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Abstract—Online real-estate information systems such as Zil-
low and Trulia have gained increasing popularity in recent
years. One important feature offered by these systems is the
online home price estimate through automated data-intensive
computation based on housing information and comparative
market value analysis. State-of-the-art approaches model house
prices as a combination of a latent land desirability surface and
a regression from house features. However, by using uniformly
damping kernels, they are unable to handle irregularly shaped
regions or capture land value discontinuities within the same
region due to the existence of implicit sub-communities, which
are common in real-world scenarios. In this paper, we explore the
novel application of recent advances in spatial functional analysis
to house price modeling and propose the Hierarchical Spatial
Functional Model (HSFM), which decomposes house values into
land desirability at both the global scale and hidden local scales as
well as the feature regression component. We propose statistical
learning algorithms based on finite-element spatial functional
analysis and spatial constrained clustering to train our model.
Extensive evaluations based on housing data in a major Canadian
city show that our proposed approach can reduce the mean
relative house price estimation error down to 6.60%.

I. INTRODUCTION

Online real-estate information systems, such as Trulia, Zil-
low, Yahoo! Homes and Realtor.com, have gained enormous
popularity in a trend termed as online-to-offline commerce
(O2O). One important feature offered by these online systems,
e.g., Zestimate [1], Trulia Estimates [2], is the estimate of
a home’s worth through machine learning based on diverse
real-estate information, including comparative sales of similar
homes and home attributes like the numbers of bedrooms and
bathrooms, square footage, lot sizes, build year, characteristics
of the basement, presence of fireplaces or air-conditioning, etc.
For example, about 100 million homes across the US currently
have Zestimate values [1]. Although automatically computed
home price estimates may not substitute official appraisals
conducted by banks, governments or real-estate agents, they
serve as a starting point in determining home values, provide
vast amounts of valuable data to homebuyers and investors,
and can greatly aid offline real-estate transaction decisions.

House price estimation is an interdisciplinary research topic
that has been widely studied by researchers from diverse
backgrounds, including economists, statisticians and computer
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scientists. Early methods are based on parametric models,
including Hedonic models [3], [4] based on linear regression of
house attributes and CS index based on repeat sales modeling
[5]. Later models take into account spatial correlation [3], [6]
between houses in a same community or region to estimate a
house’s market value based on neighboring houses with known
values, e.g., those that are sold in the recent year.

A milestone in modern data-intensive real-estate valua-
tion literature is the introduction of semi-parametric or non-
parametric models [7]–[9], which assume that the house prices
can be decomposed into a latent underlying land desirability
and a regression of house attributes. In all these contemporary
semi/non-parametric models, a common assumption is that the
underlying land desirability of a house is a weighted average
of its neighbours’ desirability, where the weights as well as
the neighbourhood of the house are determined by certain
kernel functions used to assess the closeness of two houses
in the feature space. However, such kernel-based semi/non-
parametric methods suffer from several intrinsic weaknesses.
First, its hard to choose the specific form of kernel functions
with a large number of hyper-parameters to tune. More im-
portantly, by using uniformly damping weights depending on
the distance, kernel functions cannot handle irregularly shaped
non-convex regions or regions with interior uninhabited areas,
which are common in reality. For example, when calculating
the latent desirability of a house, a “neighbour” on the other
side of a river may have the same influence as a “neighbour”
on the same side of the river, as long as the two “neighbours”
have the same distance to the house in the feature space.
Neither can they handle land desirability discontinuities within
a same region containing implicit sub-communities, e.g., estate
homes vs. regular homes, homes near a coast or on a hill with
views vs. other homes, etc.

In this paper, we explore the novel application of latest ad-
vances in spatial functional learning and finite element analysis
to real-world house price modelling problems. We propose
the hierarchical spatial functional model (HSFM), which can
handle irregularly shaped geographic regions as well as model
land desirability discontinuities within heterogenous regions in
reality. We have made multiple contributions:

First, similar to kernel-based methods, we assume the house
value is composed of a regression from house features and
a latent land desirability surface that depends on location.
However, in our spatial functional approach, a smooth latent
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surface is learnt through a finite-element spatial spline regres-
sion approach recently developed in statistics [10]–[12], thus
overcoming the limitation of uniform damping in kernel-based
methods and being able to handle any irregularly shaped non-
convex regions.

