
Growing Story Forest Online from Massive Breaking News
Bang Liu1, Di Niu1, Kunfeng Lai2, Linglong Kong1, Yu Xu2

1University of Alberta, Edmonton, AB, Canada
2Mobile Internet Group, Tencent Inc., Shenzhen, China

ABSTRACT
We describe our experience of implementing a news content orga-
nization system at Tencent that discovers events from vast streams
of breaking news and evolves news story structures in an online
fashion. Our real-world system has distinct requirements in con-
trast to previous studies on topic detection and tracking (TDT) and
event timeline or graph generation, in that we 1) need to accurately
and quickly extract distinguishable events from massive streams of
long text documents that cover diverse topics and contain highly
redundant information, and 2) must develop the structures of event
stories in an online manner, without repeatedly restructuring pre-
viously formed stories, in order to guarantee a consistent user
viewing experience. In solving these challenges, we propose Story
Forest, a set of online schemes that automatically clusters streaming
documents into events, while connecting related events in growing
trees to tell evolving stories. We conducted extensive evaluation
based on 60 GB of real-world Chinese news data, although our
ideas are not language-dependent and can easily be extended to
other languages, through detailed pilot user experience studies.
�e results demonstrate the superior capability of Story Forest to
accurately identify events and organize news text into a logical
structure that is appealing to human readers, compared to multiple
existing algorithm frameworks.

KEYWORDS
Text Clustering; Online Story Tree; Information Retrieval

1 INTRODUCTION
With information explosion in the fast-pacedmodern society, tremen-
dous volumes of articles on trending and breaking news are being
generated on a daily basis by various Internet media providers,
e.g., Yahoo! News, CNN, Tencent News, Sina News, etc. In the
meantime, it becomes increasingly di�cult for normal readers to
digest such a large amount of streaming news information. Search
engines perform document retrieval from large corpora based on
user-de�ned queries that specify what are interesting to the user.
However, they do not provide a natural way for users to view what
is going on. Furthermore, search engines return a list of ranked
documents and do not provide structural summaries of trending
topics or breaking news.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM’17 , Singapore, Singapore
© 2017 ACM. 978-1-4503-4918-5/17/11. . .$15.00
DOI: 10.1145/3132847.3132852

An emerging alternative way to visualize news corpora with-
out pre-speci�ed queries is to organize and present news articles
through event timelines [22, 24], event threads [15], event evolution
graphs [25], or information maps [20, 21, 23]. However, till today
few existing news information organization techniques are turned
into large-scale deployment due to several reasons:

First of all, despite research e�orts in Topic Detection and Track-
ing (TDT) [3, 26], it remains challenging to extract distinguishable
“events” at a proper granularity, as building blocks of the news
graph, from today’s vast amount of open-domain daily news. �e
news articles may cover extremely diverse topics and contain re-
dundant information about a same conceptual event published by
di�erent sources. For example, simply connecting individual arti-
cles [20] or named entities [6] in a graph will lead to redundant and
entangled information. On the other hand, connecting co-occuring
keyword sets in an information map [21] can greatly reduce the
�ne details of news graphs. But even with the keyword graph, a
user still needs to put additional e�orts to understand the large
number of articles associated with each keyword set.

Second, many recently proposed event graphs or information
maps try to link events in an arbitrary evolution graph [25] or per-
mi�ing intertwining branches in the information map [21]. How-
ever, we would like to point out that such overly complex graph
structures do not make it easy for users to quickly visualize and
understand news data. In fact, unlike a novel or a complex story
about a celebrity queried from a search engine, most breaking news
stories follow one of a few typical developing structures. In fact,
for breaking news summary that will appeal to commercial uses,
simple story structures are preferred.

Most importantly, most existing event timeline or event graph
generation schemes are based on o�ine optimization over the entire
news corpora, while for a system that visualizes breaking news,
it is desirable to “grow” the stories in an online fashion without
disrupting or restructuring the previously generated stories. On
one hand, online computation can prevent repeated processing of
older documents. On the other hand, an online scheme can deliver
a consistent story development structure to users, so that users can
quickly visualize what’s new in the hot events that they are trying
to follow. Furthermore, given the vast amount of collected daily
news data, the entire online computation to identify new events
and extend the existing story graphs will incur less delay.

In this paper, we present our experience of implementing Story-
Forest, which is a comprehensive system to organize vast amounts
of breaking news data into easily readable story trees of events in an
online fashion. We make careful design choices for each component
in this large system, with the following contributions:

First, our system can accurately cluster massive amounts of long
news documents into conceptually clean events through a novel
two-layer document clustering procedure that leverages a wide
range of feature engineering and machine learning techniques,

mainly including keyword extraction, keyword community detec-
tion, a pre-trained classi�er to detect whether two documents are
talking about the same event, and a graph-based document clus-
tering procedure. On a labeled news dataset, our proposed text
clustering procedure signi�cantly outperforms a number of existing
text clustering schemes.

Second, our system further groups the discovered events into
stories, where each story is represented by a tree of events. A link
between two events indicates the temporal migration or a causal
relationship between two events. Compared with existing story
generation systems such as StoryGraph [25] and MetroMap [20],
we propose an online algorithm to evolve story trees incrementally
based on daily news, without any churn of reforming the graph
when new data arrive. As a result, each story is presented in one of
several easy-to-view structures, i.e., either a linear timeline, a �at
structure, or a tree with branches, which we believe are su�cient
to represent story structures of most breaking news.

Finally, we evaluated the performance of our system based on 60
GB of Chinese news documents collected from all themajor Internet
news providers in China (including Tencent, Sina, WeChat, Sohu,
etc.) in a three-month period from October 1, 2016 to December 31,
2016, covering extremely diverse topics in the open domain. We
also conducted a detailed and extensive pilot user experience study
for (long) news document clustering and news story generation
to evaluate how our system as well as several baseline schemes
conform to the habit of human readers.

According to the pilot user experience study, our system outper-
forms multiple state-of-the-art news clustering and story structure
generation systems such as KeyGraph [19] and StoryGraph [25]
in terms of logical validity of the generated story structures, as
well as the conceptual purity of each identi�ed event and story.
Experiments show that the average time for our Java-based system
to �nish event clustering and story structure generation based on
the daily data is less than 30 seconds on a MacBook Pro with a
2 GHz Intel Core i7 processor, and 8 GB memory. �erefore, our
system proves to be highly e�cient and practical.

