vp as
target phrase nodes, the next step is to sort the nodes to get the final output. In our
GCTSP-Net, we propose to model the problem as an asymmetric traveling salesman
problem (ATSP), where the objective is to find the shortest route that starts from
the “sos” node, visits each predicted positive nodes, and returns to the “eos” node.
This approach is named as ATSP-decoding in our work.

We perform ATSP-decoding with a variant of the constructed query-title interac-
tion graph. First, we remove all the syntactical dependency edges. Second, instead
of connecting adjacent tokens by a bi-directional “seq” edge, we change it into unidi-
rectional to indicate the order in input sequences. Third, we connect “sos” with the
first predicted positive token in each input text, as well as connect the last predicted
positive token in each input with the “eos” node. In this way, we remove the influ-
ence of prefixing and suffixing tokens in the inputs when finding the shortest path.
Finally, the distance between a pair of predicted nodes is defined as the length of
the shortest path in the modified query-title interaction graph. In this way, we can
solve the problem with Lin-Kernighan Traveling Salesman Heuristic [Helsgaun, 2000]
to get a route of the predicted nodes and output p.

We shall note that ATSP-decoding will produce a phrase that contains only unique
tokens. In our work, we observe that only less than 1% attention phrases contain
duplicated tokens, while most of the duplicated tokens are punctuations. Even if we
need to produce duplicate tokens when applying our model to other tasks, we just
need to design task-specific heuristics to recognize the potential tokens (such as count
their frequency in each query and title), and construct multiple nodes for it in the
query-title interaction graph.

Attention Phrase Normalization. The same user attention may be expressed
by slightly different phrases. After extracting a phrase using GCTSP-Net, we merge
highly similar phrases into one node in out Attention Ontology. Specifically, we
examine whether a new phrase pn is similar to an existing phrase pe by two criteria:
i) the non-stop words in pn shall be similar (same or synonyms) with that in pe, and ii)
the TF-IDF similarity between their context-enriched representations shall be above
a threshold δm. The context-enriched representation of a phrase is obtained by using
itself as a query and concatenating the top 5 clicked titles.
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Training Dataset Construction. To reduce human effort and accelerate the
labeling process of training dataset creation, we design effective unsupervised strate-
gies to extract candidate phrases from queries and titles, and provide the extracted
candidates together with query-title clusters to workers as assistance. For concepts,
we combine bootstrapping with query-title alignment [Liu et al., 2019c]. The boot-
strapping strategy exploits pattern-concept duality: we can extract a set of concepts
from queries following a set of patterns, and we can learn a set of new patterns from a
set of queries with extracted concepts. Thus, we can start from a set of seed patterns,
and iteratively accumulate more and more patterns and concepts. The query-title
alignment strategy is inspired by the observation that a concept in a query is usu-
ally mentioned in the clicked titles associated with the query, yet possibly in a more
detailed manner. Based on this observation, we align a query with its top clicked
titles to find a title chunk which fully contains the query tokens in the same order
and potentially contains extra tokens within its span. Such a title chunk is selected
as a candidate concept.

For events, we split the original unsegmented document titles into subtitles by
punctuations and spaces. After that, we only keep the set of subtitles with lengths
between Ll (we use 6) and Lh (we use 20). For each remaining subtitle, we score it by
counting how many unique non-stop query tokens within it. The subtitles with the
same score will be sorted by its click-through rate. Finally, we select the top ranked
subtitle as a candidate event phrase.

Attention Derivation. After extracting a collection of attention nodes (or
phrases), we can further derive higher level concepts or topics from them, which
automatically become their parent nodes in our Attention Ontology.

On one hand, we derive higher-level concepts by applying common suffix discovery
(CSD) to extracted concepts. We perform word segmentation over all concept phrases,
and find out the high-frequency suffix words or phrases. If the suffixes forms a noun
phrase, we add it as a new concept node. For example, the concept “animated film (动
画|电影)” can be derived from “famous animated film (著名的|动画|电影)”, “award-
winning animated film (获奖的|动画|电影)” and “Hayao Miyazaki animated film (宫
崎骏|动画|电影)”, as they share the common suffix “animated film (动画|电影)”

On the other hand, we drive high-level topics by applying common pattern dis-
covery (CPD) to extracted events. We perform word segmentation, named entity
recognition and part-of-speech tagging over the event phrases. After that, we find
out high-frequency event patterns and recognize the different elements in the events.
If the elements (such as entities or locations of events) have isA relationship with
one or multiple common concepts, we replace the different elements by the most fine-
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grained common concept ancestor in the ontology. For example, we can derive a topic
“Singer will have a concert (歌手|开|演唱会)” from “Jay Chou will have a concert (周
杰伦|开|演唱会)” and “Taylor Swift will have a concert (泰勒斯威夫特|开|演唱会)”,
as the two phrases sharing the same pattern “XXX will have a concert (XXX|开|演
唱会)”, and both “Jay Chou (周杰伦)” and “Taylor Swift (泰勒斯威夫特)” belong to
the concept “Singer (歌手)”.

7.3.2 Linking User Attentions

The previous step produces a large set of nodes representing user attentions (or in-
terests) in different granularities. Our goal is to construct a taxonomy based on
these individual nodes to show their correlations. With edges between different user
attentions, we can reason over it to infer a user’s real interest.

In this section, we describe our methods to link attention nodes and construct
the complete ontology. We will construct the isA relationships, involve relationships,
and correlate relationships between categories, extracted attention nodes and entities
to construct a ontology. We exploit the following action-driven strategies to link
different types of nodes.

Edges between Attentions and Categories. To identify the isA relationship
between attention-category pairs, we utilize the co-occurrence of them shown in user
search click logs. Given an attention phrase p as the search query, suppose there are
np clicked documents of search query p in the search click logs, and among them there
are npg documents belong to category g. We then estimate P(g|p) by P(g|p) = npg/n

p.
We identify that there is an isA relationship between p and g if P(g|p) > δg (we set
δg = 0.3).

Edges between Attentions. To discover isA relationships, we utilize the same
criteria when we perform attention derivation: we link two concepts by the isA rela-
tionship if one concept is the suffix of another concept, and we link two topic/event
attentions by the isA relationship if they share the same pattern and there exists isA
relationships between their non-overlapping tokens. Note that if a topic/event doesn’t
contain an element of another topic/event phrase, it also indicates that they have isA
relationship. For example, “Jay Chou will have a concert” has isA relationship with
both “Singer will have a concert” and “have a concert”. For the involve relationship,
we connect a concept to a topic if the concept is contained in the topic phrase.

Edges between Attentions and Entities. We extract: i) isA relationships
between concepts and entities; ii) involve relationships between topics/events and
entities, locations or triggers.
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Figure 7.4: Automatic construction of the training datasets for classifying the isA
relationship between concepts and entities.

For concepts and entities, using strategies such as co-occurrence will introduce
a lot of noises, as co-occurrence doesn’t always indicate an entity belongs to a con-
cept. To solve this issue, we propose to train a concept-entity relationship classifier
based on the concept and the entity’s context information in the clicked documents.
Labeling a training dataset for this task requires a lot of human efforts. Instead of
manual labeling, we propose a method to automatically construct a training dataset
from user search click graphs. Figure 7.4 shows how we construct such a training
dataset. We select the concept-entity pairs from search logs as positive examples if:
i) the concept and the entity are two consecutive queries from one user, and ii) the
entity is mentioned by a document which a user clicked after issuing the concept as a
search query. Besides, we select entities belonging to the same higher-level concept or
category, and insert them into random positions of the document to create negative
examples of the dataset. For the classifier, we can train a classifier such as GBDT
based on manual features, or fine-tune a pre-trained language model to incorporate
semantic features and infer whether the context indicates a isA relationship between
the concept-entity pair.

For events/topics and entities, we only recognize the important entities, triggers
and locations in the event/topic, and connect them by an involve relationship edge.
We first create an initial dataset by extracting all the entities, locations, and trigger
words in the events/topic based on a set of predefined trigger words and entities.
Then the dataset is manually revised by workers to remove the unimportant elements.
Based on this dataset, we reuse our GCTSP-Net and train it without ATSP-decoding
to perform 4-class (entity, location, trigger, other) node classification over the query-
title interaction graphs of the events/topics. In this way, we can recognize the different
elements of an event or topic, and construct involve edges between them.

Edges between Entities. Finally, we construct the correlate relationship be-
tween entity pairs by the co-occurrence information in user queries and documents.
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We utilize high frequency co-occurring entity pairs in queries and documents as posi-
tive entity pairs, and perform negative sampling to create negative entity pairs. After
automatically created a dataset from search click logs and web documents, we learn
the embedding vectors of entities with Hinge loss, so that the Euclidean distance
between two correlated entities will be small. After learned the embedding vectors of
different entities, we classify a pair of entities as correlated if their Euclidean distance
is smaller than a threshold.

Note that the same approach for correlate relationship discovery can be applied
to other type of nodes such as concepts. Currently, we only constructed such rela-
tionships between entities.

7.4 Applications

In this section, we show how our attention ontology can be applied to a series of NLP
tasks to achieve user-centered text understanding.

Story Tree Formation. The relationships between events and the involved
entities, triggers and locations can be utilized to cluster correlated events and form a
story tree [Liu et al., 2017]. A story tree organizes a collection of related events with
a tree structure to highlight the evolving nature of a real-world story. Given an event
pe, we retrieve a collection of related events P e and use them to form a story tree,
which allows us to better serve the users by recommending follow-up events from P e

when they have read news articles about pe.
Constructing a story tree from an attention ontology involves four steps: retriev-

ing correlated events, calculating similarity matrix, hierarchical clustering, and tree
formation. First, with the help of the attention ontology, we can retrieve related
events set P e give an event pe. Specifically, the criteria to retrieve “correlated” events
can be flexible. For example, we can set a requirement that each event pi ∈ P e shares
at least one common child entity with pe, or we can force the triggers of them to be
the same. Second, we can estimate the similarities between each pair of events based
on the text similarity of event phrases and the common entities, triggers or locations
shared by them. Specifically, we calculate the similarity between two events by:

s(pe1, p
e
2) = fm(p

e
1, p

e
2) + fg(p

e
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e
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e
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136



where s(pe1, pe2) is the measured similarity between the two events, It is given by the
sum of three scores: i) fm(pe1, pe2), which represents the semantic distance between two
event phrases. We use the cosine similarity of BERT-based phrase encoding vectors
vp

e
1 and vp

e
2 for the two events [Devlin et al., 2018] ; ii) fg(pe1, pe2), which represents the

similarity of the triggers in two events. We calculate the similarity between trigger ge1
in event pe1 and ge2 in pe2 by the cosine similarity of the word vectors vge1 and vg

e
2 from

[Song et al., 2018c]; iii) fe(pe1, pe2), the TF-IDF similarity between the set of entities
Epe1 of event pe1 and Epe2 of pe2. After the measurement of the similarities between
events, we perform hierarchical clustering to group them into hierarchical clusters.
Finally, we order the events by time, and put the events in the same cluster into the
same branch. In this way, the cluster hierarchy is transformed into the branches of a
tree.

Document Tagging We can also utilize the attention phrases to describe the
main topics of a document by tagging the correlated attentions to the document, even
if the phrase is not explicitly mentioned in the document. For example, a document
talking about films “Captain America: The First Avenger”, “Avengers: Endgame”
and “Iron Man” can be tagged with the concept “Marvel Super Hero Movies” even
though the concept may not be contained by it. Similarly, a document talking about
“Theresa May’s Resignation Speech” can be tagged by topics “Brexit Negotiation”,
while traditional keyword-based methods are not able to reveal such correlations.

To tag concepts to documents, we combine a matching-based approach and a
probabilistic inference-based approach based on the key entities in a document. Sup-
pose d contains a set of key entities Ed. For each entity ed ∈ Ed, we obtain its parent
concepts P c in the attention ontology as candidate tags. For each candidate concept
pc ∈ P c, we score the coherence between d and pc by calculating the TF-IDF similar-
ity between the title of d and the context-enriched representation of pc (i.e., the topic
clicked titles of pc).

When no parent concept can be found by the attention ontology, we identify
relevant concepts by utilizing the context information of the entities in d. Denote the
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probability that concept pc is related to document d as P(pc|d). We estimate it by:

P(pc|d) =
|Ed|∑
i=1

P(pc|edi )P(edi |d), (7.12)

P(pc|edi ) =
|X
ed
i
|∑

j=1

P(pc|xj)P(xj|edi ), (7.13)

P(pc|xj) =
{

1
|P cxj |

if xj is a substring of pc,

0 otherwise.
(7.14)

where Ed is the key entities of d, P(edi |d) is the document frequency of entity edi ∈ Ed.
P(pc|edi ) estimates the probability of concept pc given edi , which is inferred from the
context words of edi . P(xj|edi ) is the co-occurrence probability of context word xj with
edi . We consider two words as co-occurred if they are contained in the same sentence.
Xedi

are the set of contextual words of edi in d. P c
xj

is the set of concepts containing
xj as a substring.

To tag events or topics to a document, we combine longest common subsequence
based (LCS-based) textural matching with Duet-based semantic matching [Mitra et
al., 2017]. For LCS-based matching, we concatenate a document title with the first
sentence in content, and calculate the length of longest common subsequence be-
tween a topic/event phrase and the concatenated string. For Duet-based matching,
we utilize the Duet neural network [Mitra et al., 2017] to classify whether the phrase
matches with the concatenated string. If the length of the longest common subse-
quence is above a threshold and the classification result is positive, we tag the phrase
to the document.

Query Understanding. A user used to search about an entity may be interested
in a broader class of similar entities. However, the user may not be even aware of the
entities similar to the query. With the help of our ontology, we can better understand
users’ implicit intention and perform query conceptualization or recommendation to
improve the user experience in search engines. Specifically, we analyze whether a
query q contains a concept pc or an entity e. If a query conveys a concept pc, we can
rewrite it by concatenating q with each of the entities ei that have isA relationship
with pc. In this way, we rewrite the query to the format of “q ei”. If a query conveys
an entity e, we can perform query recommendation by recommend users the entities
ei that have correlate relationship with e in the ontology.
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Category Concept Topic Event Entity

Quantity 1, 206 460, 652 12, 679 86, 253 1, 980, 841
Grow / day - 11, 000 - 120 -

Table 7.1: Nodes in the attention ontology.

isA correlate involve

Quantity 490, 741 1, 080, 344 160, 485
Accuracy 95%+ 95%+ 99%+

Table 7.2: Edges in the attention ontology.

7.5 Evaluation

Our proposed GIANT system is the core ontology system in multiple applications in
anonymous company and is serving more than a billion daily active users all around
the world. It is implemented by Python 2.7 and C++. Each component of our
system works as a service and is deployed with Tars1, a high-performance remote
procedure call (RPC) framework based on name service and Tars protocol. The
attention mining and linking services are deployed on 10 dockers, with each configured
with four processor Intel(R) Xeon(R) Gold 6133 CPU @ 2.50GHz and 6GB memory.
Applications such as document tagging are running on 48 dockers with the same
configuration. MySQL database is used for data storage. We construct the attention
ontology from large-scale real-world daily user search click logs. While our system
is deployed on Chinese datasets, the techniques proposed in our work can be easily
adapted to other languages.

7.5.1 Evaluation of the Attention Ontology

Table 7.1 shows the statistics of different nodes in the attention ontology. We extract
attention phrases from daily user search click logs. Therefore, the scale of our ontology
keeps growing. Currently, our ontology contains 1, 206 predefined categories, 460, 652
concepts, 12, 679 topics, 86, 253 events and 1, 980, 841 entities. We are able to extract
around 27, 000 concepts and 400 events every day, and around 11, 000 concepts and
120 events are new. For online concept and event tagging, our system processes 350
documents per second.

Table 7.2 shows the statistics and accuracies of different types of edges (relation-
ships) in the attention ontology. Currently, we have constructed more than 490K isA

1https://github.com/TarsCloud/Tars
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Categories Concepts Instances

Sports Famous long-distance
runner

Dennis Kipruto Kimetto, Kenenisa Bekele

Stars Actors who committed
suicide

Robin Williams, Zhang Guorong, David
Strickland

Drama series American crime drama
series

American Crime Story, Breaking Bad, Crim-
inal Minds

Fiction Detective fiction Adventure of Sherlock Holmes, The Maltese
Falcon

Table 7.3: Showcases of concepts and the related categories and entities.

relationships, 1, 080K correlate relationships, and 160K involve relationships between
different nodes. The human evaluation performed by three managers in anonymous
company shows the accuracies of the three relationship types are above 95%, 95%
and 99%, respectively.