Second, the original spatial spline regression still yields
large errors in modeling real-world house price data, as it
tends to smoothen a spatial field throughout the region of
interest, which may actually be heterogeneous in terms of
both house prices and features in reality, characterized by
implicit patches and hidden land value discontinuities. In
our hierarchical spatial functional model, to further handle
hidden land value discontinuities, we assume that a home’s
value is the combination of the global land desirability in the
region of interest, and the local land desirability in the hidden
sub-region or sub-community it belongs to. We develop an
effective method to learn this hierarchical model through the
use of spatial constrained partitioning based on locations and
the latent land desirability, to automatically discover hidden
sub-communities.

We evaluate the proposed approach on a dataset of over
6000 houses in Edmonton, Alberta, Canada in a typical region
along a river, featuring heterogeneous hidden sub-communities
and strong non-convexity. Results suggest that our HSFM
approach reduces the root mean square error (RMSE) by
28.22% and reduces the mean relative absolute error (MRAE)
by 21.61% over original spatial spline regression, leading to
an MRAE of only 6.60% in house price estimation.

II. RELATIONSHIP TO PRIOR WORK

House market value estimation in a region based on partially
known house prices is an interdisciplinary research topic which
lies at the intersection of urban economics, statistics and
computer science.

Parametric Models. Earlier methods are mainly based
on linear regression. The so-called hedonic model says that
the price of a house is a linear function of its attributes
[3], [4], e.g., lot size, square footage, number of bedrooms,
distance to landmarks, etc. However, the method is limited
by the linearity assumption, and it is impossible to gather all
relevant attributes. One important development in real-estate
value estimation is to consider the spatial correlation, since
many implicit community variables, e.g., employment rate,
income, school, land desirability, etc., are hard to measure
but will lead to spatial correlation of house prices. [3], [6]
incorporate the spatial autocorrelation into the residuals of the
linear regression hedonic model. However, such parametric
models all assume a fixed number of parameters and cannot
grow the number of parameters with the amount of training
data. This becomes a serious limitation in the presence of an
ever-increasing amount of data.

Non-parametric Models and Kernel-Based Methods.
Semi/non-parametric models have appeared in modern
computational-intensive house valuation techniques, and al-
most all existing methods of this kind fall in the class of

nearest neighbour models and adopt a kernel-based interpola-
tion [13], [14] or the so-called kernel-based locally weighted
regression [7], [9]. However, the major limitation of kernel-
based methods mentioned above is that the kernel function
used to dictate the weights of correlation between neighboring
houses i, j is uniformly damping with their distance ‖Xi−Xj‖
in the feature space. Due to this reason, kernel functions is
not suitable handle non-convex regions, since they tend to
link houses across uninhabited areas (e.g., a river or a hill)
where the linkage is weak. Neither can kernel functions model
complex phenomena such as sudden land value jumps within
the same region due to the existence of sub-communities.

Spatial Functional Analysis. Spatial functional analysis
[10] has been applied to census information prediction and
temperature prediction. It is able to recover a smooth spatial
field over non-convex regions with irregular boundary. To the
best of our knowledge, we are the first to apply latest spatial
functional analysis techniques to real-estate price modeling,
assuming the house price consists of a regression part based
on house features and a spatial field that models the land desir-
ability at a certain location. In particular, we leverage the idea
of spatial spline regression to handle any irregularly shaped
geographic regions and thus overcome the limitations of the
existing kernel-based methods in house valuation literature.
Furthermore, we have developed a novel hierarchical spatial
functional model to interpret the inherent house price hetero-
geneity that exists in most real-world regions of interest, and
propose effective training algorithms to automatically capture
land desirability jumps between the hidden sub-communities
that are common in reality.

III. MODELS

The problem of house value estimation through comparative
analysis is to estimate the market values of all houses in a cer-
tain region, based on information like locations, attributes, and
the values of a subset of all houses (e.g., those recently sold).
Suppose the region of interest is modelled by an irregularly
bounded domain Ω ⊂ R2 that excludes the uninhabited areas
such as parks, rivers, industrial areas, hills and so on. Ω is
given as an input and can be generated from the collection of
houses being considered according to a process to be outlined
in Sec. IV. Let {pi = (xi, yi)} ∈ Ω denote the geographic lo-
cation (e.g., GPS coordinate) of each property i in the bounded
domain. Let zi be the value (or log value) of property i and
wi = (wi1, . . . , wiq)T be a vector of q covariates associated
with property i that represents q attribute values (e.g., lot size,
net area, number of bedrooms/bathrooms/garages, age, etc.)