It is worth mentioning that our work represents the �rst system
that is able to e�ciently process vast amounts of Chinese news data
into organized story structures, although our proposed algorithms
and schemes are also applicable to news data in English (and other
languages) by simply replacing the word segmentation and NLP
tools with the counterparts for the corresponding language.

2 PROBLEM DEFINITION AND NOTATIONS
We �rst present some de�nitions of key concepts in the top-down
hierarchy: topic→ story → event to be used in this paper.

De�nition 2.1. Event: an event E is a set of one or several docu-
ments that contain highly similar information.

De�nition 2.2. Story: a story S is a tree of events that revolve
around a group of speci�c persons and happen at certain places
during speci�c times. A directed edge from event E1 to E2 indicates
a temporal evolution or a logical connection from E1 to E2.

De�nition 2.3. Topic: a topic consists of a set of stories that are
highly correlated or similar to each other.

Each topic may contain multiple story trees, and each story
tree consists of multiple logically connected events. In our work,
events (instead of news documents) are the smallest atomic units.
Each event is also assumed to belong to a single story and contains
partial information about that story. For instance, considering the
topic American presidential election, 2016 U.S. presidential election
is a story within this topic, and Trump and Hilary’s �rst television
debate is an event within this story.

We now introduce some notations and describe our problem for-
mally. Given a news document stream D = {D1,D2, . . . ,Dt , . . .},
where Dt is the set of news documents collected on time period
t , our objective is to: a) cluster all news documents D into a set of
events E = {E1, . . . ,E |E | }, and b) connect the extracted events to
form a set of stories S = {S1, ...,S |S | }. Each story S = (E,L) con-
tains a set of events E and a set of links L, where Li, j :=< Ei , Ej >
denotes a directed link from event Ei to Ej , which indicates a
temporal evolution or logical connection relationship.

Furthermore, we require the events and story trees to be ex-
tracted in an online or incremental manner. �at is, we extract
events from each Dt individually when the news corpus Dt ar-
rives in time period t , and merge the discovered events into the
existing story trees that were found at time t − 1. �is is a unique
strength of our scheme as compared to prior work, since we do not
need to repeatedly process older documents and can deliver a set
of evolving yet logically consistent story trees to users.

For example, Fig. 1 illustrates the story tree of “2016 U.S. pres-
idential election”. �e story contains 20 nodes, where each node
indicates an event in 2016 U.S. election, and each link indicates a
temporal evolution or a logical connection between two events. �e
index number on each node represents the event sequence over the
timeline. �ere are 6 paths within this story tree, where the path
1 → 20 indicates the whole presidential election process, branch
3 → 6 is about Hilary’s health conditions, branch 7 → 13 talks
about television debates, 14→ 18 depicts the investigation into Hi-
lary’s “mail door”, etc. As we can see, by modeling the evolutionary
and logical structure of a story into a story tree, users can easily
grasp the logic of news stories and learn the main information
quickly.

Let us represent each story by an empty root node s from which
the story is originated, and denote each event by an event node e .
�e events in a story can be organized in one of the following four
structures shown in Fig. 2: a) a �at structure that does not include
dependencies between events; b) a timeline structure that organizes
events by their timestamps; c) a graph structure that checks the
connection between all pairs of events and maintains a subset of
most strong connections; d) a tree structure, which represents a
story’s evolving structure by a tree.

Compared with a tree structure, sorting events by timestamps
omits the logical connection between events, while using directed
acyclic graphs tomodel event dependencies without considering the
evolving consistency of the whole story can leads to unnecessary
connections between events. �rough extensive user experience
studies in Sec. 4, we show that tree structures are the most e�ec-
tive way to represent breaking news stories as compared to other
structures, including the more complex graph structures.

!""# $2016-07-19

Trump become

presidential

candidate %
2016-07-26

Hilary become

presidential

candidate

&
2016-09-11'()*+,-*../012.3/-4$$500(6/+2*+,*01-)/*6/-/*+),72016-09-1289:.9+-2*,'()*+,-3*2;0/<=90(* >

2016-09-26?(+2.-/)/:.(90./)/6(2(901/@*./ $%
2016-10-10A/:901-/)/:.(90./)/6(2(901/@*./ $&

2016-10-19#3(+1-/)/:.(90./)/6(2(901/@*./B2016-09-28'()*+,-*::<2/2#+<=;-9C+/C<2(0D-.91(2:)92/-.*E(0C9+=*.(90F2016-09-14'()*+,-2*,23/-G*23/*).3, H2016-09-16'()*+,-(2+/:96/+/1 4
2016-10-02I/G-J9+K-#(=/2/E;92<+/2-#+<=;.*E-*69(1*0:/--$L2016-10-07M*23(0D.90-N92.+/6/*)2-#+<=;O22;//:3-*@9<.:90./=;.C9+-G9=/0 $$2016-10-08#+<=;-;<@)(:),*;9)9D(P/2-C9+-3(2:90.+96/+2(*)-2;//:3*@9<.-G9=/0 $>2016-11-02'()*+,-:901/=02#+<=;-C9+@<)),(0D-G9=/0$7

2016-10-28?QR-+/2.*+.S=*()-199+T(06/2.(D*.(90 $F
2016-10-29?QR-/E;)*(0C9+-+/2.*+.(0DS=*()-199+T(06/2.(D*.(90 $H

2016-10-30'()*+,-U</2.(902?QRO2-=9.(6*.(90C9+-+/2.*+.(0D(06/2.(D*.(90 $B
2016-11-06?QR-1(+/:.9+VI9-:3*+D/2*C./+-0/G+/6(/G-9C'()*+,-/=*()2%L2016-11-09890*)1-#+<=;(2-/)/:./1;+/2(1/0.$42016-11-085=/+(:*-69./2.9-/)/:.-0/G;+/2(1/0.

Figure 1: �e story tree of “2016 U.S. presidential election.”