Categories Topics Events Entities

Music Taylor Swift
and Katy
Perry

Taylor Swift and
Katy Perry’s econ-
ciliation

Katy Perry,
Taylor Swift

Cellphone cellphone
launch events

Apple news con-
ferences 2018
mid-season, Sam-
sung Galaxy S9
officially released

Apple, iPhone,
Samsung,
Galaxy S9

Esports League of Leg-
ends season 8

LOL S8 finals
announcement, IG
wins the S8 final,
IG’s reward for
winning the S8
final revealed

League of Leg-
ends, IG team,
finals

Table 7.4: Showcases of events and the related categories, topics and involved entities.

To give intuition into what kind of attention phrases can be derived from search
click graphs, Table 7.3 and Table 7.4 show a few typical examples of concepts and
events (translated from Chinese), and some topics, categories, and entities that share
isA relationship with them. By fully exploiting the information of user actions con-
tained in search click graphs, we transform user actions to user attentions, and extract
concepts such as “Actors who committed suicide (自杀的演员)”. Besides, we can also
extract events or higher level topics of users’ interests, such as “Taylor Swift and
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Katy Perry” if a user often inputs related queries. Based on the connections between
entities, concepts, events and topics, we can also infer what a user really cares and
improve the performance of recommendation.

7.5.2 Evaluation of the GCTSP-Net

We evaluate our GCTSP-Net on multiple tasks by comparing it to a variety of baseline
approaches.

Datasets. To the best of our knowledge, there is no publicly available dataset
suitable for the task of heterogeneous phrase mining from user queries and search click
graphs. To construct the user attention ontology, we create two large-scale datasets
for concept mining and event mining using the approaches described in Sec. 7.3: the
Concept Mining Dataset (CMD) and the Event Mining Dataset (EMD). These two
datasets contain 10, 000 examples and 10, 668 examples respectively. Each example
is composed of a set of correlated queries and top clicked document titles from real-
world query logs, together with a manually labeled gold phrase (concept or event).
For the event mining dataset, it further contains triggers, key entities and locations
of each event. We use the earliest article publication time as the time of each event
example. The datasets are labeled by 3 professional product managers in anonymous
company and 3 graduate students. For each dataset, we utilize 80% as training set,
10% as development set, and 10% as test set. The datasets will be published for
research purposes 2.

Methodology and Models for Comparison. We compare our GCTSP-Net
with the following baseline methods on the concept mining task:

• TextRank. A classical graph-based keyword extraction model [Mihalcea and
Tarau, 2004].3

• AutoPhrase. A state-of-the-art phrase mining algorithm that extracts quality
phrases based on POS-guided segmentation and knowledge base [Shang et al.,
2018].4

• Match. Extract concepts from queries and titles by matching using patterns
from bootstrapping [Liu et al., 2019c].

• Align. Extract concepts by the query-title alignment strategy described in
Sec. 7.3.1.

2https://github.com/anonymous/GIANT
3https://github.com/letiantian/TextRank4ZH
4https://github.com/shangjingbo1226/AutoPhrase
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• MatchAlign. Extract concepts by both pattern matching and query-title align-
ment strategy.

• LSTM-CRF-Q. Apply LSTM-CRF [Huang et al., 2015] to input query.

• LSTM-CRF-T. Apply LSTM-CRF [Huang et al., 2015] to titles.

For the TextRank and AutoPhrase algorithm, we extract the top 5 keywords or
phrases from queries and titles, and concatenate them in the same order with the
query/title to get the extracted phrase. For MatchAlign, we select the most frequent
result if multiple phrases are extracted. For LSTM-CRF-Q/LSTM-CRF-T, it consists
of a 200-dimensional word embedding layer initialized with the word vectors proposed
in [Song et al., 2018c], a BiLSTM layer with hidden size 25 for each direction, and a
Conditional Random Field (CRF) layer which predicts whether each word belongs to
the output phrase by Beginning-Inside–Outside (BIO) tags.

For event mining task, we compare with TextRank and LSTM-CRF. In addition,
we also compare with:

• TextSummary [Mihalcea and Tarau, 2004]. An encoder-decoder model
with attention mechanism for text summarization.5

• CoverRank. Rank queries and subtitles by counting the covered nonstop query
words, as described in 7.3.1.

For TextRank, we use the top 2 queries and top 2 selected subtitles given by Cover-
Rank, and perform re-ranking. For TextSummary, we use the 200-dimensional word
embeddings in [Song et al., 2018c], two-layer BiLSTM (256 hidden size for each direc-
tion) as encoder, and one layer LSTM with 512 hidden size and attention mechanism
as decoder (beam size for decoding is 10). We feed the concatenation of queries and
titles into TextSummary to generate the output. For LSTM-CRF, the LSTM layer in
it is configured similarly to the encoder of TextSummary. We feed each title individu-
ally into it to get different outputs, filter the outputs by length (number of characters
between 6 and 20), and finally select the phrase which belongs to the top clicked title.

For the task of event key elements recognition (key entities, trigger, location), it is
a 4-class classification task over each word. We compare our model with LSTM and
LSTM-CRF. The difference between LSTM and LSTM-CRF is that LSTM replaces
the CRF layer in LSTM-CRF with a softmax layer.

For each baseline, we individually tune the hyper-parameters in order to achieve
its best performance. As to our approach (GCTSP-Net), we stack 5-layer R-GCN

5https://github.com/dongjun-Lee/text-summarization-tensorflow
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Method EM F1 COV

TextRank 0.1941 0.7356 1
AutoPhrase 0.0725 0.4839 0.9353
Match 0.1494 0.3054 0.3639
Align 0.7016 0.8895 0.9611
MatchAlign 0.6462 0.8814 0.9700
Q-LSTM-CRF 0.7171 0.8828 0.9731
T-LSTM-CRF 0.3106 0.6333 0.9062

GCTSP-Net 0.783 0.9576 1

Table 7.5: Compare concept mining approaches.

Method EM F1 COV

TextRank 0.3968 0.8102 1
CoverRank 0.4663 0.8169 1
TextSummary 0.0047 0.1064 1
LSTM-CRF 0.4597 0.8469 1

GCTSP-Net 0.5164 0.8562 0.9972

Table 7.6: Compare event mining approaches.

with hidden size 32 and number of bases B = 5 in basis decomposition for graph
encoding and node classification. We will open-source our code together with the
datasets for research purposes.

Metrics. We use Exact Match (EM), F1 and coverage rate (COV) to evaluate
the performance of event and concept mining tasks. The exact match score is 1 if
the prediction is exactly the same as ground-truth or 0 otherwise. F1 measures the
portion of overlap tokens between the predicted phrase and the ground-truth phrase
[Rajpurkar et al., 2016]. The coverage rate measures the percentage of non-empty
predictions of each approach. For the event key elements recognition task, we evaluate
by the F1-macro, F1-micro, and F1-weighted metrics.

Evaluation results and analysis. Table 7.5, Table 7.6, and Table 7.7 compare
our model with different baselines on the CMD and EMD datasets for concept mining,

Method F1-macro F1-micro F1-weighted

LSTM 0.2108 0.5532 0.6563
LSTM-CRF 0.2610 0.6468 0.7238

GCTSP-Net 0.6291 0.9438 0.9331

Table 7.7: Compare event key elements recognition approaches.
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event mining, and event key elements recognition. We can see that our unified model
for different tasks significantly outperforms all baseline approaches. The outstanding
performance can be attribute to: first, our query-title interaction graph efficiently
encodes the information of word adjacency, word features, dependencies, query-title
overlapping and so on in a structured manner, which are critical for both attention
phrase mining tasks and event key elements recognition tasks. Second, the multi-
layer R-GCN encoder in our model can learn from both the node features and the
multi-resolution structural patterns from query-title interaction graph. Therefore,
combining query-title interaction graph with R-GCN encoder, we can achieve great
performance in different node classification tasks. Furthermore, the unsupervised
ATSP-decoding sorts the extracted tokens to form an ordered phrase efficiently. In
contrast, heuristic-based approaches and LSTM-based approaches are not robust to
the noises in dataset, and cannot capture the structural information in queries and
titles. In addition, existing keyphrase extraction methods such as TextRank [Mihalcea
and Tarau, 2004] and AutoPhrase [Shang et al., 2018] are better suited for extracting
key words or phrases from long documents, lacking the ability to give satisfactory
performance in our tasks.

7.5.3 Applications: Document Tagging and Story Tree For-
mation

Document Tagging. For document tagging, our system currently processes around
1, 525, 682 documents per day, where about 35% of them can be tagged with at least
one concept, and 4% can be tagged with an event. We perform human evaluation
by sampling 500 documents for each major category (“game”, “technology”, “car”,
and “entertainment”). The result shows that the precision of concept tagging for
documents is 88% for “game” category, 91% for “technology”, 90% for “car”, and 87%

for “entertainment”. The overall precision for documents of all categories is 88%. As
to event tagging on documents, the overall precision is 96%.

Story Tree Formation. We apply the story tree formation algorithm described
in Sec. 7.4 to real-world events to test its performance. Figure 7.5 gives an example
to illustrate what we can obtain through our approach. In the example, each node
is an event, together with the documents that can be tagged by this event. We
can see that our method can successfully cluster events related to “China-US Trade”,
ordering the events by the published time of the articles, and show the evolving
structure of coherent events. For example, the branch consists of events 3 ∼ 6 are
mainly about “Sino-US trade war is emerging”, the branch 8 ∼ 10 are resolving around
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Figure 7.5: An example to show the constructed story tree given by our approach.
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Figure 7.6: The click-through rates with/without extracted tags.

“US agrees limited trade deal with China”, and 11 ∼ 14 are about “Impact of Sino-US
trade war felt in both countries”. By clustering and organizing events and related
documents in such a tree structure, we can track the development of different stories
(clusters of coherent events), reduce information redundancy, and improve document
recommendation by recommending users the follow-up events they are interested in.

7.5.4 Online Recommendation Performance

We evaluate the effect of our attention ontology on recommendations by analyzing
its performance in the news feeds stream of an anonymous application which has
more than 110 million daily active users. In the application, both users and articles
are tagged with categories, topics, concepts, events or entities from the attention
ontology, as shown in Figure 7.2. The application recommends news articles to users
based on a variety of strategies, such as content-based recommendation, collaborative
filtering and so on. For the content-based recommendation, it matches users with
articles through the common tags they share.

We analyze the Click-Through Rate (CTR) given by different tags from July 16,
2019 to August 15, 2019 to evaluate their effects. Click-through rate is the ratio of the
number of users who click on a recommended link to the number of total users who
received the recommendation. Figure 7.6 compares the CTR when we recommend
documents to users with different strategies. Traditional recommender systems only
utilize the category tags and entity tags. We can see that including more types of
attention tags (topics, events, or concepts) in recommendation can constantly help
improving the CTR on different days: the average CTR improved from 12.47% to
13.02%. The reason is that the extracted concepts, events or topics can depict user
interests with suitable granularity. They are quite helpful for solving the inaccurate
recommendation and monotonous recommendation problem.
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Figure 7.7: The click-through rates of different tags.

We further analyze the effects of each type of tags in recommendation. Figure 7.7
shows the CTR of the recommendations given by different types of tags. The average
CTR for topic, event, entity, concept and category are 16.18%, 14.78%, 12.93%,
11.82%, and 9.04%, respectively. The CTR of both topic tags and event tags are
much higher than that of category and entities, which shows the effectiveness of our
constructed ontology. For events, the events happening on each days dramatically
different with each other, and they are not always attractive to users. Therefore,
the CTR of event tags is less stable than the topic tags. For concept tags, they
are generalization of fine-grained entities and has isA relationship with them. As
there may have noises when we perform user interest inference using the relationships
between entities and concepts, the CTR of concepts are slightly lower than entities.
However, compared to entities, our experience show that concepts can significantly
increase the diversity of recommendation and are helpful in solving the problem of
monotonous recommendation.

7.6 Conclusion

In this chapter, we describe our design and implementation of GIANT, a system
that proposed to construct a web-scale user attention ontology from large amount
of query logs and search click graphs for various applications. It consists of around
two millions of heterogeneous nodes with three types of relationships between them,
and keeps growing with newly retrieved nodes and identified relationships every day.
To construct the ontology, we propose the query-title interaction graph to represent
the correlations (such as adjacency or syntactical dependency) between the tokens in
correlated queries and document titles. Furthermore, we propose the GCTSP-Net to

147



extract multi-type phrases from the query-title interaction graph, as well as recognize
the key entities, triggers or locations in events. After constructing the attention ontol-
ogy by our models, we apply it to different applications, including document tagging,
story tree formation, as well as recommendation. We run extensive experiments and
analysis to evaluate the quality of the constructed ontology and the performance of
our new algorithms. Results show that our approach outperforms a variety of baseline
methods on three tasks. In addition, our attention ontology significantly improves
the CTR of news feeds recommendation in a real-world application.
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Part III

Text Generation: Asking Questions
for Machine Reading Comprehension
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ACS-aware
QG

Question Generation

Answer-aware
QG

Automatic question generation is an important technique that can improve the
training of question answering, help chatbots to start or continue a conversation with
humans, and provide assessment materials for educational purposes. It is critical to
both human and machine intelligence.

In chapter 8, we propose our Clue Guided Copy Network for Question Gener-
ation (CGC-QG), which is a sequence-to-sequence generative model with copying
mechanism, yet employing a variety of novel components and techniques to boost
the performance of question generation. Our model explicitly predicts the potential
clue words in an input sentence through a clue prediction module, and learns to copy
potential clue words and generate questions through a sequence-to-sequence model
with copy mechanism.

The Clue Guided Copy Network for Question Generation is a type of answer-aware
question generation model. For answer-aware question generation models, they are
ineffective at generating a large number of high-quality question-answer pairs from
unstructured text, since given an answer and an input passage, question generation
is inherently a one-to-many mapping problem. Therefore, in chapter 9, we further
propose Answer-Clue-Style-aware Question Generation (ACS-QG), a novel system
aimed at automatically generating diverse and high-quality question-answer pairs
from unlabeled text corpus at scale by mimicking the way a human asks questions.
Instead of predicting the clue words for question generation like what we did in chapter
8, we select appropriate answers and correlated clues from unlabeled text, and utilize
them as inputs to generate questions
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Chapter 8

Learning to Generate Questions by
Learning What not to Generate

Automatic question generation is an important technique that can improve the train-
ing of question answering, help chatbots to start or continue a conversation with
humans, and provide assessment materials for educational purposes. Existing neural
question generation models are not sufficient mainly due to their inability to properly
model the process of how each word in the question is selected, i.e., whether repeat-
ing the given passage or being generated from a vocabulary. In this chapter, we
propose our Clue Guided Copy Network for Question Generation (CGC-QG), which
is a sequence-to-sequence generative model with copying mechanism, yet employing
a variety of novel components and techniques to boost the performance of question
generation. In CGC-QG, we design a multi-task labeling strategy to identify whether
a question word should be copied from the input passage or be generated instead,
guiding the model to learn the accurate boundaries between copying and generation.
Furthermore, our input passage encoder takes as input, among a diverse range of
other features, the prediction made by a clue word predictor, which helps identify
whether each word in the input passage is a potential clue to be copied into the
target question. The clue word predictor is designed based on a novel application
of Graph Convolutional Networks onto a syntactic dependency tree representation of
each passage, thus being able to predict clue words only based on their context in the
passage and their relative positions to the answer in the tree. We jointly train the
clue prediction as well as question generation with multi-task learning and a number
of practical strategies to reduce the complexity. Extensive evaluations show that our
model significantly improves the performance of question generation and out-performs
all previous state-of-the-art neural question generation models by a substantial mar-
gin.
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Today, Barack Obama gives a speech on democracy in the White House

Answer

Who gives a speech today

The speech in the White House is given by whom

Passage:

Question 1:

Question 2:

Copy

Clue 1 Clue 2

Figure 8.1: Questions are often asked by repeating some text chunks in the input
passage, while there is great flexibility as to which chunks are repeated.