A. The Spatial Functional Model

Modern house value estimation literature [7]–[9] all models
the value of a house as a combination of its underlying land
desirability and attribute value, leading to a semi-parametric
model:

zi = wT
i β + f(pi) + εi, (1)

where f is a real-valued function or a spatial field that models
the underlying land desirability over different positions pi ∈ Ω
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Fig. 1. House prices (CAD) of Riverbend area in Edmonton with North
Saskatchewan River on the left (with an uninhabited park at 53.48 ◦N)
and Whitemud Creek ravine on the right. Mean: CAD 655,894, median:
CAD 598,000, min: 65,000, max: CAD 2,855,500. The dark lines denote
the boundaries of municipal communities.

and β ∈ Rq contains the regression coefficients for the
property’s attributes. The scalars εi are independent residuals.
When zi is the original house value, (1) is an additive model.
On the other hand, when zi is the log value of house i, (1)
is essentially a multiplicative model for the original house
value and can accommodate multiplicative factors, e.g., lot
size, square footage, in an additive form [5], [7]–[9].

Furthermore, f is assumed to be twice-differentiable over Ω.
The model above enables a key assumption that many spatial
data studies hinge upon, that is, the property lots close to each
other are likely to have a similar land desirability, while price
variations among neighbours are still captured by different
attributes wi.

Both the land desirability f and the covariate coefficients
β can be learned based on n training data points in Ω, which
contain the following information: 1) the values (or log values)
of these n points: z := (z1, ..., zn)T, 2) their positions {pi :
i = 1, . . . , n}, and 3) an n × q covariate matrix W, whose
ith row is given by wT

i . Once f and β are learned from the
training data, the value zj of any property j can be estimated
by plugging its attribute information wj and position pj into
(1). The model (1) can be trained using either kernel-based
methods [7]–[9] or finite element analysis [10]–[12].

However, the weakness of model (1) is that it is not capable
of capturing the inherent heterogeneity that exists in real-world
regions. Fig. 1 shows that the house prices of Riverbend area
in Edmonton, AB Canada. The house prices in the middle-left
region and the bottom-right corner are much higher than other
regions. It turns out that the North Saskatchewan River is on
the left boundary and the middle-left area is also next to the
Terwillegar Park. Therefore, the houses in that region have
more privacy and better views. The bottom-right corner has
similar profile as it is near the Whitemud Creek. Moreover,
the houses in this area were built more recently and thus have
more expensive interior and exterior features than others.

Such hidden heterogeneity related to house features and/or
land values leads to the discontinuity/jump of land desirability
surface and varied attribute coefficients. These sudden jumps
in desirability and attribute coefficients across local subregions
can not be captured by model (1), where a smooth f and
a constant β are assumed over Ω. Furthermore, such local
subregions are usually hidden and are not explicitly outlined
by the municipal division, as shown in Fig. 1.

B. A Hierarchical Spatial Functional Model

We now propose the hierarchical spatial functional model
(HSFM) to learn the values (or log values) zi by the sum of
a global value function g and a local value function l, both
depending on attributes wi and locations pi. To learn both
value functions g and l, we adopt the semi-parametric model
in (1). In summary, our hierarchical spatial functional model
is of the form

zi = g(wi,pi) + l(wi,pi) + εi, (2)

g(wi,pi) = wT
i β

g + fg(pi) + εgi ,

l(wi,pi) =
∑

i∈Ωj

(
wT

i β
lj + f lj (pi)

)
+ εli,

where Ωj ∩ Ωj′ = ∅, for j 6= j′, ∪jΩj = Ω, j = 1, . . . , J ,
which means that {Ωj , j = 1, . . . , J} is a partition of Ω and
the scalars εi, ε

g
i , and εli are independent residuals. The global

value function g is homogeneous in the entire domain Ω. The
local value function l is homogenous in each local region
Ωj yet heterogeneous between different local regions Ωj . In
other words, βg captures the global contributions of attributes
wi, while βlj capture the local attribute contributions and
are different for each local region Ωj . Similarly, the spatial
field fg represents the global underlying land desirability,
while the spatial fields f lj stand for the local underlying land
desirabilities, which are different for each local region.