(d) Tree structure(b) Timeline structure

e sEvent Story

s

e

e
e

e
e

s

e

e

e

s

e

e e

ee
s

e

e

e

e

e

(a) Flat structure (c) Graph structure

Figure 2: Di�erent structures to characterize a story.

3 THE STORY FOREST SYSTEM
An overview of our Story Forest system is shown in Fig. 3, which
mainly consists of three components: preprocessing, document
clustering and story tree update, divided into 5 steps. First, the
input news document stream will be processed by a variety of NLP
and machine learning tools, mainly including document �ltering,
word segmentation and keyword extraction. Second, steps 2–3
will cluster documents into events in a novel 2-layer procedure
as follows. For news corpus Dt in each time period t , we form
a keyword graph [19] from these documents based on keyword
co-occurrence, and extract topics as subgraphs from the keyword
graph using community detection algorithms. �e topics with few
keywords will be discarded. A�er each topic is found, we �nd all
the documents associated with the topic, and further cluster these
documents into events through a semi-supervised document clus-
tering procedure aided by a pre-trained document-pair relationship
classi�er. Finally, in steps 4–5 we update the story trees (formed
previously) by either inserting each discovered event into an exist-
ing story tree at the right place, or creating a new story tree if the
event does not belong to any existing story. Note that each topic
may contain multiple story trees and each story tree consists of
logically connected events. We will explain the design choices of
each component in detail in the following.

3.1 Preprocessing
When a new set of news documents arrives, we need to clean, �lter
documents, and extract features that will be helpful to the steps that
follow. Our preprocessing module mainly includes the following
three steps, which are critical to the overall system performance:

Table 1: Features for the classi�er to extract keywords.

Type Features
Word feature Named entity or not, location name or not,

contains angle brackets or not.
Structural feature TF-IDF, whether appear in title, �rst occur-

rence position in document, average occur-
rence position in document, distance be-
tween �rst and last occurrence positions,
average distance between word adjacent oc-
currences, percentage of sentences that con-
tains the word, TextRank score.

Semantic feature LDA1

Document �ltering: unimportant documents with content
length smaller than a threshold (20 characters) will be discarded.

Word segmentation: we segment the title and body of each
document using Stanford Chinese Word Segmenter Version 3.6.0
[5], which has proved to yield excellent performance on Chinese
word segmentation tasks. Note that for data in a di�erent language,
the corresponding word segmentation tool in that language can be
used instead.

Keyword extraction: extracting keywords from each docu-
ment to represent the main concepts of the document is quite
critical to the performance and e�ciency of the entire system. We
found that traditional keyword extraction approaches, such as TF-
IDF based keyword extraction and TextRank [14], are not su�cient
to achieve good performance for real-world news data. For exam-
ple, the TF-IDF based method measures each word’s importance
by frequency information; it cannot detect keywords that yet have
a relatively low frequency. �e TextRank algorithm utilizes the
word co-occurrence information and is able to handle such cases.
However, its e�ciency is relatively low, with time cost increasing
signi�cantly as the document length increases.

To e�ciently and accurately extract keywords, we constructed
a supervised learning system to classify whether a word is a key-
word or not for a document. In particular, we manually labeled
1We trained a 1000-dimensional LDAmodel based on news data collected from January
1, 2016 to May 31, 2016 that contains 300, 000+ documents.

Preprocessing

1. Document filtering

2. Word segmentation

3. Keyword extraction

w
w

w

w

w

w

w

w

Community 1 Community 2
Event 2Event 1

w

d

e

s

Keyword

Document

Event

Story

d

d
d

d

d

Tree 1

s

e

e

Tree 2

s

e e

Tree 2

s

e

e

e

e

e

Time

Keyword Graph

1. Construct keyword

 graph

2. Community

 detection

3. Filtering out small

 sub-graphs

Cluster Events

1. Cluster by keyword

 sub-graphs

2. Doc-pair relation

 classification

3. Cluster by

 document graphs

Cluster Stories

1. Find the story to

 which each event

 belongs

2. Add events to

 existing stories, or

 create new stories

Grow Story Forest

1. Merge same events

2. Update story tree

 structure with new

 events

e

e
e

e eStory 1

Story 2

Figure 3: An overview of the system architecture of Story Forest.

Input

Features

Gradient Boosting

Decision Tree

Logistic

Regression
Yes/No

Figure 4: �e classi�er to extract keywords.

the keywords of 10, 000+ documents, including 20, 000+ positive
keyword samples and 350, 000+ negative samples. Table 1 lists the
main features that we found critical to the binary classi�er.

A straightforward idea is to input the raw features listed above to
a Logistic Regression (LR). However, as a linear classi�er, LR relies
on careful feature engineering. To reduce the impact of human
judgement in feature engineering, we combine a Gradient Boosting
Decision Tree (GBDT) with the LR classi�er to get the binary yes/no
classi�cation result, as shown in Fig. 4. GBDT, as a nonlinear
model, can automatically discover useful cross features or feature
combinations from raw features and discretize continuous features.
�e output of the GBDT will serve as the input of the LR classi�er.
Finally, the LR classi�er will determinewhether a word is a keyword
or not for the document in question. We also tried SVM as the
classi�er in the second layer instead of LR and observed similar
performance. Our �nal keyword extraction precision and recall
rate are 0.83 and 0.76, while they are 0.72 and 0.76 respectively if
we don’t add the GBDT component.

3.2 Document Clustering and Event Extraction
A�er document preprocessing, we need to extract events. Event
extraction here is essentially a �ne-tuned document clustering
procedure to group conceptually similar documents into events.
Although clustering studies are o�en subjective in nature, we show
that our carefully designed procedure can signi�cantly improve the
accuracy of event clustering, conforming to human understanding,
based on a manually labeled news dataset. To handle the high
accuracy requirement for long news text clustering, we propose
a 2-layer clustering approach based on both keyword graphs and
document graphs.

First, we construct a large keyword co-occurrence graph [19]
G. Each node in G is a keyword w extracted by the scheme de-
scribed in Sec. 3.1, and each undirected edge ei, j indicates that
wi and w j have ever co-occured in a same document. Edges that

satisfy two conditions will be kept and other edges will be dropped:
the times of co-occurrence shall be above a minimum threshold
(we use 3 in our system), and the conditional probabilities of the
occurrence Pr{w j |wi } and Pr{wi |w j } also need to be bigger than
a prede�ned threshold (we use 0.15), where the conditional prob-
ability Pr{w j |wi } represents the probability that w j occurs in a
document if the document contains wordwi .