8.1 Introduction

Asking questions plays a vital role for both the growth of human beings and the
improvement of artificial intelligent systems. As a dual task of question answering,
question generation based on a text passage and a given answer has attracted much
attention in recent years. One of the key applications of question generation is to auto-
matically produce question-answer pairs to enhance machine reading comprehension
systems [Du et al., 2017; Yuan et al., 2017; Tang et al., 2017; Tang et al., 2018].
Another application is generating practice exercises and assessments for educational
purposes [Heilman and Smith, 2010; Heilman, 2011; Danon and Last, 2017]. Besides,
question generation is also important in conversational systems and chatbots such as
Siri, Cortana, Alexa and Google Assistant, helping them to kick-start and continue a
conversation with human users [Mostafazadeh et al., 2016].

Conventional methods for question generation rely on heuristic rules to perform
syntactic transformations of a sentence to factual questions [Heilman, 2011; Chali
and Hasan, 2015], following grammatical and lexical analysis. However, such meth-
ods require specifically crafted transformation and generation rules, with low gener-
alizability. Recently, various neural network models have been proposed for question
generation [Du et al., 2017; Zhou et al., 2017; Hu et al., 2018; Kim et al., 2018; Gao
et al., 2018]. These models formulate the question generation task as a sequence-to-
sequence (Seq2Seq) neural learning problem, where different types of encoders and
decoders have been designed. Like many other text generation tasks, the copying or
pointer mechanism [Gulcehre et al., 2016] is also widely adopted in question generation
to handle the copy phenomenon between input passages and output questions, e.g.,
[Zhou et al., 2017; Yuan et al., 2017; Subramanian et al., 2017; Kim et al., 2018; Song
et al., 2018a]. However, we point out that a common limitation that hurdles ques-
tion generation models mainly use copying mechanisms to handle out-of-vocabulary
(OOV) issues, and fail to mark a clear boundary between the set of question words
that should be directly copied from the input text and those that should be generated
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instead.
In this chapter, we generate questions by learning to identify where each word in

the question should come from, i.e., whether generated from a vocabulary or copied
from the input text, and given the answer and its context, what words can potentially
be copied from the input passage. People usually repeat text chunks in an input
passage when asking questions about it, and generate remaining words from their
own language to form a complete question. For example, in Fig. 8.1, given an input
passage “Today, Barack Obama gives a speech on democracy in the White House”
and an answer “Barack Obama”, we can ask a question “The speech in the White
House is given by whom?” Here the text chunks “speech” and “in the White House”
are copied from the input passage. However, in the situation that a vocabulary word
is an overlap word between a passage and a question, existing models do not clearly
identify the underlying reason about the overlapping. In other words, whether this
word is copied from the input or generated from vocabulary is not properly labeled.
For example, some approaches [Zhou et al., 2017] only take out-of-vocabulary (OOV)
words that are shared by both the input passage and target question as copied words,
and adopt a copying mechanism to learn to copy these OOV words into questions.
In our work, given a passage and a question in a training dataset, we label a word
as copied word if it is a nonstop word shared by both the passage and the question,
and its word frequency rank in the vocabulary is lower than a threshold. We further
aggressively shortlist the output vocabulary based on frequency analysis of the non-
copied question words (according to our labeling criteria). Combining this labeling
strategy with target vocabulary reduction, during the process of question generation,
our model can make better decisions about when to copy or generate, and predict
what to generate more accurately.

After applying the above strategies, a remaining problem is which word we should
choose to copy. For example, in Fig. 8.1, we can either ask the question “Who gives a
speech today?” or the question “The speech in the White House is given by whom?”,
where the two questions are related to two different copied text chunks “today” and
“White House”. We can see that asking a question about a passage and a given answer
is actually a “one-to-many” mapping problem: we can ask questions in different ways
based on which subset of words we choose to copy from input. Therefore, how to
enable a neural model to learn what to copy is a critical problem. To solve this issue,
we propose to predict the potential clue words in input passages. A word is considered
as a “clue word” if it is helpful to reduce the uncertainty of the model about how to
ask a question or what to copy, such as “White House” in question 2 of Fig. 8.1. In
our model, we directly use our previously mentioned copy word labeling strategy to
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Figure 8.2: An example to show the syntactic structure of an input sentence. Clue
words “White House” and “today” are close to the answer chunk “Barack Obama”
with respect to the graph distance, though they are not close to each other in terms
of the word order distance.

assign a binary label to each input word to indicate whether it is a clue word or not.
To predict the potential clue words in input, we have designed a novel clue pre-

diction model that combines the syntactic dependency tree of an input with Graph
Convolutional Networks. The intuition underlying our model design is that: the words
copied from an input sentence to an output question are usually closely related to the
answer chunk, and the patterns of the dependency paths between the copied words
and answer chunks can be captured via Graph Convolutional Networks. Combining
the graphical representation of input sentences with GCN enables us to incorporate
both word features, such as word vector representation, Named Entity (NE) tags,
Part-of-Speech (POS) tags and so on, and the syntactic structure of sentences for
clue words prediction.

To generate questions given an answer chunk and the predicted clue words dis-
tribution in an input sentence, we apply the Seq2Seq framework which contains our
feature-rich sentence encoder and a decoder with attention and copy mechanism.
The clue word prediction results are incorporated into the encoder by a binary fea-
ture embedding. Based on our multi-task labeling strategy, i.e., labeling for both
clue prediction and question generation, we jointly learn different components of our
model in a supervised manner.

We performed extensive evaluation on two large question answering datasets: the
SQuAD dataset v1.1 [Rajpurkar et al., 2016] and the NewsQA dataset [Trischler et
al., 2016]. For each dataset, we use the answer chunk and the sentence that contains
the answer chunk as input, and try to predict the question as output. We compared
our model with a variety of existing rule-based and neural network based models.
Our approach achieves significant improvement by jointly learning the potential clue
words distribution for copy and the encoder-decoder framework for generation, and
out-performs state-of-the-art approaches.
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Passage:
The Soviet Union and the People’s Republic of China supported 
post–World War II communist movements in foreign nations and 
colonies to advance their own interests, but were not always 
successful.

Question:
Who along with Russia supported post WW-II communist 
movements?

Answer:
the People’s Republic of China

Figure 8.3: An example from the SQuAD dataset. Our task is to generate questions
given an input passage and an answer. In SQuAD dataset, answers are sub spans of
the passages.

8.2 Problem Definition and Motivation

In this section, we formally introduce the problem of question generation, and illus-
trate the motivation behind our work.

8.2.1 Answer-aware Question Generation

Let us denote a passage by P , a question related to this passage by Q, and the answer
of that question by A. A passage can be either an input sentence or a paragraph,
based on different datasets. A passage consists of a sequence of words P = {pt}|P |t=1

where |P | denotes the length of P . A question Q = {qt}|Q|t=1 contains words from either
a predefined vocabulary V or from the input text P . The task is finding the most
probable question Q̂ given an input passage and an answer:

Q̂ = argmax
Q

prob(Q|P,A). (8.1)

Fig. 8.3 shows an example of the dataset used in our work. Note that the answer
A of the question Q is limited to sub spans of the input passage. However, our work
can be easily adapted to the cases where the answer is not a sub span of the input
passage by adding an extra answer encoder.

8.2.2 What to Ask: Clue Word Prediction

Even given the answer of a desired question, the task of question generation is still
not a one-to-one mapping, as there are potentially multiple aspects related to the
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given answer. For example, in Fig. 8.2, given the answer chunk “Barack Obama”, the
questions “The speech in the White House is given by whom?”, “Who gives a speech on
democracy?”, and “Today who gives a speech?” are all valid questions. As we can see,
although these questions share the same answer, they can be asked in different ways
based on which word or phrase we choose to copy (e.g., “White House”, “democracy”,
or “today”).

To resolve this issue, we propose to predict the potential “clue words” in the input
passage. A “clue word” is defined as a word or phrase that is helpful to guide the way
we ask a question, such as “White House”, “democracy”, and “today” in Fig. 8.2. We
design a clue prediction module based on the syntactical dependency tree representa-
tion of passages and Graph Convolutional Networks. Graph Convolutional Networks
generalize Convolutional Neural Networks to graph-structured data, and have been
successfully applied to natural language processing tasks, including semantic role la-
beling [Marcheggiani and Titov, 2017], document matching [Liu et al., 2018a; Zhang
et al., 2018b], relation extraction [Zhang et al., 2018c], and so on. The intuition un-
derlying our model design is that clue words will be more closely connected to the
answer in dependency trees, and the syntactical connection patterns can be learned
via graph convolutional networks. For example, in Fig. 8.2, the graph path distances
between answer “Barack Obama” to “democracy”, “White House”, and “today” are 3,
3, and 2, while the corresponding word order distances between them are 5, 8, and
10, respectively.

8.2.3 How to Ask: Copy or Generate

Another important problem of question generation is when to choose a word from the
target vocabulary and when to copy a word from the input passage during the genera-
tion process. People tend to repeat or paraphrase some text pieces in a given passage
when they ask a question about it. For instance, in Fig. 8.3, the question “Who along
with Russia supported post WW-II communist movements”, the text pieces “sup-
ported”, “post”, and “communist movements” are repeating the input passage, while
“Russia” and “WW-II” are synonymous replacements of input phrases “The Soviet
Union” and “World War II”. Therefore, the copied words in questions should not be
restricted to out-of-vocabulary words. Although this phenomenon is well-known by
existing approaches, they do not properly and explicitly distinguish whether a word
is from copy or from generate.

In our model, we consider the non-stop words that are shared by both an input
passage and the output question as clue words, and encourage the model to copy clue
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Figure 8.4: Illustration of the overall architecture of our proposed model. It contains
a GCN-based clue word predictor, a masked feature-rich encoder for input passages,
and an attention-and-copy-based decoder for generating questions.

words from input. After labeling clue words, we train a GCN-based clue predictor
to learn whether each word in source text can be copied to the target question.
The predicted clue words are further fed into a Seq2Seq model with attention and
copy mechanism to help with question generation. Besides, different from existing
approaches that share a vocabulary between source passages and target questions,
we reduce the size of the target vocabulary of questions to be smaller than source
passages and only include words with word frequency higher than a threshold. The
idea is that the low-frequency words in questions are usually copied from source text
rather than generated from a vocabulary. By combining the above strategies, our
model is able to learn when to generate or copy a word, as well as which words to
copy or generate during the progress of question generation. We will describe our
operations in more detail in the next section.

8.3 Model Description

In this section, we introduce our proposed framework in detail. Similar to [Zhou et
al., 2017; Serban et al., 2016; Du et al., 2017], our question generator is based on an
encoder-decoder framework, with attention and copying mechanisms incorporated.
Fig. 8.4 illustrates the overall architecture and detailed components in our model.
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Our model consists of three components: the clue word predictor, passage encoder
and question decoder.

The clue word predictor predicts potential clue words that may appear a target
question, based on the specific context of the input passage (without knowing the
target question). It utilizes a syntactic dependency tree to reveal the relationship of
answer tokens relative to other tokens in a sentence. Based on the tree representation
of the input passage, we predict the distribution of clue words by a GCN-based
encoder applied on the tree and a Straight-Through (ST) Gumbel-Softmax estimator
[Jang et al., 2016] for clue word sampling. The outputs of the clue word predictor are
fed to the passage encoder to advise the encoder about what words may potentially
be copied to the target question.

The passage encoder incorporates both the predicted clue word distribution and
a variety of other feature embeddings of the input words, such as lexical features,
answer position indicators, etc. Combined with a proposed low-frequency masking
strategy (a shortlist strategy to reduce complexity on tuning input word embeddings),
our encoder learns to better capture the useful input information with fewer trainable
parameters.

Finally, the decoder jointly learns the probabilities of generating a word from
vocabulary and copying a word from the input passage. At the decoder side, we
introduce a multitask learning strategy to intentionally encourage the copying be-
havior in question generation. This is achieved by explicitly labeling the copy gate
with a binary variable when a (non-stop) word in the question also appears in the
input passage in the training set. Other multi-task labels are also incorporated to
accurately learn when and what to copy. We further shortlist the target vocabulary
based on the frequency distribution of non-overlap words. These strategies, assisted
by the encoded features, help our model to clearly learn which word in the passage
is indeed a clue word to be copied into the target question, while generating other
non-clue words accurately.

The entire model is trained end-to-end via multitask learning, i.e., by minimiz-
ing a weighted sum of losses associated with different labels. In the following, we
first introduce the encoder and decoder, followed by a description of the clue word
predictor.

8.3.1 The Passage Encoder with Masks

Our encoder is based on bidirectional Gated Recurrent Unit (BiGRU) [Chung et
al., 2014], taking word embeddings, answer position indicators, lexical and frequency
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features of words, as well as the output of the clue word predictor as the input.
Specifically, for each word pi in input passage P , we concatenate the following features
to form a concatenated representation wi to be input into the encoder:

• Word Vector. We initialize each word vector by Glove embedding [Pennington
et al., 2014]. If a word is not covered by Glove, we initialize its word vector
randomly.

• Lexical Features. We perform Named Entity Recognition (NER), Part-of-
Speech (POS) tagging and Dependency Parsing (DEP) on input passages using
spaCy [Matthew Honnibal, 2015], and concatenate the lexical feature embedding
vectors.

• Binary Features. We check whether each word is lowercase or not, whether
it is a digit or like a number (such as word “three”), and embed these features
by vectors.

• Answer Position. Similar to [Zhou et al., 2017], we utilize the B/I/O tagging
scheme to label the position of a given answer, where a word at the beginning
of an answer is marked with B, I denotes the continuation of the answer, while
words not contained in an answer are marked with O.

• Word Frequency Feature. We derive the word vocabulary from passages and
questions in the training dataset. We then rank all the words in a descending
order in terms of word frequencies, such that the first word is the most frequent
word. The top rh words are labeled as frequent words. Words ranked between
rh and rl are labeled as intermediate words. The remaining with rank lower
than rl are labeled as rare words, where rh and rl are two predefined thresholds.
In this way, each word will be assigned a frequency tag L (low frequency), H
(highly frequent) or M (medium frequency).

• Clue Indicator Feature. In our model, the clue predictor (which we will
introduce in more detail in Sec. 8.3.3) assigns a binary value to each word to
indicate whether it is a potential clue word or not.

Denote an input passage by P = (w1, w2, · · · , w|P |). The BiGRU encoder reads the
input sequence w1, w2, · · · , w|P | and produces a sequence of hidden states h1, h2, · · · , h|P |
to represent the passage P . Each hidden state is a concatenation of a forward repre-
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sentation and a backward representation:

hi = [
−→
h i;
←−
h i], (8.2)

−→
h i = BiGRU(wi,

−→
h i−1), (8.3)

←−
h i = BiGRU(wi,

←−
h i+1), (8.4)

where
−→
h i and

←−
h i are the forward and backward hidden states of the i-th token in P ,

respectively.
Furthermore, rather than learning the full representation wi for every word in

the vocabulary, we use a masking strategy to replace the word embeddings of low-
frequency words with a special <l> token, such that the information of low-frequency
words is only represented by its answer/clue indicators and other augmented feature
embeddings, except the word vectors. This strategy can improve performance due to
two reasons. First, the augmented tagging features of a low-frequency word tend to be
more influential than the word meaning in question generation. For example, given
a sentence “<PERSON> likes playing football.”, a question that can be generated
is “What does <PERSON> like to play?”—what the token “<PERSON>” exactly
is does not matter. This way, the masking strategy helps the model to omit the
fine details that are not necessary for question generation. Second, the number of
parameters that need be learned, especially the number of word embeddings that need
be tuned, is largely reduced. Therefore, masking out unnecessary word embeddings
while only keeping the corresponding augmented features and indicators does not hurt
the performance of question generation. It actually improves training by reducing the
model complexity.

8.3.2 The Question Decoder with Aggressive Copying

In the decoding stage, we utilize another GRU with copying mechanism to generate
question words sequentially based on the encoded input passage representation and
previously decoded words. We first initialize the hidden state of the decoder GRU by
passing the last backward encoder hidden state

←−
h 1 to a linear layer:

s0 = tanh(W0

←−
h 1 + b). (8.5)

For each decoding time step t, the GRU reads the embedding of the previous word
wt−1, previous attentional context vector ct−1, and its previous hidden state st−1 to
calculate its current hidden state:

st = GRU([wt−1; ct−1], st−1). (8.6)
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Figure 8.5: Comparing the rank distributions of all question words, words from gen-
eration, and words from copy.