Our hierarchical spatial functional model has two levels,
a global level and a local level. It is more general than (1)
where only a global level is learned and becomes the same
as (1) without the local value function l. At the global level,
our model learns the global coefficients βg for attributes wi

and the global spatial field fg . At the local level, the local
attribute coefficients βl and local spatial fields f lj are learned
in each local homogeneous subregion. Therefore, our model
is more powerful than model (1) and is capable of not only
characterizing the global trends but also distinguishing the
local variabilities to handle land desirability discontinuities.
There are various methods to identify the homogeneous local
regions Ωj . In this work, we use a spatial constrained cluster-
ing method based on the global land desirability fg to partition
the whole region Ω into subregions, as shown in Fig. 2.

The model (2) can be learned in a sequential way like other
hierarchical models. In particular, we first estimate the global
value function g(wi,pi) as ĝ(wi,pi), based on the training
data, which can be done using the same methods for learning
model (1). Then, using the residuals zi− ĝ(wi,pi), we obtain
the estimate of the local value function l̂(wi,pi) for each
local region based on certain partitions of the whole region Ω.



Note that the partitions may depend on our estimated global
spatial fields f̂g(pi) in the first step. We describe our learning
algorithms in details in Sec. IV.

IV. LEARNING ALGORITHMS

In this section, we first describe a finite-element analysis
approach called Spatial Spline Regression (SSR) that can
approximately solve model (1) for both f and β over any
irregularly shaped domain Ω. We then present the training
algorithm of our hierarchical spatial functional model (2) to
learn fg and βg at the global scale as well as each f lj and
βlj in local regions.

A. Spatial Spline Regression

Spatial spline regression [10] is a recently proposed finite-
element analysis approach to jointly solve for f and β from
model (1) over any irregularly shaped domain Ω. To obtain a
smooth estimate of the land desirability spatial field f , based
on functional analysis, the following penalized sum of square
errors is minimized [10], [12]:

minimize L(β, f) =

n∑
i=1

(
zi−wT

i β−f(pi)
)2

+λ

∫
Ω

(∇2f)2dp,

(3)
where ∇2f = ∂2f

∂x2 + ∂2f
∂y2 denotes the Laplacian of f over

Ω to smoothen out the roughness of the spatial field f , since
neighboring houses should share similar land desirability. The
tuning parameter λ is used to control the smoothing of the
land value surface and can be selected using some data-driven
or ad hoc methods.

However, the challenge to solving problem (3) is that it in-
volves searching for a functional f over a non-convex domain
Ω that may have strong concavities, complicated boundaries,
and even interior holes. Spatial spline regression [10] can
solve the type of problem (3) via finite element analysis:
the domain Ω is divided into small disjoint triangles, and a
polynomial function is defined on each of these triangles, such
that the summation of these polynomial functions defined on
different pieces closely approximates the desired f . In our data
analysis, we use the package Triangle (version 1.6) to generate
Delaunay triangulation mesh for finite element analysis, see
https://www.cs.cmu.edu/∼quake/triangle.html for details.

Specifically, let ζ1, . . . , ζK denote the vertices of all the
small triangles, which are called control points and can be
adaptively selected by available data points. We define a
piecewise linear or quadratic basis function ψk(x, y) called
Lagrangian finite element with (x, y) ∈ Ω, associated with
each control point ζk such that ψk evaluates to 1 at ζk and
is equal to 0 at all other control points. Therefore, according
to the Lagrangian property of the basis we can approximate
f(x, y) for any (x, y) ∈ Ω only using the values of f on
the K control points, i.e., f := (f(ζ1), . . . , f(ζK))T. That is,
if we let ψ(x, y) := (ψ1(x, y), . . . , ψK(x, y))T denote the K
predefined basis functions, each corresponding to a control
point, then we have

f(x, y) =
∑K

k=1f(ζk)ψk(x, y) = fTψ(x, y), (4)

Since ψ1(x, y), . . . , ψK(x, y) are predefined and known a
priori, the variational estimation of f in problem (3) boils
down to the estimation of only K scalar values, i.e.,
f = (f(ζ1), . . . , f(ζK))T. With the piece-wise approximation
given by (4), solving (3) is simply solving a set of linear
equations for f̂(ζ1), . . . , f̂(ζK). The estimator f̂(x, y) for f
can then be derived from (4), as shown in [10].