Second, we perform community detection in the constructed
keyword graph. �is step aims to split the whole keyword graph G
into communitiesC = {C1,C1, ...,C|C | }, where each community Ci
contains the keywords for a certain topic (to which multiple stories
may be associated). �e bene�t of using community detection in
the keyword graph is that each keyword can appear in multiple
communities, which makes sense in reality. We also tried another
method of clustering keywords by Word2Vec. However, the perfor-
mance is worse than community detection based on co-occurrence
graphs. �e reason is that using word vectors tends to cluster the
words with similar semantic meanings. However, unlike articles
in a specialized domain, in long news documents in the open do-
main, it is highly possible that keywords with di�erent semantic
meanings can co-occur in the same event.

To detect keyword communities, we utilize the betweenness cen-
trality score [19] of edges to measure the strength of each edge
in the keyword graph. An edge’s betweenness score is de�ned
as the number of shortest paths between all pairs of nodes that
pass through it. An edge between two communities is expected
to achieve a high betweenness score. Edges with high between-
ness score will be removed iteratively to extract communities. �e
iterative spli�ing process will stop until the number of nodes in
each sub-graph is smaller than a prede�ned threshold, or until
the maximum betweenness score of all edges in the sub-graph is
smaller than a threshold that depends on the sub-graph’s size. We
refer interested readers to [19] for more details about community
detection.

A�er we obtain the keyword communities, we calculate the co-
sine similarity between each document and a keyword community.
�e documents are represented by TF-IDF vectors. As a keyword
community is a bag of words, it can also be considered as a docu-
ment. We assign each document to the keyword community which

gives the highest similarity and the similarity is above a prede�ned
threshold. Up to now, we have �nished document clustering in the
�rst layer, i.e., the documents are grouped according to topics.

�ird, we further perform the second-layer document clustering
within each topic to obtain �ne-grained events. We also call this
process event clustering. An event only contains documents that
talk about the same semantic event. To yield �ne-grained event
clustering, unsupervised learning is not su�cient. Instead, we
adopt a supervised-learning-guided clustering procedure in the
second layer.

Speci�cally, we train an SVM classi�er to determine whether a
pair of documents are talking about the same event or not using a
bunch of document-pair features as the input, including the cosine
similarities of content TF-IDF and TF vectors, the cosine similarities
of title TF-IDF and TF vectors, the similarity of the �rst sentences
in the two documents, etc.

For each pair of documents within a same topic, we decide
whether to connect them or not according to the prediction made by
the document-pair relationship classi�er mentioned above. Hence,
the documents in each topic will form a document graph. We then
apply the same community detection algorithm mention above to
such document graphs. Note that the graph-based clustering on
the second layer is highly e�cient, since the number of documents
contained in each topic is signi�cantly smaller a�er the �rst-layer
document clustering.

In a nutshell, our 2-layer scheme groups documents into topics
based on keyword community detection and further groups the
documents within each topic into �ne-grained events. For each
event E, we also record the set of keywords CE of the topic (key-
word community) which it belongs to, which will be helpful in the
subsequent story tree development.

3.3 Growing Story Trees Online
Given the set of extracted events for a particular topic, we further
organize these events into multiple stories under this topic in an
online manner. Each story is represented by a Story Tree to char-
acterize the evolving structure of that story. Upon the arrival of a
new event and given an existing story forest, our online algorithm
to grow the story forest mainly involves two steps: a) identifying
the story tree to which the event belongs; b) updating the found
story tree by inserting the new event at the right place. If this event
does not belong to any existing story, we create a new story tree.

a) Identifying the related story tree. Given a set of new
events Et = {E1, E2, ...,E |Et | } at time period t and an existing
story forest Ft−1 = {S1,S2, ...,S |Ft−1 | } that has been formed dur-
ing previous t − 1 time periods, our objective is to assign each new
event E ∈ Et to an existing story tree S ∈ Ft−1. If no story in the
current story forest matches that event, a new story tree will be
created and added to the story forest.

We apply a two-step strategy to decide whether a new event
E belongs to an existing story tree S formed previously. First, as
described at the end of Sec. 3.2, event E has its own keyword set
CE . Similarly, for the existing story tree S, there is an associated
keyword set CS that is a union of all the keyword sets of the events
in that tree.

Merge

e

Event StoryNew event Merged event

+ = or or

Extend Insert

e

s

e
e

e

e

s

e
e

e

e

s

e
e

e

e

e

s

e
e

e

e

e see

Figure 5: �ree types of operations to place a new event into
its related story tree.

�en, we can calculate the compatibility between event E and
story treeS as the Jaccard similarity coe�cient between CS and CE :
compatibility(CS ,CE) =

|CS∩CE |

|CS∪CE |
. If the compatibility is bigger

than a threshold, we further check whether at least a document in
event E and at least a document in story tree S share n or more
common words in their titles (with stop words removed). If yes, we
assign event E to story tree S. Otherwise, they are not related. In
our experiments, we set n = 1. If the event E is not related to any
existing story tree, a new story tree will be created.

b) Updating the related story tree. A�er a related story tree
S has been identi�ed for the incoming event E, we perform one
of the 3 types of operations to place event E in the tree: merge,
extend or insert, as shown in Fig. 5. �e merge operation merges
the new event E into an existing event node in the tree. �e extend
operation will append event E as a child node to an existing event
node in the tree. Finally, the insert operation directly appends event
E to the root node of story tree S. Our system chooses the most
appropriate operation to process the incoming event based on the
following procedures.

Merge: we merge E with an existing event in the tree, if they
essentially talk about the same event. �is can be achieved by
checking whether the centroid documents of the two events are
talking about the same thing using the document-pair relationship
classi�er described in Sec. 3.2. �e centroid document of an event
is simply the concatenation of all the documents in the event.