The context vector ct for time step t is generated through the concatenated at-
tention mechanism [Luong et al., 2015]. Attention mechanism calculates a semantic
match between encoder hidden states and the decoder hidden state. The attention
weights indicate how the model spreads out the amount it cares about different en-
coder hidden states during decoding. At time step t, the attention weights and the
context vector are calculated as:

et,i = vᵀtanh(Wsst +Whhi), (8.7)

αt,i =
exp(et,i)∑|P |
j=1 exp(et,j)

, (8.8)

ct =

|P |∑
i=1

αt,ihi. (8.9)

Combining the previous word embedding wt−1, the current decoder state st and
the current context vector ct, we can calculate a readout state rt by an MLP maxout
layer with dropouts [Goodfellow et al., 2013]. Then the readout state is passed to a
linear layer and a softmax layer to predict the probabilities of the next word over the
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decoder vocabulary:

rt = Wrwwt−1 +Wrcct +Wrsst (8.10)

mt = [max{rt,2j−1, rt,2j}]ᵀj=1,...,d (8.11)

p(yt|y1, · · · , yt−1) = softmax(Womt), (8.12)

where rt is a 2-D vector.
The above module generates question words from a given vocabulary. Another

important method to generate words is copying from source text. Copy or point
mechanism [Gulcehre et al., 2016] was introduced into sequence-to-sequence models
to allow the copying of unknown words from the input text, which solves the out-of-
vocabulary (OOV) problem. When decoding at time step t, the probability of copying
is given by:

gc = σ(Wcsst +Wccct + b), (8.13)

where σ is the Sigmoid function, and gc is the probability of copying. For the copy
probability of each input word, we reuse the attention weights given by Equation (8).

Copying mechanism has also been used in question generation [Zhou et al., 2017;
Song et al., 2018a; Hu et al., 2018], however, mainly to solve the OOV issue. Here
we leverage the copying mechanism to enable the copying of potential clue words,
instead of being limited to OOV words, from input. Different from existing methods,
we take a more aggressive approach to train the copying mechanism via multitask
learning based on different labels. That is, when preparing the training dataset, we
explicitly label a word in a target question as a word copied from the source passage
text if it satisfies all the following criteria:

i) it appears in both source text and target question;

ii) it is not a stop word;

iii) its frequency rank in the vocabulary is lower than a threshold rh.

The remaining words in the question are considered as being generated from the
vocabulary. Such a binary label (copy or not copy), together with which input word
the question word is copied from, as well as the target question, are fed into different
parts of the decoder as labels for multi-task model training. This is to intentionally
encourage the copying of potential clue words into the target question rather than
generating them from a vocabulary.

The intuition behind such an aggressive copying mechanism can be understood
by checking the frequency distributions of both generated words and copied words
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(as defined above) in the training dataset of SQuAD. Fig. 8.5 shows the frequency
distributions of all question words, and then of generated question words and copied
question words. The mean and median rank of generated words are 2389 and 1032,
respectively. While for copied words, they are 3119 and 1442. Comparing Fig. 8.5(b)
with Fig. 8.5(c), we can see that question words generated from the vocabulary tends
to be clustered toward high ranked (or frequent) words. On the other hand, the
fraction of low ranked (or infrequent) words in copied words are much greater than
that in generated words. This means the generated words are mostly from frequent
words, while the majority of low-frequency words in the long tail are copied from the
input, rather than generated.

This phenomenon matches our intuition: when people ask a question about a given
passage, the generated words tend to be commonly used words, while the repeated
text chunks from source passage may contain relatively rare words such as names and
dates. Based on this observation, we further propose to reduce the vocabulary at the
decoder for target question generation to be top N frequently generated words, where
N is a predefined threshold that varies according to datasets.

8.3.3 A GCN-Based Clue Word Predictor

Given a passage and some answer positions, our clue word predictor aims to identify
the clue words in the passage that can help to ask a question and are also potential
candidates for copying, by understanding the semantic context of the input passage.
Again, in the training dataset, the non-stop words that are shared by both an input
passage and an output question are aggressively labeled as clue words.

We note that clue words are, in fact, more closely connected to the answer chunk
in the form of syntactic dependency trees than in word sequences. Fig. 8.6 shows our
observation on the SQuAD dataset. For each training example, we get the nonstop
words that appear in both the input passage and the output question. For each
clue word in the training set, we find its shortest undirected path to the answer
chunk based on the dependency parsing tree of the passage. For each jump on the
shortest path, we record the dependency type. We also calculate the distance between
each clue word and the answer in terms of the number of words between them. As
shown in Fig. 8.6(a), prep, pobj, and nsubj appear frequently on these shortest paths.
Comparing Fig. 8.6(b) with Fig. 8.6(c), we can see that the distances in terms of
dependency trees are much smaller than those in terms of sequential word orders.
The average and median distances on the dependency trees are 4.41 and 4, while
those values are 10.23 and 7 for sequential word distances.
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In order to predict the positions of clue words based on their dependencies on the
answer chunk (without knowing the question which is yet to be generated), we use
a Graph Convolutional Network (GCN) to convolve over the word features on the
dependency tree of each passage, as shown in Fig. 8.4. The predictor consists of four
layers:

Embedding layer. This layer shares the same features with the passage encoder,
except that it does not include the clue indicators. Therefore, each word is represented
by its word embedding, lexical features, binary features, the word frequency feature,
and an answer position indicator.

Syntactic dependency parsing layer. We obtain the syntactic dependency parsing
tree of each passage by spaCy [Matthew Honnibal, 2015], where the dependency edges
between words are directed. In our model, we use the syntactic structure to represent
the structure of passage words.

Encoding layer. The objective of the encoding layer is to encode the context
information into each word based on the dependency tree. We utilize a multi-layered
GCN to incorporate the information of neighboring word features into each vertex,
which is a word. After L GCN layers, the hidden vector representation of each word
will incorporate the information of its neighboring words that are no more than L

hops away in the dependency tree.
Output layer. After obtaining the context-aware representation of each word in

the passage, we calculate the probability of each word being a clue word. A linear
layer is utilized to calculate the unnormalized probabilities. We subsequently sample
the binary clue indicator for each word through a Gumbel-Softmax layer, given the
unnormalized probabilities. A sampled value of 1 indicates that the word is predicated
as a clue word.

GCN Operations on Dependency Trees

We now introduce the operations performed in each GCN layer [Kipf and Welling,
2016; Zhang et al., 2018c]. GCNs generalize the CNN from low-dimensional regular
grids to high-dimensional irregular graph domains. In general, the input to a GCN is
a graph G = (V , E) with N vertices vi ∈ V , and edges eij = (vi, vj) ∈ E. The edges
can be weighted with weights wij, or unweighted. The input also contains a vertex
feature matrix denoted by X = {xi}Ni=1, where xi is the feature vector of vertex vi.

Since a dependency tree is also a graph, we can perform the graph convolution
operations on dependency trees by representing each tree into its corresponding ad-
jacency matrix form. Now let us briefly introduce the GCN propagation layers used
in our model [Zhang et al., 2018c]. The weighted adjacency matrix of the graph is
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Figure 8.6: Comparing the distributions of syntactic dependency distances and se-
quential word distances between copied words and the answer in each training sample.

denoted as A ∈ RN×N where Aij = wij. For unweighted graphs, the weights are either
1 or 0. In an L-layer GCN, let h(l−1)i denotes the input vector and h

(l)
i denotes the

output vector of node i at the l-th layer. We will utilize a multi-layer GCN with the
following layer-wise propagation rule [Zhang et al., 2018c]:

h
(l)
i = σ(

N∑
j=1

ÃijW
(l)h

(l−1)
j /di + b(l)), (8.14)

where σ is a nonlinear function (e.g., ReLU), and W (l) is a linear transformation.
Ã = A + IN where IN is an n × n identity matrix. di =

∑N
j=1 Ãij is the degree of

node (or word in our case) i in the graph (or dependency tree).
In our experiments, we treat the dependency trees as undirected, i.e., ∀i, j,Aij =

Aji. Besides, as we already included the dependency type information in the embed-
ding vectors of each word, we do not need to incorporate the edge type information
in the adjacency matrix.

Stacking this operation by L layers gives us a deep GCN network. The input to
the nodes in the first layer of the GCN are the feature vectors of words in the passage.
After L layers of transformations, we can obtain a context-aware representation of
each word. We then feed them into a linear layer to get the unnormalized probability
of each word being a clue word. After that, the unnormalized probabilities are fed
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to a Straight-Through (ST) Gumbel-Softmax estimator to sample an N -dimensional
binary vector indicating whether each of the N words is a clue word or not.

Gumbel-Softmax

Gumbel-Softmax [Jang et al., 2016] is a method of sampling discrete random vari-
ables in neural networks. It approximates one-hot vectors sampled from a categorical
distribution by making them continuous, therefore the gradients of model parameters
can be calculated using the reparameterization trick and the standard backpropaga-
tion. Gumbel-Softmax distribution is motivated by Gumbel-Max trick [Maddison et
al., 2014], an algorithm for sampling from a categorical distribution. Let (p1, ..., pk)
denotes a k-dimensional categorical distribution where the probability pi of class i is
defined as:

pi =
exp(log(πi))∑k
j=1 exp(log(πj))

, (8.15)

where πi is the unnormalized log probability of class i. We can easily draw a one-hot
sample z = (z1, · · · , zk) ∈ Rk from the distribution by the following equations:

zi =

{
1, i = argmaxj(log(πj) + gj)

0, otherwise
(8.16)

gi = − log(− log(ui)), (8.17)

ui ∼ Uniform(0, 1) (8.18)

where gi is Gumbel noise used to perturb each log(πi). In this way, taking argmax is
equivalent to drawing a sample using probabilities (p1, · · · , pk).

Gumbel-Softmax distribution replaces the argmax function by differentiable soft-
max function. Therefore, a sample y = (y1, · · · , yk) drawn from Gumbel-Softmax
distribution is given by:

yi =
exp((log(πi) + gi)/τ)∑k
j=1 exp((log(πj) + gj)/τ)

, (8.19)

where τ is a temperature parameter. The Gumbel-Softmax distribution resembles
the one-hot sample when τ diminishes to zero.

Straight-Through (ST) Gumbel-Softmax estimator [Jang et al., 2016] is a discrete
version of the continuous Gumbel-Softmax estimator. It takes different paths in the
forward and backward propagation. In the forward pass, it discretizes a continuous
probability vector y sampled from the Gumbel-Softmax distribution into a one-hot
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Table 8.1: Description of evaluation datasets.

Dataset Train Dev Test P-Length∗ Q-Length∗ A-Length∗

SQuAD 86, 635 8, 965 8, 964 32.72 11.31 3.19
NewsQA 77, 538 4, 341 4, 383 28.14 7.82 4.60

∗ P-Length: average number of tokens of passages.
∗ Q-Length: average number of tokens of questions.
∗ A-Length: average number of tokens of answers.

vector yST = (yST1 , · · · , ySTk ) by:

ySTi =

{
1, i = argmaxj yj,

0, otherwise.
(8.20)

In the backward pass, it uses the continuous y, so that the error signal can still
backpropagate.

Using the ST Gumbel-Softmax estimator, our model is able to sample a binary
clue indicator vector for an input passage. Then the clue indicator vector is fed into
the passage encoder for question generations, as shown in Fig. 8.4.

8.4 Evaluation

In this section, we evaluate the performance of our proposed models on the SQuAD
dataset and the NewsQA dataset, and compare them with state-of-the-art question
generation models.

8.4.1 Datasets, Metrics and Baselines

The SQuAD dataset is a reading comprehension dataset, consisting of questions posed
by crowd-workers on a set of Wikipedia articles, where the answer to every question is
a segment of text from the corresponding reading passage. SQuAD 1.1 is used in our
experiment containing 536 Wikipedia articles and more than 100K question-answer
pairs. When processing a sample from dataset, instead of using the entire document,
we take the sentence that contains the answer as the input. Since the test set is not
publicly available, we use the data split proposed by [Zhou et al., 2017] where the
original dev set is randomly split into a dev test and a test set of equal size.

In the NewsQA dataset, there are 120K questions and their corresponding an-
swers as well as the documents that are CNN news articles. Questions are written by
questioners in natural language with only the headlines and highlights of the articles
available to them. With the information of the questions and the full articles, answer-
ers select related sub-spans from the passages of the source text and mark them as
answers. Multiple answers may be provided to a same question by different answerers
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and they are ranked by validators based on the quality of the answers. In our experi-
ment, we picked a subset of NewsQA where answers are top-ranked and are composed
of a contiguous sequence of words within the input sentence of the document.

Table 8.1 shows the number of samples in each set and the average number of
tokens of the input sentences, questions, and answers listed in columns P-Length,
Q-Length, and A-Length respectively.

We report the evaluation results with following metrics.

• BLEU [Papineni et al., 2002]. BLEU measures precision by how much the
words in prediction sentences appear in reference sentences at the corpus level.
BLEU-1, BLEU-2, BLEU-3, and BLEU-4, use 1-gram to 4-gram for calculation,
respectively.

• ROUGE-L [Lin, 2004]. ROUGE-L measures recall by how much the words
in reference sentences appear in prediction sentences using Longest Common
Subsequence (LCS) based statistics.

• METEOR [Denkowski and Lavie, 2014]. METEOR is based on the harmonic
mean of unigram precision and recall, with recall weighted higher than precision.

In the experiments, we have eight baseline models for comparison. Results re-
ported on PCFG-Trans, MPQG, and NQG++ are from experiments we conducted
using published code on GitHub. For other baseline models, we directly copy the
reported performance given in their papers. We report all the results on the SQuAD
dataset, and for the NewsQA dataset, we can only report the baselines with open
source code available.

• PCFG-Trans [Heilman, 2011] is a rule-based system that generates a question
based on a given answer word span.

• MPQG [Song et al., 2018a] proposed a Seq2Seq model that matches the answer
with the passage before generating the question.

• SeqCopyNet [Zhou et al., 2018] proposed a method to improve the copying
mechanism in Seq2Seq models by copying not only a single word but a sequence
of words from the input sentence.

• seq2seq+z+c+GAN [Yao et al., 2018] proposed a model employed in GAN
framework using the latent variable to capture the diversity and learning dis-
entangled representation using the observed variable.
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• NQG++ [Zhou et al., 2017] proposed a Seq2Seq model with a feature-rich
encoder to encode answer position, POS and NER tag information.

• Answer-focused Position-aware model [Sun et al., 2018] incorporates the
answer embedding to help generate an interrogative word matching the answer
type. And it models the relative distance between the context words and the
answer for the model to be aware of the position of the context words when
generating a question.

• s2sa-at-mp-gsa [Zhao et al., 2018] proposed a model which contains a gated
attention encoder and a maxout pointer decoder to address the challenges of
processing long text inputs. This model has a paragraph-level version and a
sentence-level version. For the purpose of fair comparison, we report the results
of the sentence-level model to match with our settings.

• ASs2s [Kim et al., 2018] proposed an answer-separated Seq2Seq to identify
which interrogative word should be used by replacing the target answer in the
original passage with a special token.

For our models, we evaluate the following versions:

• CGC-QG (no feature-rich embedding). We name our model as Clue
Guided Copy for Question Generation (CGC-QG). In this variant, we only
keep the embedding of words, answer position indicators, and clue indicators
for each token, and remove the embedding vectors of other features.

• CGC-QG (no target reduction). This model variant does not contain target
vocabulary reduction operation.

• CGC-QG (no clue prediction). The clue predictor and clue embedding are
removed in model variant.

• CGC-QG. This is the complete version of our proposed model.

8.4.2 Experiment Settings

We implement our models in PyTorch 0.4.1 [Paszke et al., 2017] and train the model
with a single Tesla P40. We utilize spaCy [Matthew Honnibal, 2015] to perform
dependency parsing and extract lexical features for tokens. As to the vocabulary, we
collect it from the training dataset and keep the top 20K most frequent words for
both datasets.
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We set the threshold rh = 100 and rl = 2000. For target vocabulary reduction,
we set N = 2000. The embedding dimension of word vector is set to be 300 and
initialized by GloVe. The word vectors of words that are not contained in GloVe are
initialized randomly. The word frequency features are embedded to 32-dimensional
vectors, and other features and indicators are embedded to 16-dimensional vectors.
All embedding vectors are trainable in the model. We use a single layer BiGRU with
hidden size 512 for the encoder, and a single layer undirected GRU with hidden size
512 for the decoder. The dropout rate p = 0.1 is applied to the encoder, decoder,
and the attention module.