Extend and Insert: if event E does not overlap with any existing
event, we will �nd the parent event node in S to which it should be
appended. We calculate the connection strength between the new
event E and each existing event Ej ∈ S based on three factors: 1)
the time distance between E and Ej , 2) the compatibility of the two
events, and 3) the storyline coherence if E is appended to Ej in the
tree, i.e.,

ConnectionStrength(Ej , E) := compatibility(Ej , E)×
coherence(LS→Ej→E) × timePenalty(Ej , E).

(1)

Now we explain the three components in the above equation
one by one. First, the compatibility between two events Ei and Ej
is given by

compatibility(Ei , Ej) =
TF(dci) · TF(dc j)
‖TF(dci)‖ · ‖TF(dc j)‖

, (2)

where dci is the centroid document of event Ei .
Furthermore, the storyline of Ej is de�ned as the path in S

starting from the root node of S ending at Ej itself, denoted by

Oc
t 0
2 2

01
6

Oc
t 0
9 2

01
6

Oc
t 1
6 2

01
6

Oc
t 2
3 2

01
6

Oc
t 3
0 2

01
6

No
v 0

6 2
01
6

No
v 1

3 2
01
6

No
v 2

0 2
01
6

No
v 2

7 2
01
6

De
c 0

4 2
01
6

De
c 1

1 2
01
6

De
c 1

8 2
01
6

De
c 2

5 2
01
6

Date

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

N
u
m
b
e
r
o
f
D
o
cu
m
e
n
ts 1e5

mean=164921. 89
std= 141245. 33
minimum=2042
maximum=443434

Figure 6: �e number of documents on di�erent days in the
dataset.

LS→Ej . Similarly, the storyline of E appended to Ej is denoted
by LS→Ej→E . For a storyline L represented by a path E0 →
. . . → E |L | , where E0 := S, its coherence [23] measures the theme
consistency along the storyline, and is de�ned as

coherence(L) = 1
|L|

|L |−1∑
i=0

compatibility(Ei , Ei+1), (3)

Finally, the bigger the time gap between two events, the less
possible that the two events are connected. We thus calculate time
penalty by

timePenalty(Ej , E) =

e
δ ·(tEj −tE) if tEj − tE < 0
0 otherwise

(4)

where tEj and tE are the timestamps of event Ej and E respectively.
�e timestamp of an event is the minimum timestamp of all the
documents in the event.

We calculate the connection strength between the new event E
and every event node Ej ∈ S using (1), and append event E to the
existing Ej that leads to the maximum connection strength. If the
maximum connection strength is lower than a threshold value, we
insert E into story tree S by directly appending it to the root node
of S. In other words, insert is a special case of extend.

4 EVALUATION
We evaluate the performance of our system based on 60 GB of Chi-
nese news documents collected from all the major Internet news
providers in China, such as Tencent and Sina, in a three-month pe-
riod from October 1, 2016 to December 31, 2016 covering di�erent
topics in the open domain. Fig. 6 shows the amounts of documents
on di�erent days in the dataset. �e average number of documents
in one day during that period is 164, 922. For the following experi-
ments, we use the data in the �rst 7 days for parameter tuning. �e
remaining data serves as the test set.

4.1 Evaluate Event Clustering
We �rst evaluate the performance of our two-layer graph-based
document clustering procedure for event extraction. We manually
annotated a test dataset that consists of 3500 news documents with
ground-truth event labels, and compare our algorithm with the
following methods:

• LDA+A�nity Propagation: extract the 1000-dimensional
LDA vector of each document, and cluster them by the
A�nity Propagation clustering algorithm [7].

Table 2: Comparing di�erent event clustering methods.

Algorithm Homogeneity Completeness V-measure
Our approach 0.960 0.965 0.962
KeyGraph 0.554 0.989 0.710
LDA + AP 0.620 0.947 0.749

• KeyGraph: the original KeyGraph algorithm [19] for doc-
ument clustering, without the second-layer clustering based
on document graphs and document-pair relationship clas-
si�er.

We use the homogeneity, completeness, and V-measure score
[17] as the evaluation metrics of clustering results. Homogene-
ity is larger if each cluster contains only members from a sin-
gle class. �e completeness is maximized if all members of a
ground true class are assigned to the same cluster. �e V-measure
is the harmonic mean between homogeneity and completeness:
V-measure = 2×homogenity×completeness

homogenity+completeness
Table 2 shows that our approach achieves the best V-measure

compared with other methods, partly due to the fact that our
method achieves the highest homogeneity score, which is 0.96.
�is implies that most of the document clusters (events) we obtain
are pure: each event only contains documents that talk about the
same event. In comparison, the homogeneity for the other two
methods is much lower. �e reason is that we adopt two layers of
graph-based clustering to group documents into events with more
appropriate granularity.

Yet, the completeness of our approach is a li�le bit smaller than
that of KeyGraph, which is reasonable, as we further split the clus-
ters with the second layer document-graph-based clustering super-
vised by the document-pair relationship classi�er. Considering the
signi�cant improvement in homogeneity, the loss in completeness
is ignorable.

4.2 Story Forest vs. Other Story Structures
We evaluate di�erent event timeline and story generation algo-
rithms on the large 3-month news dataset through pilot user eval-
uation. To make fair comparisons, the same preprocessing and
event extraction procedures before developing story structures are
adopted for all methods, with 261 stories detected from the dataset.
�e only di�erence is how to construct the story structure given
a set of event nodes. We compare our online Story Forest system
with the following existing algorithms:

• Flat Cluster (Flat): this method clusters related events
into a story without revealing the relationships between
events, which approximates some previous works in TDT
[3, 26].

• StoryTimeline (Timeline): thismethod organizes events
linearly according to the timestamps of events [18, 19].

• Story Graph (Graph): this method calculates a connec-
tion strength for every pair of events and connect the pair
if the score exceeds a threshold [25].

• Event �reading (�read): this algorithm appends each
new event to its most similar earlier event [15]. �e similar-
ity between two events is measured by the TF-IDF cosine
similarity of the event centroids.

Table 3: Comparing di�erent story structure generation al-
gorithms.