During training, we optimize the Cross-Entropy loss function for clue prediction,
question generation, and question copying, and perform gradient descent by the Adam
[Kingma and Ba, 2014] optimizer with an initial learning rate lr = 0.001, two mo-
mentum parameters are β1 = 0.8 and β2 = 0.999 respectively, and ε = 10−8. The
mini-batch size for each update is set to 32 and model is trained for up to 10 epochs
(as we found that usually the models derive the best performance after 6 or 7 epochs).
We apply gradient clipping with range [−5, 5] for Adam. Besides, exponential moving
average is applied on all trainable variables with a decay rate 0.9999. When testing,
beam search is conducted with beam width 20. The decoding process stops when a
token <EOS> that represents end of sentence is generated.

8.4.3 Main Results

Table. 8.2 and Table. 8.3 compare the performance of our model with existing question
generation models on SQuAD and NewsQA in terms of different evaluation metrics.
For the SQuAD dataset, we compare our model with all the baseline methods we
have listed. As to the NewsQA dataset, since only a part of the baseline methods
made their code public, we compare our model with approaches that have open source
code. We can see that our model achieves the best performance on both datasets and
significantly outperforms state-of-the-art algorithms. On the SQuAD dataset, given
an input sentence and an answer, the BLEU-4, ROUGE-L, and METEOR of our
result are 17.55, 44.53, and 21.24 respectively, while corresponding previous state-of-
the-art results are 16.17, 44.24, and 19.67 from different approaches. Similarly, our
method also gives a significantly better performance on NewsQA compared with the
baselines in Table 8.3.

The reason is that we combine different strategies in our model to make it learn
when to generate or copy a word, and what to generate or copy. First, our model
learns to predict clue words through a GCN-based clue predictor. Second, our en-
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Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR

PCFG-Trans∗ 28.77 17.81 12.64 9.47 31.68 18.97
SeqCopyNet − − − 13.02 44.00 −

seq2seq+z+c+GAN 44.42 26.03 17.60 13.36 40.42 17.70
NQG++∗ 42.36 26.33 18.46 13.51 41.60 18.18
MPQG − − − 13.91 − −

Answer-focused Position-aware model 43.02 28.14 20.51 15.64 − −
s2sa-at-mp-gsa 44.51 29.07 21.06 15.82 44.24 19.67

ASs2s − − − 16.17 − −

CGC-QG (no feature-rich embedding) 45.50 29.63 21.58 16.38 43.11 20.52
CGC-QG (no target reduction) 45.80 30.27 22.29 17.05 44.09 20.79
CGC-QG (no clue prediction) 45.58 30.07 22.08 16.80 44.51 20.80

CGC-QG 46.58 30.90 22.82 17.55 44.53 21.24

Experiments are conducted on baselines followed by a “∗” using released source
code. Results of other baselines are copied from their papers where unreported
metrics are marked “−”.

Table 8.2: Evaluation results of different models on SQuAD dataset.

coder incorporates a variety of embeddings of different features and clue indicators.
Combining with the masking strategy, our model can better discover the relationship
between input patterns and output patterns. Third, the reduced target vocabulary
also helps our model to better capture when to copy or generate, and the generator
is easier to train with a reduced vocabulary size. And most importantly, our new
criteria of marking a question word as copied word (as described in Sec.8.3.3) helps
the model to make better decisions on which path to go, i.e., to copy or to generate,
during question generation. By incorporating part of these new strategies and mod-
ules into our model, we can achieve performance better than state-of-the-art models
on SQuAD and NewsQA. With all these designs implemented, our model gives the
best performance on both datasets.

There is a significant gap between the performance on SQuAD and on NewsQA
due to the different characteristics of the datasets. The average answer length of
NewsQA is 44.2% larger than it of SQuAD according to the statistics shown in Table
8.1. Long answers usually hold more information and are more difficult to generate
questions. Furthermore, reference questions in NewQA tend to have less strict gram-
mars and more diverse phrasings. To give a typical example, “Iran criticizes who?” is
a reference question in NewsQA which does not start with an interrogative word but
ends with one. These characteristics make the performance on NewsQA not as good
as on SQuAD. However, our approach is still significantly better than the compared
approaches on NewsQA dataset. It demonstrates that copy from the input is a gen-
eral phenomenon across different datasets. Our model better captures what copied
words are and what generated words are in a question based on our new criteria of
labeling a question word as copied word or not.

171



Table 8.3: Evaluation results of different models on NewsQA dataset.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR

PCFG-Trans∗ 16.90 7.94 4.72 3.08 23.78 13.74
MPQG∗ 35.70 17.16 9.64 5.65 39.85 14.13

NQG++∗ 40.33 22.47 14.83 9.94 42.25 16.72

CGC-QG (no feature-rich embedding) 39.35 22.10 14.36 9.99 42.00 16.60
CGC-QG (no target reduction) 40.00 22.84 15.01 10.52 42.33 16.89
CGC-QG (no clue prediction) 39.85 22.82 14.96 10.45 43.16 17.11

CGC-QG 40.45 23.52 15.68 11.06 43.16 17.43

Experiments are conducted on baselines followed by a “∗” using released source
code.

8.4.4 Analysis

We evaluate the impact of different modules in our model by ablation tests. Table
8.2 and Table 8.3 list the performance of our model variants with different sub-
components removed.

When we remove the extra feature embeddings in our model, i.e., the embed-
dings of POS, NER, Dependency Types, word frequency levels (low-frequent, median-
frequent, high-frequent), and binary features (whether it is lowercase, digit), the per-
formance drops significantly. This is because the tags and feature embeddings rep-
resent each token in different aspects. The number of different tags is much smaller
than the number of different words. Therefore, the patterns which can be learned
from these tags and features are more obvious than what we can learn from word
embeddings. Even though a well-trained word vector may contain the information of
other features such as POS or NER, explicitly concatenating these feature embedding
vectors helps the model to capture the patterns to ask a question more easily.

Removing the operation of target vocabulary reduction also hurts the performance
of our model. As we discussed earlier, the non-overlap question words (or generated
words) are mostly covered by the high frequency words. Reducing the target vocab-
ulary size helps our model to better learn the probabilities of generating these words.
On the other hand, it also encourages the model to better capture what they can
copy from input text.

Finally, without the clue prediction module, the performance also drops on both
datasets. This is because when given an answer span in a passage, asking a question
about it is still a one-to-many mapping problem. Our clue prediction module learns
how people select the related clue words to further reduce the uncertainty of how
to ask a question by learning from a large training dataset. With predicted clue
indicators incorporated into the encoder of generator, our model can fit the way how
people ask questions in the dataset.
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8.5 Conclusion

In this chapter, we demonstrate the effectiveness of teaching the model to make deci-
sions during the question generation process on which words to generate and to copy.
We label the nonstop and overlap words between input passages and questions as copy
targets and use such labels to train our model. Besides, we further observe that the
distribution of generated question words are mostly common words with relative high
frequency. Based on this observation, we reduce the vocabulary size for generating
question words. To help the model better capture how to ask a question and alleviate
the issue of one-to-many mapping when asking a question, we propose a GCN-based
clue prediction module to predict which part of words can be a clue word to ask a
question given an answer. It utilizes the syntactic dependency tree representation of
a passage to encode the information of each token in the passage, and sample a clue
indicator for each token using a Straight-Through (ST) Gumbel-Softmax estimator.
Our simulation results on the SQuAD dataset and NewsQA dataset show that our
model outperforms a range of existing state-of-the-art approaches significantly.
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Chapter 9

Asking Questions the Human Way:
Scalable Question-Answer Generation
from Text Corpus

In the previous chapter, we propose Clue Guided Copy Network for Question Gen-
eration. It is a type of answer-aware question generation model. For answer-aware
question generation models, they are ineffective at generating a large number of high-
quality question-answer pairs from unstructured text, since given an answer and an
input passage, question generation is inherently a one-to-many mapping problem. A
natural idea is: feeding the generative model with more input information to improve
the quality and generated questions, as well as making the generation process more
controllable. For example, instead of predicting the clue words for question generation
like what we did in the previous chapter, why not just select appropriate answers and
correlated clues from unlabeled text, and utilize them as inputs to generate questions?

In this chapter, we propose Answer-Clue-Style-aware Question Generation (ACS-
QG), a novel system aimed at automatically generating diverse and high-quality
question-answer pairs from unlabeled text corpus at scale by mimicking the way
a human asks questions. Our system consists of: i) an information extractor, which
samples multiple types of assistive information to guide question generation; ii) neural
question generators, which generates diverse and controllable questions about a pas-
sage, utilizing the extracted assistive information as an input; and iii) a neural quality
controller, which filters out low-quality generated data based on text entailment. We
compare our question generation models with existing approaches and perform pilot
user studies to evaluate the quality of the generated question-answer pairs. The eval-
uation results show that our system dramatically outperforms state-of-the-art neural
question generation models in terms of the generation quality, while being scalable in
the meantime. With models trained on a relatively smaller amount of data, we can
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The fight scene finale between Sharon and the character played by Ali Larter,
from the movie Obsessed, won the 2010 MTV Movie Award for Best Fight.

Answer: MTV Movie Award for Best Fight
Clue: from the movie Obsessed
Style: Which 
Q: A fight scene from the movie, Obsessed, won which award?

Answer: MTV Movie Award for Best Fight
Clue: The flight scene finale between Sharon and the character played by 
Ali Larter 
Style: Which 
Q: Which award did the fight scene between Sharon and the role of Ali 
Larter win?

Answer: Obsessed
Clue: won the 2010 MTV Movie Award for Best Fight
Style: What 
Q: What is the name of the movie that won the 2010 MTV Movie Award 
for Best Fight?

Figure 9.1: Given the same input sentence, we can ask diverse questions based on our
different choices about i) what is the target answer; ii) which answer-related chunk is
utilized as clue, and iii) what type of questions is asked.

generate 2.8 million quality-assured question-answer pairs from a million sentences in
Wikipedia.

9.1 Introduction

Automatically generating question-answer pairs from unlabeled text passages is of
great value to many applications, such as assisting the training of machine read-
ing comprehension systems [Tang et al., 2017; Tang et al., 2018; Du and Cardie,
2018], generating queries/questions from documents to improve search engines [Han
et al., 2019], training chatbots to start or continue a conversation [Shum et al., 2018],
generating exercises for educational purposes [Heilman and Smith, 2010; Heilman,
2011; Danon and Last, 2017], and generating FAQs for web documents [Krishna and
Iyyer, 2019]. In particular, many question-answering tasks such as machine reading
comprehension and chatbots require a large amount of labeled data for supervised
training, acquiring which is time-consuming and expensive. Automatic question-
answer generation makes it possible to provide these systems with scalable data and
to transfer the model well-trained on one domain with carefully labelled data to new
domains.

Despite a large number of studies on neural question generation, it remains a
significant challenge to generate high-quality QA pairs from unstructured text at large
quantities. Most existing neural network models approach the question generation
problem as answer-aware question generation, where the answer to the target question
is provided as an input together with the context. Based on these inputs, they

175



formulate the task as a Sequence-to-Sequence (Seq2Seq) problem, and design various
encoder, decoder, and input features to improve the quality of generated questions
[Serban et al., 2016; Du et al., 2017; Liu et al., 2019b; Zhou et al., 2017; Song et
al., 2018a; Hu et al., 2018; Du and Cardie, 2018]. However, the performance of
answer-aware question generation models are far from satisfying, due to the one-to-
many mapping nature of the task. Figure 9.1 shows an example of this phenomenon.
Given the same input text “The fight scene finale between Sharon and the character
played by Ali Larter, from the movie Obsessed, won the 2010 MTV Movie Award
for Best Fight.”, we can ask a variety of questions based on it. If we select the text
chunk “MTV Movie Award for Best Fight” as the answer, we can still ask different
questions such as “A fight scene from the movie, Obsessed, won which award?” or
“Which award did the fight scene between Sharon and the role of Ali Larter win?”
from different aspects.

We argue that when a human asks a question based on a passage, she will consider
various factors. First, she will still select an answer as a major target that her question
will point to. Second, she will decide which piece of information will be presented or
rephrased in her question to set constraints or context for the question. We call this
piece of information as clue, as the target answer may be related to different clues in
the passage. Third, even the same question may be expressed in different styles (e.g.,
“what”, “who”, “why”, etc.). For example, they can ask “which award” or “what is
the name of the award” to express the same meaning. If we narrow down to answer,
clue, and question style, the process of question generation will become much closer
to a one-to-one mapping problem, essentially mimicking the human way of asking
questions. Hence, introducing such information into question-answer generation will
help to reduce the difficulty of the task.

In this chapter, we propose Answer-Clue-Style-aware Question Generation (ACS-
QG) designed for scalable generation of high-quality question-answer pairs from unla-
beled text corpus. Just like a human will ask a question with clue and style in mind,
our system first automatically extracts multiple types of information from an input
passage to assist question generation. Based on the extracted multi-aspect informa-
tion, we design neural network models to generate diverse questions in a controllable
way. Compared with existing answer-aware question generation, our approach essen-
tially converts the one-to-many mapping problem into a one-to-one mapping problem,
and is thus scalable by controlling the assistive information fed to the neural network
while in the meantime ensuring the generation quality. Specifically, we have solved
multiple challenges in the ACS-aware question generation system:

What to ask given an unlabeled passage? Given an input passage such as a
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sentence, randomly selecting the combinations of <answer, clue, style> information
will cause type mismatches and input volume explosion. On one hand, answer, clue,
and style are dependent on each other. Without taking their correlations into account,
we may select “how” or “when” as the target question style (or type) while a person’s
name is selected as the answer. Such errors are called type mismatches. On the other
hand, input volume explosion means that we may randomly sample thousands of
different <answer, clue, style> combinations without limitation while most of these
inputs lead to meaningless questions.

To overcome these challenges, we design and implement an information extrac-
tor to efficiently sample meaningful inputs from a given passage. We learn the joint
distribution of the three types of information from existing abundant reading com-
prehension datasets, such as SQuAD [Rajpurkar et al., 2016]. In the meantime, we
decompose the joint probability distribution of an <answer, clue, style> tuple into
three components, and apply a three-step sampling mechanism to the input passage
to select reasonable combinations of input information to feed into ACS-aware ques-
tion generation. Based on this strategy, we can alleviate the type mismatch problem
and narrow down the combinations of assistive information for meaningful question
generation.

How to learn a model to ask ACS-aware questions? Existing neural ap-
proaches are mostly designed for answer-aware question generation, while there exists
no dataset available for the task of ACS-aware question generation. In our system, we
propose effective strategies to automatically construct datasets from existing reading
comprehension datasets without any human labeling effort. We formally define “clue”
as a semantic chunk in an input passage, which will be included or rephrased in the
target question. Based on this definition, we perform syntactic parsing and chunking
on input text, and select the chunk which is most relevant to the target question as
the clue information. In this manner, we have leveraged the abundance of reading
comprehension datasets to automatically construct training data for our new problem.
On the other hand, we categorize different questions into 9 styles, including “what”,
“how”, “yes-no” and so forth, and extract such information from existing datasets to
train ACS-aware question generation models.

We propose two deep neural models for ACS-aware question generation, and show
their superior performance in generating diverse and high-quality questions. The first
model employs sequence-to-sequence framework with copy and attention mechanism
[Sutskever et al., 2014; Bahdanau et al., 2014; Cao et al., 2017], incorporating the
information of answer, clue and style into the encoder and decoder. Furthermore, it
differentiates content words and function words in the input, and utilizes vocabulary
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reduction which downsizes the vocabularies for both the encoder and decoder to
encourage aggressive copying. In the second model, we fine-tune a GPT2-small model
[Radford et al., 2019]. We train our ACS-aware QG models using the input passage,
answer, clue, and question style as the language modeling context. As a result,
we reduce the repeating output word phenomenon which usually exists in sequence-
to-sequence models, and can generate questions with better readability. With multi-
aspect assistive input information, our models are able to ask a variety of high-quality
questions based on an input passage, while making the generation process controllable.

How to ensure the quality of generated QA pairs? We construct a data
filter, which consists of an entailment model and a question answering model. In our
filtering process, we input questions generated in the aforementioned manner into
a BERT-based [Devlin et al., 2018] question answering model to get its predicted
answer span, and measure the answer overlap between our input answer span and
the predicted answer span. In addition, we also classify the entailment relationship
between the original sentence and the question-answer concatenation. These com-
ponents allow us to remove low-quality QA pairs. By combining the input selector,
ACS-aware question generator, and the data filter, we have constructed a pipeline
that is able to generate a large number of QA pairs from unlabeled text without
extra human labeling efforts.

We perform extensive experiments based on the SQuAD dataset [Rajpurkar et
al., 2016] and Wikipedia, and compare our ACS-aware question generation model
with different existing approaches. Results show that both the content-separated
seq2seq model with aggressive copying mechanism and the extra input information
bring substantial benefits to question generation. Our method outperforms the state-
of-the-art models significantly in terms of various metrics such as BLEU-4, ROUGE-L
and METEOR.

With models trained on 86, 635 of SQuAD data, we can automatically generate
two large datasets containing 1.33 million and 1.45 million QA pairs from a corpus
of top-ranked Wikipedia articles. We perform quality evaluation on the generated
datasets and identify their strengths and weaknesses. Finally, we also observe how
our generated QA data performs in training question-answering models in machine
reading comprehension, as an alternative means to assess the quality of the question-
answer pairs generated.

9.2 Problem Formulation

In this section, we formally introduce the problem of ACS-aware question generation.
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Figure 9.2: An overview of the system architecture. It contains a dataset constructor,
information sampler, ACS-aware question generator and a data filter.

Denote a passage by p, where it can be either a sentence or a paragraph (in our
work, it is a sentence). Let q denotes a question related to this passage, and a denotes
the answer of that question. A passage consists of a sequence of words p = {pt}|p|t=1

where |p| denotes the length of p. A question q = {qt}|q|t=1 contains words from either
a predefined vocabulary V or from the input text p. Our objective is to generate
different question-answer pairs from it. Therefore, we aim to model the probability
P (q, a|p).

In our work, we factorize the generation process into multiple steps to select
different inputs for question generation. Specifically, given a passage p, we will select
three types of information as input to a generative model, which are defined as follows:

• Answer: here we define an answer a as a span in the input passage p. Specif-
ically, we select a semantic chunk of p as a target answer from a set of chunks
given by parsing and chunking.

• Clue: denote a clue as c. As mentioned in Sec. 9.1, a clue is a semantic chunk in
input p which will be copied or rephrased in the target question. It is related to
the answer a, and providing it as input can help reducing the uncertainty when
generating questions. This helps to alleviate the one-to-many mapping problem
of question generation, makes the generation process more controllable, as well
as improves the quality of generated questions.

• Style: denote a question style as s. We classify each question into nine styles:
“who”, “where”, “when”, “why”, “which”, “what”, “how”, “yes-no”, and “other”. By
providing the target style to the question generation model, we further reduce
the uncertainty of generation and increase the controllability.

We shall note that our definition of clue is different with [Liu et al., 2019b]. In
our work, given a passage p and a question q, we identify a clue as a consistent
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chunk in p instead of being the overlapping non-stop words between p and q. On one
hand, this allows the clue to be expressed in different ways in a question. On the
other hand, given unlabeled text corpus, we can sample clue chunks for generating
questions according to the same distribution in training datasets to avoid discrepancy
between training and generating.

Given the above definitions, our generation process is decomposed into input sam-
pling and ACS-aware question generation:

P (q, a|p) =
∑
c,s

P (a, c, s|p)P (q|a, c, s, p) (9.1)

=
∑
c,s

P (a|p)P (s|a, p)P (c|s, a, p)P (q|c, s, a, p), (9.2)

where P (a|p), P (s|a, p), and P (c|s, a, p) model the process of input sampling to get
answer, question style, and clue information for a target question; and P (q|c, s, a, p)
models the process of generating the target question.

9.3 Model Description

In this section, we present our overall system architecture for generating questions
from unlabeled text corpus. We then introduce the details of each component.

Figure 9.2 shows the pipelined system we build to train ACS-aware question gen-
eration models and generate large-scale datasets which can be utilized for different
applications. Our system consists of four major components: i) dataset construc-
tor, which takes existing QA datasets as input, and constructs training datasets for
ACS-aware question generation; ii) information sampler (extractor), which samples
answer, clue and style information from input text and feed them into ACS-aware
QG models; iii) ACS-aware question generation models, which are trained on the
constructed datasets to generate questions; and iv) data filter, which controls the
quality of generated questions.

9.3.1 Obtaining Training Data for Question Generation

Our first step is to acquire a training dataset to train ACS-aware question generation
models. Existing answer-aware question generation methods [Serban et al., 2016; Du
et al., 2017; Liu et al., 2019b; Zhou et al., 2017] utilize reading comprehension datasets
such as SQuAD [Rajpurkar et al., 2016], as these datasets contain < p, q, a > tuples.
However, for our problem, the input and output consists of < p, q, a, c, s >, where
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ALGORITHM 8: Clue Extraction
Input: passage p, answer a, question q, related words dictionary R.
Output: clue c.
1: get candidate chunks C = {c1, c2, · · · , c|C|} of passage p by parsing and chunking;
2: remove function words, tokenize p and q to get pt,c and qt,c and stemming p and q to

get pm,c and qm,c;
3: for c ∈ C do
4: get tokenized clue ct,c and stemmed clue cm,c with only content words;
5: not,c ← number of overlapping tokens between ct,c and qt,c;
6: nom,c ← number of overlapping stems between cm,c and qm,c;
7: nsoft−ot,c ← number of soft copied tokens between ct,c and qt,c;
8: binary x← whether q contains the chunk text c;
9: score(c) = not,c + nom,c + nsoft−ot,c + x
10: end for
11: select the chunk c with maximum score(c) as the clue chunk;

the clue c and style s information are not directly provided in existing datasets. To
address this issue, we design effective strategies to automatically extract clue and
style information without involving human labeling.

Rules for Clue Identification. As mentioned in Sec. 9.2, given < p, q, a >,
we define a semantic chunk c in input p which is copied or rephrased in the output
question q as clue. We identify c by the method shown in Algorithm 8.

First, we parse and chunk the input passage to get all candidate chunks. Second,
we get the tokenized and stemmed passage and question, and only keep the content
words in the results. Third, we calculate the similarities between each candidate chunk
and the target question according to different criteria. The final score of each chunk
is the sum of different similarities. Finally, we select the chunk with the maximum
score as the identified clue chunk c.

To estimate the similarities between each candidate chunk and the question, we
calculate the number of overlapping tokens and stems between each chunk and the
question, as well as checking whether the chunk is fully contained in the question.
In addition, we further define “soft copy” relationship between two words to take
rephrasing into consideration. Specifically, a word wq ∈ q is considered as soft-copied
from input passage p if there exist a word wp ∈ p which is semantically coherent with
wq. To give an instance, consider a passage “Selina left her hometown at the age of
18” and a question “How old was Selina when she left?”, the word “old” is soft-copied
from “age” in the input passage.

To identify the soft-copy relationship between any pair of words, we utilize syn-
onyms and word vectors, such as Glove [Pennington et al., 2014], to construct a related
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ALGORITHM 9: Style Classification
Input: question q, style set

S = {who,where, when,why,which,what, how, yes-no, other}, yes-no feature
words set Y = {am, is, was, were, are, does, do, did, have, had, has, could,
can, shall, should, will, would,may,might}.

Output: style s ∈ S.
1: for s ∈ S\{yes-no, other} do
2: if word s is contained in q then
3: return s
4: end if
5: end for
6: for y ∈ Y do
7: if word y is the first word of q then
8: return yes-no
9: end if
10: end for
11: return other

words dictionary R, where R(w) = {w1, w2, · · · , w|R(w)|} returns a set of words that
is closely related to w. For each word w, R(w) is composed of the synonyms of w, as
well as the top N most similar words estimated by word vector representations (we
set N = 5). In our work, we utilize Glove word vectors, and construct R based on
Genism [Řehůřek and Sojka, 2010] and WordNet [Miller, 1995].

Rules for Style Classification. Algorithm 9 presents our method for question
style classification. We classify a given question into 9 classes based on a few heuristic
strategies. If q contains who, where, when, why, which, what, or how, we classify it as
the corresponding type. For yes-no type questions, we define a set of feature words.
If q starts with any word belonging to the set of feature words, we classify it as type
yes-no. For all other cases, we label it as other.

9.3.2 ACS-Aware Question Generation

After obtained training datasets, we design two models for ACS-aware question gen-
eration. The first model is based on Seq2Seq framework with attention and copy
mechanism [Sutskever et al., 2014; Bahdanau et al., 2014; Gu et al., 2016]. In addi-
tion, we exploit clue embedding, content embedding, style encoding and aggressive
copying to improve the performance of question generation. The second model is
based on pre-trained language models. We fine-tune a GPT2-small model [Radford
et al., 2019] using the constructed training datasets.
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Seq2Seq-based ACS-aware question generation

Given a passage, an answer span, a clue span, and a desired question style, we train
a neural encoder-decoder model to generate appropriate questions.

Encoder. We utilize a bidirectional Gated Recurrent Unit (BiGRU) [Chung et
al., 2014] as our encoder. For each word pi in input passage p, we concatenate the
different features to form a concatenated embedding vector wi as the input to the
encoder. Specifically, for each word, it is represented by the concatenation of its
word vector, embeddings of its Named Entity Recognition (NER) tag, Part-of-Speech
(POS) tag, and whether it is a content word. In addition, we can know whether each
word is within the span of answer a or clue c, and utilize binary features to indicate the
positions of answer and clue in input passage. All tag features and binary features are
casted into 16-dimensional vectors by different embedding matrices that are trainable.

Suppose the embedding of passage p is (w1, w2, · · · , w|p|). Our encoder will read
the input sequence and produce a sequence of hidden states h1, h2, · · · , h|p|, where
each hidden state is a concatenation of a forward representation and a backward
representation:

hi = [
−→
h i;
←−
h i], (9.3)

−→
h i = BiGRU(wi,

−→
h i−1), (9.4)

←−
h i = BiGRU(wi,

←−
h i+1). (9.5)

The
−→
h i and

←−
h i are the forward and backward hidden states of the i-th token in p,

respectively.
Decoder. Our decoder is another GRU with attention and copy mechanism.

Denote the embedding vector of desired question style s as hs. We initialize the
hidden state of our decoder GRU by concatenating hs with the last backward encoder
hidden state

←−
h 1 to a linear layer:

sl = tanh(W0

←−
h 1 + b), (9.6)

s0 = [hs; sl]. (9.7)

At each decoding time step t, the decoder calculates its current hidden state based
on the word vector of the previous predicted word wt−1, previous attentional context
vector ct−1, and its previous hidden state st−1:

st = GRU([wt−1; ct−1], st−1), (9.8)

where the context vector ct at time step t is a weighted sum of input hidden states,
and the weights are calculated by the concatenated attention mechanism [Luong et
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al., 2015]:

et,i = vᵀtanh(Wsst +Whhi), (9.9)

αt,i =
exp(et,i)∑|p|
j=1 exp(et,j)

, (9.10)

ct =

|p|∑
i=1

αt,ihi. (9.11)

To generate an output word, we combine wt−1, st and ct to calculate a readout
state rt by an MLP maxout layer with dropouts [Goodfellow et al., 2013], and pass
it to a linear layer and a softmax layer to predict the probabilities of the next word
over a vocabulary:

rt = Wrwwt−1 +Wrcct +Wrsst (9.12)

mt = [max{rt,2j−1, rt,2j}]ᵀj=1,...,d (9.13)

p(yt|y1, · · · , yt−1) = softmax(Womt), (9.14)

where rt is a 2-D vector.
For copy or point mechanism [Gulcehre et al., 2016], the probability to copy a

word from input p at time step t is given by:

gc = σ(Wcsst +Wccct + b), (9.15)

where σ is the Sigmoid function, and gc is the probability of performing copying. The
copy probability of each input word is given by the attention weights in Equation
(10).

It has been reported that the generated words in a target question are usually
from frequent words, while the majority of low-frequency words in the long tail are
copied from the input instead of generated [Liu et al., 2019b]. Therefore, we reduce
the vocabulary size to be the top NV high-frequency words at both the encoder and
the decoder, where NV is a predefined threshold that varies among different datasets.
This helps to encourage the model to learn aggressive copying and improves the
performance of question generation.

GPT2-based ACS-aware question generation

Pre-trained large-scale language models, such as BERT [Devlin et al., 2018], GPT2
[Radford et al., 2019] and XLNet [Yang et al., 2019], have significantly boosted the
performance of a series of NLP tasks including text generation. They are mostly
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Figure 9.3: The input representations we utilized for fine-tuning GPT-2 Transformer-
based language model.

based on the Transformer architecture [Vaswani et al., 2017] and have been shown to
capture many facets of language relevant for downstream tasks [Clark et al., 2019].
Compared with Seq2Seq models which often generate text containing repeated words,
the pre-trained language models acquire knowledge from large-scale training dataset
and are able to generate text of high-quality. In our work, to produce questions with
better quality and to compare with Seq2Seq-based models, we further fine-tune the
publicly-available pre-trained GPT2-small model [Radford et al., 2019] according to
our problem settings.

Specifically, to obtain an ACS-question generation model with GPT2, we concate-
nate passage, answer, clue and question style as the context of language modeling.
Specifically, the input sequence is organized in the form of “<bos> ..passage text..
<clue> .. clue chunk .. <ans> .. answer chunk .. <style> .. question style ..
<ques> .. question text .. <eos>”. During the training process, we learn a language
model with above input format. When generating, we sample different output ques-
tions by starting with an input in the form of “<bos> ..passage text.. <clue> .. clue
chunk .. <ans> .. answer chunk .. <style> .. question style .. <ques>”. Figure 9.3
illustrates the input representation for fine-tuning GPT-2 language model. Similar to
[Krishna and Iyyer, 2019], we leverage GPT-2’s segment embeddings to denote the
specificity of the passage, clue, answer, style and question. We also utilize answer
segment embeddings and clue segment embedding in place of passage segment em-
beddings at the location of the answer or clue in the passage to denote the position of
the answer span and clue span. During the generation process, the trained model uses
top-p nucleus sampling with p = 0.9 [Holtzman et al., 2019] instead of beam search
and top-k sampling. For implementation, we utilize the code base of [Krishna and
Iyyer, 2019] as a starting point, as well as the Transformers library from HuggingFace
[Wolf et al., 2019].
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9.3.3 Sampling Inputs for Question Generation

As mentioned in Sec. 9.2, the process of ACS-aware question generation consists
of input sampling and text generation. Given an unlabeled text corpus, we need
to extract valid <passage, answer, clue, style> combinations as inputs to generate
questions with an ACS-aware question generation model.

In our work, we decompose the sampling process into three steps to sequentially
sample the candidate answer, style and clue based on a given passage. We make the
following assumptions: i) the probability of a chunk a be selected as an answer only
depends on its Part-of-Speech (POS) tag, Named Entity Recognition (NER) tag and
the length (number of words) of the chunk; ii) the style s of the target question only
depends on the POS tag and NER tag of the selected answer a; and iii) the probability
of selecting a chunk c as clue depends on the POS tag and the NER tag of c, as well
as the dependency distance between chunk c and a. We calculate the length of the
shortest path between the first word of c and that of a as the dependency distance.
The intuition for the last designation is that a clue chunk is usually closely related to
the answer, and is often copied or rephrased into the target question. Therefore, the
dependency distance between a clue and an answer will not be large [Liu et al., 2019b].

With above assumptions, we will have:

P (a|p) = P (a|POS(a), NER(a), length(a)), (9.16)

P (s|a, p) = P (s|POS(a), NER(a)), (9.17)

P (c|s, a, p) = P (c|POS(c), NER(c), DepDist(c, a)), (9.18)

where DepDist(c, a) represents the dependency distance between the first token of c
and that of a.

The above conditional probabilistic distributions can be learned from an existing
dataset (such as SQuAD), named as reference dataset. Given a reference dataset
consisting of <passage, question, answer> triplets, first, we perform POS tagging,
NER tagging, parsing and chunking on the input passages. Second, we recognize the
clue and style information according to the steps described in Sec. 9.3.1, get the NER
tag and the POS tag of both the answer chunk and the clue chunk, and calculate
the dependency distance between the clue chunk and the answer chunk. Finally, we
calculate the conditional distributions according to the extracted information.