Tree Flat �read Timeline Graph
Correct edges 82.8% 73.7% 66.8% 58.3% 32.9%
Consistent paths 77.4% − 50.1% 29.9% −

Best structure 187 88 84 52 19

We enlisted 10 human reviewers, including product managers,
so�ware engineers and senior undergraduate students, to blindly
evaluate the results given by di�erent approaches. Each individual
story was reviewed by 3 di�erent reviewers. When the reviewers’
opinions are di�erent, they will discuss to give a �nal result. For
each story, the reviewers answered the following questions for each
of the 5 di�erent structures generated by di�erent schemes:

(1) Do all the documents in each story cluster truly talk about
the same story (yes or no)? Continue if yes.

(2) Do all the documents in each event node truly talk about
the same event (yes or no)? Continue if yes.

(3) For each story structure given by di�erent algorithms, how
many edges correctly represent the event connections?

(4) For each story structure given by story forest, event thread-
ing and story timeline, how many paths from ROOT to any
leaf node exist in the graph? And how many such paths
are logically coherent?

(5) Which algorithm generates the structure that is the best in
terms of revealing the story’s underlying logical structure?

Note that for question (3), the total number of edges for each
tree equals to the number of events in that tree. �erefore, to make
a fair comparison, for the story graph algorithm, we only retain
the n edges with the top scores, where n is the number of events in
that story graph.

We �rst report the clustering e�ectiveness of our system in
the pilot user evaluation on the 3-month dataset. Among the 261
stories, 234 of them are pure story clusters (yes to question 1), and
furthermore there are 221 stories only contains pure event nodes
(yes to question 2). �erefore, the �nal accuracy to extract events
(yes to both question 1 and 2) is 84.7%.

Next, we compare the output story structures given by di�erent
algorithms from three aspects: the correct edges between events,
the logical coherence of paths, and the overall readability of dif-
ferent story structures. Fig. 7(a) compares the CDFs of incorrect
edge percentage under di�erent algorithms. As we can see, Story
Forest signi�cantly outperforms the other 4 baseline approaches.
As shown in Table 3, for 58% story trees, all the edges in each tree
are reviewed as correct, and the average percentage of correct edges
for all the story trees is 82.8%. In contrast, the average correct edge
percentage given by the story graph algorithm is 32.9%.

An interesting observation is that the average percentage of
correct edges given by the simple �at structure is 73.7%, which is a
special case of our tree structures. �is can be explained by the fact
that most real-world breaking news that last for a constrained time
period are not as complicated as a novel with rich logical structure,
and a �at structure is o�en enough to depict their underlying logic.
However, for stories with richer structures and a relatively longer
timeline, Story Forest gives be�er result than other algorithms by

comprehensively considering the event similarity, path coherence
and time gap, while other algorithms only consider parts of all the
factors.

For path coherence, Fig. 7(b) shows the CDFs of percentages of
inconsistent paths under di�erent algorithms. Story Forest gives
signi�cantly more coherent paths: the average percentage of co-
herent paths is 77.4% for our algorithm, and is 50.1% and 29.9%,
respectively, for event threading and story timeline. Note that path
coherence is meaningless for �at or graph structure.

Fig. 7(c) plots overall readability of di�erent story structures.
Among the 221 stories, the tree-based Story Forest system gives
the best readability on 187 stories, which is much be�er than all
other approaches. Di�erent algorithms can generate the same struc-
ture. For example, the Story Forest system can also generate a �at
structure, a timeline, or a same structure as the event threading
algorithm does. �erefore, the sum of the numbers of best results
given by di�erent approaches is bigger than 221. It’s worth not-
ing that the �at and timeline algorithms also give 88 and 52 most
readable results, which again indicates that the logic structures of
a large portion of real-world news stories can be characterized by
simple �at or timeline structures, which are special cases of story
trees. And complex graphs are o�en an overkill.

We further inspect the story structures generated by Story For-
est. Fig. 8(a) and Fig. 8(b) plot the distributions of the number of
events and the number of paths in each story tree, respectively. �e
average numbers of events and paths are 4.07 and 2.71, respectively.
Although the tree structure includes the �at and timeline structures
as special cases, among the 221 stories, Story Forest generates 77
�at structures and 54 timelines, while the remaining 90 structures
generated are still story trees. �is implies that Story Forest is
versatile and can generate diverse structures for real-world news
stories, depending on the logical complexity of each story.

4.3 Algorithm Complexity and Overhead
In this section, we discuss the complexity of each step in our system.
For a time slot (e.g., in our case is one day), let Nd be the number
of documents, Nw the number of unique words in corpora, note
Nw << Nd , Ne the number of di�erent events, Ns the number
of di�erent stories, and Nk represents the maximum number of
unique keywords in a document.

As discussed in [19], building keyword graph requiresO (NdNk+

N 2
w) complexity, and community detection based on betweenness

centrality requires O (N 3
w). �e complexity of assigning documents

to keyword communities is O (NdNkNe). So by far the total com-
plexity isO (NdNkNe+N

3
w). �ere exist other community detection

algorithms requiring only O (N 2
w), such as the algorithm in [16].

�us we can further improve e�ciency by using faster community
detection algorithms.

A�er clustering documents by keyword communities, for each
cluster the average number of documents is Nd/Ne . �e pair-wise
document relation classi�cation is implemented in O ((Nd/Ne)2).
�e complexity of the next document graph spli�ing operation is
O ((Nw/Ne)3). �erefore, the total complexity is O (Ne ((Nd/Ne)2 +
(Nw/Ne)3)). Our experiments show that usually 1 ≤ Nd/Ne ≤ 100.
Combining with Nw << Nd , the complexity is now approximately
O (Ne).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Incorrect Edge Percentage

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

C
D
F

Tree

Flat

Thread

Timeline

Graph

(a) Percentage of incorrect edges

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Inconsistent Path Percentage

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

C
D
F

Tree

Thread

Timeline

(b) Percentage of inconsistent paths

Tree Flat Thread Timeline Graph
Algorithms

0

50

100

150

200

N
u
m
b
e
r
o
f
S
to
ri
e
s

(c) Number of times rated as the most readable structure

Figure 7: Comparing the performance of di�erent story structure generation algorithms.