We set the maximum length of an candidate answer to 30, and split the range
of length into 10 bins of equal size to calculate P (a|POS(a), NER(a), length(a)).
Similarly, we set the maximum dependency distance between a clue chunk and an
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Figure 9.4: The input join distributions we get using SQuAD1.1 training dataset as
reference data.
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answer chunk to be 20, and split the range of distance into 10 bins of equal size
to calculate P (c|POS(c), NER(c), DepDist(c, a)). Figure 9.4 shows the marginal
distributions we get by utilizing the SQuAD1.1 training dataset as our reference data.
The NER tagging 1 is performed by spaCy [Honnibal and Montani, 2017], and the
“UNK” tag means the chunk is not recognized as a named entity. From Figure 9.4(a),
we can see that most of the answers are short, and a majority of them are entities
such as person (PERSON), organization (ORG) or date (DATE). From Figure 9.4(b),
we can see the syntactical dependency distance between a clue chunk and an answer
is usually less than 8, which matches with our intuition that a clue shall be correlated
with the answer so that it will be copied or rephrased in the target question. Finally,
Figure 9.4(c) shows most of the questions are “What” style, and the followings are
“Who”, “How” and “When”. The NER tags of answers are highly correlated with the
style of questions. Also, we shall notice that the NER performance of spaCy is not
perfect. Therefore, we may observe weird cases such as organization (ORG) matches
with “Who”. Determining different conditional probabilities with a reference dataset
instead of following pre-defined rules helps us to take such kind of noises into account.

After calculating the above distributions according to an reference dataset, we can
sample different information given a passage p. First, we get all candidate chunks
K = {k1, k2, · · · , k|K|} by parsing and chunking over p. Second, we sample a chunk
ki as answer according to the normalized probability distribution over all chunks:

P (ki) =
P (ki|POS(ki), NER(ki), length(ki))∑|K|
j=1 P (kj|POS(kj), NER(kj), length(kj))

. (9.19)

Third, we sample a question style si over all possible questions styles S = {s1, s2, · · · , s|S|}
by the normalized probability:

P (si) =
P (si|POS(ki), NER(ki))∑|S|
j=1 P (sj|POS(ki), NER(ki))

. (9.20)

Finally, we sample a chunk kl as clue according to:

P (kl) =
P (kl|POS(kl), NER(kl), DepDist(kl, ki))∑|K|
j=1 P (kj|POS(kj), NER(kj), DepDist(kj, ki))

. (9.21)

We can repeat the above steps for multiple times to get different inputs from the
same passage and generate diverse questions. In our work, for each input passage,
we sample 5 different chunks as answer spans, 2 different question styles for each
answer, and 2 different clues for each answer. In this way, we over-generate questions
by sampling 20 questions for each sentence.

1The meaning of NER labels can be found at: https://spacy.io/api/annotation
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9.3.4 Data Filtering for Quality Control

After sampled multiple inputs from each sentence, we can generate different questions
based on the inputs. However, it is hard to ask each sentence 20 meaningful and
different questions even given 20 different inputs derived from it, as the questions
may be duplicated due to similar inputs, or the questions can be meaningless if the
<answer, clue, style> combination is not reasonable. Therefore, we further utilize a
filter to remove low-quality QA pairs.

We leverage an entailment model and a QA model based on BERT [Devlin et
al., 2018]. For the entailment model, as the SQuAD 2.0 dataset [Rajpurkar et al.,
2018] contains unanswerable questions, we utilize it to train a classifier which tells us
whether a pair of <question, answer> matches with the content in the input passage.
For the question answering model, we fine-tuned another BERT-based QA model
utilizing the SQuAD 1.1 dataset [Rajpurkar et al., 2016].

Given a sample <passage, question, answer>, we keep it if this sample satisfies
two criteria: first, it is classified as positive according to the BERT-based entailment
model; second, the F1 similarity score between the gold answer span and the answer
span predicted by BERT-based QA is above 0.9. Note that we do not choose to fine-
tune a BERT-based QA model over SQuAD 2.0 to perform entailment and question
answering at the same time. That is because we get better performance by separating
the entailment step with the QA filtering step. Besides, we can utilize extra datasets
from other entailment tasks to enhance the entailment model and further improve
the data filter.

9.4 Evaluation

In this section, we compare our proposed ACS-aware question generation with answer-
aware question generation models to show the benefits. Besides, we generate large
number of QA pairs from unlabeled text corpus using our models, and perform a
variety of evaluations to analyze the quality of the generated dataset. Furthermore,
we test the performance of QA models trained on our generated dataset, and show
the potential applications and future directions of our work.

9.4.1 Evaluate ACS-aware Question Generation

Datasets, Metrics and Baselines. We evaluate the performance of ACS-aware
question generation based on the SQuAD dataset [Rajpurkar et al., 2016]. It is
a reading comprehension dataset which contains questions derived from Wikipedia
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articles, and the answer to every question is a segment of text from the corresponding
reading passage. In our work, we use the data split proposed by [Zhou et al., 2017],
where the input is the sentence that contains the answer. The training set contains
86, 635 samples, and the original dev set that contains 17, 929 samples is randomly
split into a dev test and a test set of equal size. The average lengths (number of
words) of sentences, questions and answers are 32.72, 11.31, and 3.19, respectively.

The performance of question generation is evaluated by the following metrics.

• BLEU [Papineni et al., 2002]. BLEU measures precision by how much the
words in predictions appear in reference sentences. BLEU-1 (B1), BLEU-2
(B2), BLEU-3 (B3), and BLEU-4 (B4), use 1-gram to 4-gram for calculation,
respectively.

• ROUGE-L [Lin, 2004]. ROUGE-L measures recall by how much the words in
reference sentences appear in predictions using Longest Common Subsequence
(LCS) based statistics.

• METEOR [Denkowski and Lavie, 2014]. METEOR is based on the harmonic
mean of unigram precision and recall, with recall weighted higher than precision.

We compare our methods with the following baselines.

• PCFG-Trans [Heilman, 2011]: a rule-based answer-aware question generation
system.

• SeqCopyNet [Zhou et al., 2018], NQG++ [Zhou et al., 2017], AFPA [Sun
et al., 2018], seq2seq+z+c+GAN [Yao et al., 2018], and s2sa-at-mp-gsa
[Zhao et al., 2018]: answer-aware neural question generation models based on
Seq2Seq framework.

• NQG-Knowledge [Gupta et al., 2019], DLPH [Gao et al., 2018]: auxiliary-
information-enhanced question generation models with extra inputs such as
knowledge or difficulty.

• Self-training-EE [Sachan and Xing, 2018], BERT-QG-QAP [Zhang and
Bansal, 2019], NQG-LM [Zhou et al., 2019a], CGC-QG [Liu et al., 2019b]
and QType-Predict [Zhou et al., 2019b]: multi-task question generation mod-
els with auxiliary tasks such as question answering, language modeling, question
type prediction and so on.
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The reported performance of baselines are directly copied from their papers or
evaluated by their published code on GitHub.

For our models, we evaluate the following versions:

• CS2S-VR-A. Content separated Seq2Seq model with Vocabulary Reduction
for Answer-aware question generation. In this variant, we incorporate content
embeddings in word representations to indicate whether each word is a content
word or a function word. Besides, we reduce the size of vocabulary by only
keeping the top 2000 frequent words for encoder and decoder. In this way,
low-frequency words are represented by its NER, POS embeddings and feature
embeddings. We also add answer position embedding to indicate the answer
span in input passages.

• CS2S-AS. This model adds question style embedding to initialize decoder,
without vocabulary reduction (vocabulary size is 20, 000 when we do not exploit
vocabulary reduction).

• CS2S-AC. The variant adds clue embedding in encoder to indicate the span
of clue chunk.

• CS2S-ACS. This variant adds both clue embedding in encoder and style em-
bedding in decoder.

• CS2S-VR-ACS. This is the fully featured model with answer, clue and style
embedding, as well as vocabulary reduction.

• GPT2-ACS. This is our fine-tuned GPT2-small model for ACS-aware question
generation.

Experiment Settings. We implement our models in PyTorch 1.1.0 [Paszke
et al., 2017] and Transformers 2.0.0 [Wolf et al., 2019], and train the model with
two Tesla P40. We utilize spaCy [Matthew Honnibal, 2015] to perform dependency
parsing and extract lexical features for tokens. For Seq2Seq-based models, we set
word embeddings to be 300-dimensional and initialize them by GloVe, and set them
trainable. The out-of-vocabulary words are initialized randomly. All other features
are embedded to 16-dimensional vectors. The encoder is a single layer BiGRU with
hidden size 512, and the decoder is a single layer undirected GRU with hidden size 512.
We set dropout rate p = 0.1 for the encoder, decoder, and the attention module. We
train the models by Cross-Entropy loss for question generation and question copying,
and perform gradient descent by the Adam [Kingma and Ba, 2014] optimizer with
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Model B1 B2 B3 B4 ROUGE-L METEOR

PCFG-Trans 28.77 17.81 12.64 9.47 31.68 18.97
SeqCopyNet − − − 13.02 44.00 −

seq2seq+z+c+GAN 44.42 26.03 17.60 13.36 40.42 17.70
NQG++ 42.36 26.33 18.46 13.51 41.60 18.18
AFPA 43.02 28.14 20.51 15.64 − −

s2sa-at-mp-gsa 44.51 29.07 21.06 15.82 44.24 19.67

NQG-Knowledge − − − 13.69 42.13 18.50
DLPH 44.11 29.64 21.89 16.68 46.22 20.94

NQG-LM 42.80 28.43 21.08 16.23 − −
QType-Predict 43.11 29.13 21.39 16.31 − −
Self-training-EE − − − 14.28 42.97 18.79

CGC-QG 46.58 30.90 22.82 17.55 44.53 21.24
BERT-QG-QAP − − − 18.65 46.76 22.91

CS2S-VR-A 45.28 29.58 21.45 16.13 43.98 20.59
CS2S-AS 45.79 29.12 20.59 15.09 45.84 20.14
CS2S-AC 48.13 32.51 24.08 18.40 47.45 22.27
CS2S-ACS 50.72 34.60 25.79 19.84 51.08 23.58

CS2S-VR-ACS 52.30 36.70 28.00 22.05 53.25 25.11
GPT2-ACS 42.60 31.23 24.00 18.87 43.63 25.15

Table 9.1: Evaluation results of different models on SQuAD dataset.

an initial learning rate lr = 0.001, two momentum parameters are β1 = 0.8 and
β2 = 0.999 respectively, and ε = 10−8. The mini-batch size for each update is set to
32 and model is trained for up to 10 epochs. Gradient clipping with range [−5, 5] is
applied to Adam. Beam width is set to be 20 for decoding. The decoding process
stops when the <EOS> token (represents end-of-sentence) is generated.

For GPT2-ACS model, we fine-tune the GPT2-small model using SQuAD 1.1
training dataset from [Zhou et al., 2017]. We fine-tune the model for 4 epochs with
batch size 2, and apply top-p nucleus sampling with p = 0.9 when decoding. For
BERT-based filter, we fine-tune the BERT-large-uncased model from HuggingFace
[Wolf et al., 2019] with parameters suggested by [Wolf et al., 2019] for training on
SQuAD 1.1 and SQuAD 2.0. Our code will be published for research purpose2.

Main Results. Table. 9.1 compares our models with baseline approaches. We
can see that our CS2S-VR-ACS achieves the best performance in terms of the evalu-
ation metrics and outperforms baselines by a great margin. Comparing CS2S-VR-A
with Seq2Seq-based answer-aware QG baselines, we can see that it outperforms all
the baseline approaches in that category with the same input information (input pas-
sage and answer span). This is because that our content separation strategy and

2https://github.com/BangLiu/ACS-QG
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Experiments CS2S-VR-ACS GPT2-ACS GOLD

Question is
Well-formed

No 28.5% 6.0% 2.0%
Understandable 31.5% 19.5% 9.0%

Yes 40.0% 74.5% 89.0%

Question is
Relevant

No 6.3% 11.7% 7.1%
Yes 93.7% 88.3% 92.9%

Answer is
Correct

No 7.4% 3.6% 2.2%
Partially 12.7% 15.1% 15.4%

Yes 79.9% 81.3% 82.4%

Table 9.2: Human evaluation results about the quality of generated QA pairs.

vocabulary reduction operation help the model to better learn what words to copy
from the inputs. Comparing our ACS-aware QG models and variants with auxiliary-
information-enhanced models (such as NQG-Knowledge and DLPH) and auxiliary-
task-enhanced baselines (such as BERT-QG-QAP), we can see that the clue and style
information helps to generate better results than models with knowledge or difficulty
information. That is because our ACS-aware setting makes the question generation
problem closer to one-to-one mapping, and greatly reduces the task difficulty.

Comparing GPT2-ACS with CS2S-VR-ACS, we can see that GPT2-ACS achieves
better METEOR score, while CS2S-VR-ACS performs better over BLEU scores and
ROUGE-L. That is because GPT2-ACS has no vocabulary reduction. Hence, the
generated words are more flexible. However, metrics such as BLEU scores are not
able to evaluate the quality of generated QA pairs semantically. Therefore, in the
following section, we further analyze the quality of QA pairs generated by CS2S-VR-
ACS and GPT2-ACS to identify their strengths and weaknesses.

9.4.2 Qualitative Analysis

After training our CS2S-VR-ACS and GPT2-ACS models, we generate large-scale
<passage, question, answer> datasets from unlabeled text corpus. Specifically, we
obtain the top 10, 000 English Wikipedia articles with Project Nayuki’s Wikipedia’s
internal PageRanks. After that, we split each article in the corpus into sentences,
and filter out sentences with lengths shorter than 5 or longer than 100. Based on
these sentences, we perform input sampling to sample <answer, clue, style> triplets
for each sentence according to the steps described in Section 9.3.3, and feed them
into our models to generate questions. After filtering, we create two datasets utilizing
the two models, where each of the dataset contains around 1.4 million generated
questions.

We first evaluate the quality of generated QA pairs by running pilot user study.
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We ask 10 graduate students to evaluate 500 <passage, question, answer> samples:
200 samples generated by the CS2S-VR-ACS model, 200 samples generated by the
GPT2-ACS model, and 100 gold samples from the SQuAD 1.1 training dataset. All
the samples are randomly shuffled, and each sample will be evaluated by 3 workers.
We acquire judgments of the following questions:

• Is the question well-formed? This is to check whether a given question
is both grammatical and meaningful [Krishna and Iyyer, 2019]. Workers will
select yes, no, or understandable. The option understandable is selected if a
question is not totally grammatically correct, but we can infer its meaning.

• If the question is well-formed or understandable, is the question rel-
evant to the passage? Workers will select yes if we can find the answer to
the generated question in the passage.

• If the question is relevant to the passage, is the answer actually a
valid answer to the generated question? Workers will select yes, no or
partially. The last option represents that the answer in our generated sample
partially overlaps with the true answer in the passage.

Table 9.2 shows the evaluation results based on the sampled data. First, we
can see that even the gold samples from the SQuAD dataset are not totally well-
formed, relevant and answer correct. That is because we only use the sentence which
contains the answer span as context. However, about 20% questions in SQuAD
require paragraph-level information to be asked [Du et al., 2017]. Second, 94% of
the questions generated by GPT2-ACS are well-formed or understandable, while the
percentage is 71.5% for the CS2S-VR-ACS model. We can see that although the
BLEU scores of the GPT2-ACS model are lower than that of CS2S-VR-ACS, the
results of GPT2-ACS are semantically better due to the knowledge learned from
large-scale pre-training. Third, we can see that most of the questions generated by
both CS2S-VR-ACS and GPT2-ACS are relevant to the input passages. Finally, most
of the answers are also correct given the generated questions. This demonstrates the
high-quality of the question-answer pairs generated by our models.

Figure 9.5 is a running example to show the properties of generated questions. We
can see that our ACS-aware question generation models are able to generate various
questions based on different answers, question styles, and clue chunks. Compared
with answer-aware question generation, our generation process is more controllable,
and our generated questions are more diverse and of high quality. In some cases,
the answer span does not match with the question. We further performed pilot user
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The New York Amsterdam News, 
based in Harlem, is one of the leading 
African American weekly newspapers 
in the United States.

Q: What is the New York 
Amsterdam News known for?
A: one of the leading African 
American weekly newspapers in 
the United States

Q: What is one of the leading 
African American weekly 
newspapers in the US?
A: The New York Amsterdam 
News

Q: The New York Amsterdam 
News is one of the leading 
African American weekly 
newspapers in which country?
A: the United States

Manhattan is a world center for training 
and education in medicine and the life 
sciences.