0 5 10 15 20 25 30
Number of Event Nodes

0

20

40

60

80

100

120

N
u
m
b
e
r
o
f
S
to
ri
e
s

mean= 4. 07
median= 3
minimum=2
maximum=25

(a) Histogram of the number of events in each story

0 2 4 6 8 10 12 14 16 18
Number of Paths

0

20

40

60

80

100

120

N
u
m
b
e
r
o
f
S
to
ri
e
s

mean= 2. 71
median= 2
minimum=1
maximum=17

(b) Histogram of the number of paths in each story

Tree Flat Timeline
Story Structure Type

0

20

40

60

80

100

N
u
m
b
e
r
o
f
S
to
ri
e
s

(c) Numbers of di�erent story structures

Figure 8: �e characteristics of the story structures generated by the Story Forest system.

Oc
t 0
2 2

01
6

Oc
t 0
9 2

01
6

Oc
t 1
6 2

01
6

Oc
t 2
3 2

01
6

Oc
t 3
0 2

01
6

No
v 0

6 2
01
6

No
v 1

3 2
01
6

No
v 2

0 2
01
6

No
v 2

7 2
01
6

De
c 0

4 2
01
6

De
c 1

1 2
01
6

De
c 1

8 2
01
6

De
c 2

5 2
01
6

Date

0
5

10
15
20
25
30
35
40

T
im

e
 (
m
in
u
te
s)

Figure 9: �e running time of our system on the 3-month
news dataset.

To grow story trees with new events, the complexity of �nd-
ing the related story tree for each event is of O (NsT), where T
is the history length to keep existing stories and delete older sto-
ries. If no existing related story, creating a new story requires
O (1) operations. Otherwise, the complexity of updating a story
tree is O (T Ne/Ns). In summary, the complexity of growing story
trees is O (NeT (Ns + Ne/Ns)) ≈ O (TNeNs), as our experience on
the Tencent news dataset shows that 1 ≤ Ne/Ns ≤ 200. Our online
algorithm to update story structure requires O (Ne/Ns) complexity
and delivers a consistent story development structure, while most
existing o�ine optimization based story structure algorithms re-
quire at least O ((Ne/Ns)2) complexity and disrupt the previously
generated story structures.

Fig. 9 shows the running time of our Story Forest system on the
3 months news dataset. �e average time of processing each day’s
news is around 26 seconds, and increases linearly with number of
days. For the o�ine keyword extraction module, the processing e�-
ciency is approximately 50 documents per second. �e performance
of keyword extraction module is consistent with time and doesn’t
require frequently retraining. �e LDA model is incrementally re-
trained every day to handle new words. For keyword extraction,

the e�ciency of event clustering and story structure generation
can be further improved by a parallel implementation.

5 RELATEDWORK
�ere are mainly two research lines that are highly related to our
work: Text Clustering and Story Structure Generation.

�e problem of text clustering has been well studied by re-
searchers [1, 7, 10, 11]. �e most popular way is �rst extracting
speci�c text features, such as TF-IDF, from documents, and then
apply general clustering algorithms such as k-means. �e selection
of di�erent feature and se�ing of algorithm parameters plays a
key role in the �nal performance of clustering [12]. �ere are also
approaches which utilize the document keywords co-occurrence in-
formation to construct a keyword graph, and clustering documents
by applying community detection techniques on the keyword graph
[19]. [13] combines topic modeling, named-entity recognition, and
temporal analysis to detect event clusters from news streams. [4]
proposed an evolutionary clustering framework to cluster data
over time. A more comprehensive study of di�erent text clustering
algorithms can be found in [1].

�e Topic Detection and Tracking (TDT) research spot news
events and group by topics, and track previously spo�ed news
events by a�aching related new events into the same cluster [2, 3,
19, 25]. However, the associations between related events are not
de�ned or interpreted by TDT techniques. To help users capture
the developing structure of events, di�erent approaches have been
proposed. [15] proposed the concept of Event �reading, and tried
a series of strategies based on similarity measure to capture the
dependencies among events. [25] combines the similarity measure
between events, temporal sequence and distance between events,

and document distribution along the timeline to score the relation-
ship between events, and models the event evolution structure by
a directed acyclic graph (DAG).

�e above research works measure and model the relationship
between events in a pairwise manner. However, the overall story
consistency is not considered. �e Metro Map model proposed
in [21] de�nes metrics such as coherence and diversity for story
quality evaluation, and identi�es lines of documents by solving an
optimization problem to maximize the topic diversity of storylines
while guarantee the coherence of each storyline. However, new
documents are being generated all the time, and systems that are
able to catch related news and update story structures in an online
manner are desired.

As studies based on unsupervised clustering techniques [24] per-
form poorly in distinguishing storylines with overlapped events [8],
more recent works introduce di�erent Bayesian models to generate
storyline. However, they o�en ignore the intrinsic structure of a
story [9] or fail to properly model the hidden relations [27]. [8]
proposes a hierarchical Bayesian model for storyline generation,
and utilize twi�er hashtags to “supervise” the generation process.
However, the Gibbs sampling inference of the model is time con-
suming, and such twi�er data is not always available for every
news stories.

6 CONCLUSION
In this paper, we describe our experience of implementing Story
Forest, a news content organization system at Tencent, which is
designed to discover events from vast streams of trending and
breaking news and organize events in sensible story trees in an
online manner. Our system is speci�cally tailored for fast process-
ing massive amounts of breaking news data, whose story struc-
tures can most likely be captured by either a tree, a timeline or
a �at structure. We propose a two-layer graph-based document
clustering algorithm to extract �ne-grained events from vast long
documents. Our system further organizes the events into story
trees with e�cient online algorithms upon the arrival of daily news
data. We conducted extensive performance evaluation based on 60
GB of real-world (Chinese) news data, although our ideas are not
language-dependent and can easily be extended to other languages,
through detailed pilot user experience studies.

Extensive results suggest that our clustering procedure is sig-
ni�cantly more e�ective at accurate event extraction than existing
algorithms. 83% of the event links generated by Story Forest are
logically correct as compared to an accuracy of 33% generated by
more complex story graphs, demonstrating the ability of our sys-
tem to organize trending news events into a logical structure that
appeals to human readers.