Q: What area of medicine is 
Manhattan known for training?
A: the life sciences

Q: Which city is a world center 
for education and training in 
medicine?
A: Manhattan

Q: What is Manhattan known for 
training and education in 
medicine and life sciences?
A: a world center

Figure 9.5: Showcases of generated questions-answer pairs by our system.

studies to analyze the bad cases in our generated samples. For each question that is
not well-formed, we ask workers to label the weakness of it. The results of the study
show that most of the errors are grammatically errors, type mismatches, meaningless,
or incomplete information. For CS2S-VR-ACS, about 56.7% of the bad cases are
grammatically incorrect; 29.2% of them have the problem of type mismatch, e.g., the
generated question starts with “When” when asking questions about a person; 14.2%
of them are grammatically correct, but meaningless; and 17.5% of the questions do not
express their meaning explicitly due to missing words or fuzzy pronouns. Similarly,
for GPT2-ACS, the percentages of the above four problems are 40.4% (grammatically
incorrect), 46.2% (type mismatches), 15.4% (meaningless) and 11.6% (incomplete or
fuzzy information). Note that the sum of these percentages does not equal to 1. That
is because each question may be labeled with multiple types of weaknesses.

In order to reduce different errors and further improve the quality of generated
questions, first, we need to incorporate the knowledge of natural language by meth-
ods such as large-scale pre-training. We can observe from Table 9.2 that most of the
questions generated by GPT2-ACS are well-formed and grammatically correct. Sec-
ond, we can utilize a better named entity recognition model to provide more accurate
information about the named entity types of answer chunks. In this way, the type
mismatch errors will be reduced. Last but not the least, the problem of semantic
mismatching, meaningless, or information incompleteness can be reduced by training
a better entailment model to enhance the data filter.
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Experiments CS2S-VR-ACS GPT2-ACS
EM F1 EM F1

SQuAD 86.72 92.97 86.72 92.97
Generated 71.14 83.53 74.47 85.64

Generated + SQuAD 86.12 92.36 85.87 92.33

Table 9.3: Evaluate the performance of question answering with different training
datasets.

9.4.3 Apply to Question Answering

We also perform quality test of the generated question-answer pairs by applying them
to downstream machine reading comprehension tasks. Specifically, we train different
BERT-based question answering models based on the following settings:

• SQuAD: in this experiment, we utilize the original SQuAD 1.1 training dataset
to train a BERT-based QA model, and test the performance on the dev dataset.
The performance is evaluated by exact match (EM) and F1-Score (F1) between
predicted answer span and the true answer span [Rajpurkar et al., 2016].

• Generated: in this experiment, we sample a training dataset from our gener-
ated questions, where the size is equal to the training dataset of SQuAD 1.1.
Although our questions are generated from sentences, we utilize the paragraphs
the sentences belong to as contexts when training QA models.

• Generated + SQuAD: in this experiment, we combine the original SQuAD
training dataset with our generated training dataset to train the BERT-based
QA model.

For all the QA experiments, the configurations are the same except the training
datasets.

Table 9.3 compares the performance of the resulting BERT-based QA models
trained by above settings. Our implementation gives 86.72% EM and 92.97% F1
when trained on the original SQuAD dataset. In comparison, the model trained by
our generated dataset gives 74.47% and 85.64% F1. When we combine the generated
dataset with the SQuAD training set to train the QA model, the performance is not
further improved. The results are reasonable. First, the generated dataset contains
noises which will influence the performance. Second, simply increasing the size of
training dataset will not always help with improving the performance. If most of the
generated training samples are already answerable by the model trained over the orig-
inal SQuAD dataset, they are not very helpful to further enhance the generalization
ability of the model.
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There are at least two methods to leverage the generated dataset to improve
the performance of QA models. First, we can utilize curriculum learning algorithms
[Bengio et al., 2009] to select samples during training. We can select samples accord-
ing to the current state of the model and the difficulties of the samples to further
boost up the model’s performance. Note that this requires us to remove the BERT-
based QA model from our data filter, or set the threshold of filtering F1-score to be
smaller. Second, similar to [Gao et al., 2018], we can further incorporate the diffi-
culty information into our question generation models, and encourage the model to
generate more difficult question-answer pairs. We leave these to our future works.

Aside from machine reading comprehension, our system can be applied to many
other applications. First, we can utilize it to generate exercises for educational pur-
poses. Second, we can utilize our system to generate training datasets for a new
domain by fine-tuning it with a small amount of labeled data from that domain. This
will greatly reduce the human effort when we need to construct a dataset for a new
domain. Last but not the least, our pipeline can be adapted to similar tasks such
as comment generation, query generation and so on. The key insight is that we will
need to decompose the inputs for a new task to help reducing the uncertainty of gen-
eration process, as well as propose suitable strategies to extract the required inputs
from unlabeled text corpus.

9.5 Conclusion

In this chapter, we propose ACS-aware question generation, a novel text generation
task which learns to generate questions based on input passages, clues, answers and
question styles. Our proposed task significantly reduces the difficulty of question
generation and provides more controllability over the generation process. In addi-
tion, we further propose effective strategies to sample meaningful combinations of
different inputs from unlabeled text corpus, as well as filtering strategies to control
the quality of generated question-answer pairs. Our system automatically generate
two large datasets containing 1.33 million and 1.45 million QA pairs from Wikipedia
articles. We present and evaluate our system and models to demonstrate the perfor-
mance. Compared with existing answer-aware question generation models or models
with auxiliary inputs or tasks, our ACS-aware QG model achieves significantly better
performance, which highlights the importance of clue and style information. We fur-
ther run pilot user studies to evaluate the quality of generated data. The evaluation
results show that our model is able to generate diverse and high-quality questions
from the same input sentence. Finally, we point out potential future directions to
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further improve the performance of our pipeline.
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Chapter 10

Conclusions

10.1 Summary

In this dissertation, we explore the idea of graph modeling for text pieces and propose
a variety of approaches for different tasks.

In Chapter 3, different with traditional document clustering or topic detection, we
propose to cluster extreme fine-grained hot events from news articles, which matches
with the granularity of user interests. Furthermore, we organize correlated events into
tree structures story trees to show the logical connections between them. We aim to
design and implement a new generation of intelligent news organization system in
the era of information explosion. Such a system helps to organize massive documents
into structured story trees which are intuitive to human beings. Besides, it helps to
reduce information redundancy by clustering documents with homogeneous contents
into events. Furthermore, it tracks both short and long term stories by connecting
correlated events into story trees and updating them in an online manner. We propose
the novel EventX clustering algorithm for fine-grained event and story clustering in
our Story Forest system. We implement our system in Tencent QQ Browser and show
the performance of Story Forest through extensive simulations.

A key problem in event clustering is: how to classify the relationship between
two documents and judge whether they are essentially talking about the same event
or topic. Existing research works are mainly focus on sentence matching, and few
research works are about matching two long documents. In Chapter 4 and 5, we study
the problem of text matching. Specifically, we study both long document matching
and short sentence matching. For long document matching, we propose the Concept
Interaction Graph representation to represent one or a pair of documents. Each vertex
in the graph is essentially a sub-topic in the document (pairs). By constructing such
a graph representation, we divide a long document into short pieces over different
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sub-topics. We then utilize Siamese encoding for local matching over vertices, and
combine the local matching results through graph convolutional networks to give the
final matching result.

Concept Interaction Graph decomposes the problem of long document matching
into the problem of short text matching over different vertices. For short text match-
ing, in Chapter 5, we further propose hierarchical sentence factorization technique to
factorize a sentence into hierarchical of semantic units. Each layer in our factorized
sentence tree contains the full information of the original sentence. With the increase
of depth, the semantic units factorize into smaller granularity, starting from the origi-
nal sentence and until they are factorized into words. We organize the semantic units
in different layers by following the general “predict-argument” structure. Finally, such
a hierarchical and ordered tree representation helps to align the semantic units in two
sentences from different granularity. Based on the idea of factorization and align-
ment, we propose new unsupervised semantic distance metric between two sentences,
as well as extend existing deep neural matching models to multi-granularity matching
models.

The graph-based modeling of different text pieces, including sentences, documents
and corpora, significantly improves the performance of many NLP tasks. However,
for natural language understanding, we need to model the knowledge of the world and
perform reasoning with them. Therefore, instead of connecting pure text elements,
discovering new entities and concepts, and modeling the relationships between them
to construct a model of world is of great value to improve the understanding of natural
language. In Chapter 6 and 7, we propose our ConcepT and GIANT systems for user-
centered concept mining and topic/event mining. Different with traditional knowledge
graphs, our system discovers user-centered concepts as well as hot topics/events from
large scale user queries and search click graphs. In this way, the discovered phrases are
conforming to the language style of real world users, instead of expressed in “writer-
perspective”. Our system discovers concepts and construct a large-scale user interests
ontology to depict the hierarchical relationships between different user interests. It is
of great value to both user modeling and text understanding.

A structured concept base characterizes the world in a simplified form. To further
improve the performance of language understanding tasks, such as machine reading
comprehension, we still need a large amount of training data. However, such kind of
training datasets are expensive and requires a lot of time to construct. Besides, it
is also hard to guarantee the quality of constructed datasets. In Chapter 8 and 9,
we look into the problem of automatic question generation which aims to generate
context-question-answer triplets for various applications. We notice that given the
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context sentence and even a specific answer, the problem of question generation is still
a one-to-many mapping problem. Therefore, it is hard to generate questions exactly
like the given ones in the training dataset. In our proposed approach, we emphasize
on the concept of “clue words” in question generation. Specifically, clue words indicate
what aspect a question is asking about. Given an answer and the related clue words,
we can narrow the way how we can ask questions about a sentence. As the clue
words are not given in any existing question answering and generation datasets, we
propose to predict the potential clue words by constructing a clue predictor which
combines the syntactical structure of sentences with graph convolutional networks.
We further proposed a strategy to encourage aggressive copying from input sentences
when generating questions. Our final model significantly improves the performance
of question generation when compared with exiting approaches.

In Chapter 9, we introduce the “answer-clue-style” aware question generation task,
and further propose efficient strategies to sample different input elements for this task.
Our new paradigm of question generation dramatically reduces the difficulty of gen-
erating high-quality questions by providing more input information to the generation
system. Combing our new task with large pretrained language models such as GPT-
2, we can generate a large-scale question-answer pairs dataset for machine reading
comprehension with a relative small size of training data.

10.2 Directions for Future Work

10.2.1 Extending Current Research Work

Our work on information organization, information recommendation and reading com-
prehension can be further extended in the following directions.

Story Forest 2.0: User-Centered and Real-Time Story Construction. We
will extend our proposed Story Forest and EventX framework to make it applicable
to a continuous stream of news documents, and combine it with the user attention
ontology created by our GIANT system. On one hand, currently, we extract the events
for each batch of documents collected in different hours, and merge a new event with
an existing event if they are talking about the same one. We can further improve
Story Forest by maintaining a dynamic keyword graph, performing dynamic keyword
community detection, and run incremental event extraction based on such a dynamic
keyword graph. Whenever new document stream comes in, we update the keyword
graph to find out new keyword communities, and cluster new documents into new
events or assign them to existing events. In this way, our framework can be directly
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applied to a continuous stream of news documents, rather than processing them in
batches. On the other hand, the attention ontology created by the GIANT system
contains the relationships between different events and topics. For each event, it also
shows its arguments such as involved entities, location and trigger words. Based on
these information, we can improve the story structure generation algorithm by taking
the event arguments into account. We can also generate user-centered stories by
taking each user’s interest into account. In this way, the generated stories will mainly
contain important and user interested events. Furthermore, we can guide users to
learn and grow with the constructed story trees. That is to say, with the growth of
story trees, users will learn more useful and advanced topics based on what he/she
has learned previously.

Long Document Understanding with Attention Graph. Existing works on
machine reading comprehension do not perform well for long documents. Compared
with the task of SQuAD question answering, we need to retrieve relevant documents
which may contain the answer to a specific question from a large corpus, and extract
or generate an answer from selected documents. The attention graph constructed by
our GIANT system is able to characterize the topic coverages of a document. Based
on it, we can better retrieve relevant documents given a specific user query. We can
also improve the performance of question answering by utilizing the attention tags
associated to a document as prior knowledge to depicting and organizing the content
of a document.

Joint Learning of Question Answering and Question Generation. Our
ACS-aware question generation can help to generate large-scale high quality question-
answer pairs from unlabeled text corpus, which can serve as the training dataset for
machine reading comprehension. However, increasing the size of training dataset may
not help improve performance if a large amount of high-quality data is available. To
further improve machine reading comprehension tasks such as SQuAD QA, one may
need to perform bad-case-directed curriculum/active learning to select appropriate
training samples given the QA model. Furthermore, we can jointly learn the models
of QA and QG by sharing the states between the two models. In this way, the
training state of the QA model can guide the QG model to generate QA pairs it
needs. The QG model can potentially further improve the performance of the QA
model by generating QA pairs that the QA model cannot answer correctly at present.
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10.2.2 Long-Term Research Goals

My long-term research aims to develop theories and algorithms for machine intelli-
gence, with applications to various domains. Deep learning models are good at learn-
ing representations of inputs and mappings from inputs to outputs. However, they
are data-intensive and compute-intensive, as well as lack the ability of explainable
reasoning and inference. Graph neural networks (GNNs) are capable of incorporat-
ing a sparse and discrete dependency structure of input data. However, they lack
the ability of understanding or automatically establishing the implicit relationships
between different things. To fuse the advantage of deep learning and relational rea-
soning to learn from heterogeneous data, I am planning to focus on relational and
discrete representation learning and reasoning with graphs.

Our current work propose a unified methodology to transform different text pieces
into suitable graph representations, and combine such a representation with deep
learning models to improve the performance of various NLP and text mining tasks.
However, first, the designation of graph representations are specific to each task and
requires a lot human experience. How to automatically design or learn appropriate
graph structures from raw input text remains a challenging problem. Second, existing
works are mostly learning the hidden representation of graph nodes by a multi-layer
graph neural network. To the best of our knowledge, there is few research work on
how to learn different and higher-level nodes and edges with multi-layer graph neural
network. From our point of view, such a multi-layered graph transformation can serve
as a model of logical reasoning and inference. Last but not least, our work has not
take take the relationships between different tasks into account.

Based on above thoughts, in the future, we are going to explore the following
potential research directions:

Representation and Relation Learning with Graph Neural Networks.
Existing GNNs can only learn from input when a graph-structure of input data is
available. However, real-world graphs are often noisy and incomplete or might not
be available at all. Our study aims to design effective models and algorithms to
automatically learn the relational structure in input data with limited structured in-
ductive biases. Instead of manually designing specific graph representations of data
for different applications, we will enable models to automatically identify the implicit
relationships between input data points, and learn the graph structure and represen-
tations of inputs.

Joint Learning of Graph Structure and Graph Embedding. Graph/Network
embedding [Cui et al., 2018] assigns nodes in a network to low-dimensional represen-
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tations and effectively preserves the network structure. Our research work is mainly
focusing on designing the graph representations of different data, and solving different
tasks with manually designed graph representation and node/edge feature vectors. To
reduce the human effort in designation, we can jointly learn the structure of input
data and the embedding of graph nodes/edges.

Hierarchical Relational Learning for Reasoning and Inference. Learning
and reasoning with graph-structured representations naturally supports interpretabil-
ity, causality, and transferability / inductive generalization. Existing deep neural
models are mostly learning over fixed relational topologies of input data. In this
study, we are aiming to perform hierarchical representation and relation learning over
both the data points (nodes) and the relationships (edges). It automatically groups
and aggregates related data points into semantic units of diverse granularities, as
well as learns to capture the implicit and high-level semantic relationships between
data points in a hierarchical manner. A potential way to achieve this is combining
representation learning with symbolic inference over graph-structured data to enable
a model to perform explainable reasoning and inference.

Task Relation Modeling for Continual Lifelong Meta-Learning. In this
study, we propose to marriage the universal representation power of graph structures
with multi-task learning to integrate diverse input data, such as images, text pieces,
and knowledge bases, and jointly learn a unified and structured representation for
various tasks. Furthermore, we learn the relationships or correlations between differ-
ent tasks, and exploit the learned relationship for curriculum learning to accelerate
the rate of convergence in different tasks. Finally, with the universal representation
and integration of different data, as well as the joint and curriculum learning of dif-
ferent tasks, our artificial learning systems will gain the ability to continually acquire,
fine-tune, and transfer knowledge and skills throughout their lifespan.
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