REFERENCES
[1] Charu C Aggarwal and ChengXiang Zhai. 2012. A survey of text clustering

algorithms. In Mining text data. Springer, 77–128.
[2] James Allan. 2012. Topic detection and tracking: event-based information organi-

zation. Vol. 12. Springer Science & Business Media.
[3] James Allan, Ron Papka, and Victor Lavrenko. 1998. On-line new event detection

and tracking. In Proceedings of the 21st annual international ACM SIGIR conference
on Research and development in information retrieval. ACM, 37–45.

[4] Deepayan Chakrabarti, Ravi Kumar, and Andrew Tomkins. 2010. Evolutionary
Clustering. Springer US. 332–337 pages.

[5] Pi-Chuan Chang, Michel Galley, and Christopher D Manning. 2008. Optimizing
Chinese word segmentation for machine translation performance. In Proceedings
of the third workshop on statistical machine translation. Association for Computa-
tional Linguistics, 224–232.

[6] Christos Faloutsos, Kevin SMcCurley, and Andrew Tomkins. 2004. Fast discovery
of connection subgraphs. In Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 118–127.

[7] Renchu Guan, Xiaohu Shi, Maurizio Marchese, Chen Yang, and Yanchun Liang.
2011. Text clustering with seeds a�nity propagation. IEEE Transactions on
Knowledge and Data Engineering 23, 4 (2011), 627–637.

[8] Ting Hua, Xuchao Zhang, Wei Wang, Chang-Tien Lu, and Naren Ramakrishnan.
2016. Automatical Storyline Generation with Help from Twi�er. In Proceed-
ings of the 25th ACM International on Conference on Information and Knowledge
Management. ACM, 2383–2388.

[9] Lifu Huang and Lian’en Huang. 2013. Optimized Event Storyline Generation
based on Mixture-Event-Aspect Model.. In EMNLP. 726–735.

[10] Liping Jing, Michael K Ng, and Joshua Z Huang. 2010. Knowledge-based vector
space model for text clustering. Knowledge and information systems 25, 1 (2010),
35–55.

[11] Liping Jing, Michael K Ng, Jun Xu, and Joshua Zhexue Huang. 2005. Subspace
clustering of text documents with feature weighting k-means algorithm. In
Paci�c-Asia Conference on Knowledge Discovery and Data Mining. Springer, 802–
812.

[12] Luying Liu, Jianchu Kang, Jing Yu, and Zhongliang Wang. 2005. A compar-
ative study on unsupervised feature selection methods for text clustering. In
Natural Language Processing and Knowledge Engineering, 2005. IEEE NLP-KE’05.
Proceedings of 2005 IEEE International Conference on. IEEE, 597–601.

[13] Ida Mele and Fabio Crestani. 2017. Event Detection for Heterogeneous News
Streams. In International Conference on Applications of Natural Language to
Information Systems. 110–123.

[14] Rada Mihalcea and Paul Tarau. 2004. TextRank: Bringing order into texts.
Association for Computational Linguistics.

[15] Ramesh Nallapati, Ao Feng, Fuchun Peng, and James Allan. 2004. Event threading
within news topics. In Proceedings of the thirteenth ACM international conference
on Information and knowledge management. ACM, 446–453.

[16] Filippo Radicchi, Claudio Castellano, Federico Cecconi, Vi�orio Loreto, and
Domenico Parisi. 2004. De�ning and identifying communities in networks.
Proceedings of the National Academy of Sciences of the United States of America
101, 9 (2004), 2658–2663.

[17] Andrew Rosenberg and Julia Hirschberg. 2007. V-Measure: A Conditional
Entropy-Based External Cluster Evaluation Measure.. In EMNLP-CoNLL, Vol. 7.
410–420.

[18] Hassan Sayyadi, Ma�hew Hurst, and Alexey Maykov. 2009. Event detection and
tracking in social streams.. In Icwsm.

[19] Hassan Sayyadi and Louiqa Raschid. 2013. A graph analytical approach for topic
detection. ACM Transactions on Internet Technology (TOIT) 13, 2 (2013), 4.

[20] Dafna Shahaf, Carlos Guestrin, and Eric Horvitz. 2012. Trains of thought: Gen-
erating information maps. In Proceedings of the 21st international conference on
World Wide Web. ACM, 899–908.

[21] Dafna Shahaf, Jaewon Yang, Caroline Suen, Je� Jacobs, Heidi Wang, and Jure
Leskovec. 2013. Information cartography: creating zoomable, large-scale maps
of information. In Proceedings of the 19th ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM, 1097–1105.

[22] Lu Wang, Claire Cardie, and Galen Marche�i. 2016. Socially-informed timeline
generation for complex events. arXiv preprint arXiv:1606.05699 (2016).

[23] Shize Xu, Shanshan Wang, and Yan Zhang. 2013. Summarizing Complex Events:
a Cross-Modal Solution of Storylines Extraction and Reconstruction.. In EMNLP.
1281–1291.

[24] Rui Yan, Xiaojun Wan, Jahna O�erbacher, Liang Kong, Xiaoming Li, and Yan
Zhang. 2011. Evolutionary timeline summarization: a balanced optimization
framework via iterative substitution. In Proceedings of the 34th international ACM
SIGIR conference on Research and development in Information Retrieval. ACM,
745–754.

[25] Christopher C Yang, Xiaodong Shi, and Chih-Ping Wei. 2009. Discovering event
evolution graphs from news corpora. IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans 39, 4 (2009), 850–863.

[26] Yiming Yang, Jaime Carbonell, Ralf Brown, John La�erty, �omas Pierce, and
�omas Ault. 2002. Multi-strategy learning for topic detection and tracking. In
Topic detection and tracking. Springer, 85–114.

[27] Deyu Zhou, Haiyang Xu, and Yulan He. 2015. An Unsupervised Bayesian Mod-
elling Approach for Storyline Detection on News Articles.. In EMNLP. 1943–1948.

	Abstract
	1 Introduction
	2 Problem Definition and Notations
	3 The Story Forest System
	3.1 Preprocessing
	3.2 Document Clustering and Event Extraction
	3.3 Growing Story Trees Online

	4 Evaluation
	4.1 Evaluate Event Clustering
	4.2 Story Forest vs. Other Story Structures
	4.3 Algorithm Complexity and Overhead

	5 Related Work
	6 Conclusion
	References