B. Learning the Hierarchical Spatial Functional Model

Algorithm 1: Hierarchical Spatial Functional Model
Input: The n training data points

Strain = {(zi,wi,pi)|i = 1, . . . , n}, smoothing
parameter λ, and the domain Ω of interest.

Output: Global spatial field and parameters f̂g, β̂
g
;

local spatial fields and parameters
{f̂ lj , β̂

lj |j = 1, . . . , J}.
1: Fit the global model f̂g, β̂

g
by applying SSR on Strain

over the entire region Ω and obtain the residuals:
ri ← zi −wT

i β̂
g
− f̂g(pi).

2: Partition the n training data points into J local regions
using the spatial constrained clustering approach (refer
to Sec. IV-C) based on the estimated global field f̂g .

3: for each cluster j = 1, . . . , J do
4: Fit the local model f̂ lj , β̂

lj
with SSR on data points

of each local cluster, i.e.,
Sj

train = {(ri,wi,pi)|i = 1, . . . , nlj}, over each
sub-region Ωj , where nlj is the number of training
points in cluster j.

5: end for

Although spatial spline regression is capable of handling
irregularly shaped regions, its main disadvantage is that it
tends to smoothen the land desirability throughout an entire
region of interest and can not capture price discontinuities
between hidden sub-communities that are exist in the het-
erogeneous region, e.g., the left lower corner region in Fig.
1. Hierarchical Spatial Functional Model (HSFM) solves this
issue by performing spatial functional analysis at both the
global scale and local scales for each hidden sub-region to
characterize the price jumps.

We use a cascaded approach to train an HSFM in Algo-
rithm 1. First, a global spatial field fg and global attribute
contributions βg are fitted for the entire region Ω using
SSR. This removes the overall global trend and obtain the
global residuals. Second, we generate a geo-partition of the
entire region Ω containing Ωj , j = 1, . . . , J , using a spatial
constrained clustering algorithm to be described in detail in
the next subsection. The key idea and the challenge of our
geo-partition algorithm are to obtain clusters that are both
geographically separated and characterized by price discon-
tinuities between clusters. Third, for each local region Ωj , we
learn a local spatial field f lj and local attribute contributions
βlj based on the global residuals of the points in Ωj to capture
the local information. Since the local spatial fields are fitted for

https://www.cs.cmu.edu/~quake/triangle.html
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Fig. 2. Three local regions found by Geo-partition, which coincide with a
split by the Terwillegar Drive and the Riverbend Hill Road.

each Ωj disjointly, the hierarchical method allows for the non-
smoothness or discontinuities between the local patches Ωj ,
j = 1, . . . , J . As a result, this sequential learning approach
significantly increase the prediction power by exploring the
intrinsic hierarchical structure of house prices.

C. Geo-Partitioning Algorithm

The implementation of the model (2) requires the spatial
partition of the whole region Ω into local regions Ωj , j =
1, . . . J such that Ωj ∩ Ωj′ = ∅, for j 6= j′, and ∪jΩj = Ω.
This partitioning is the Step 2 in Algorithm 1. In order to
achieve higher prediction power, the partitioning should be
based on meaningful criteria and thus the resulted partition is
capable of capturing the homogeneous local regions in term
of house prices. In other words, in each sub-region, the local
spatial fields f l is smooth and the local attribute contributions
βl’s are constant. In this work, we propose to use a spatial
constrained clustering based on the global land desirability
to partition the whole region into subregions, namely geo-
partition; see Fig. 2.

In geo-partition, we propose to use a spatial constrained
clustering approach based on the estimated global fields f̂g . In
particular, to identify significant areas as partition patches, we
combine the Penalized Spatial Distance (PSD) measure [15]
with the Clustering by Fast Search and Find of Density Peaks
(CFSFDP) clustering algorithm [16] to partition houses based
on both spatial and non-spatial attributes. The PSD distance
measure takes both spatial coordinate and non-spatial attributes
into account, and is able to yield geographically separated
clusters when combined with specific clustering algorithms.
The calculation of PSD distance requires the non-spatial
attribute’s value surface. We utilize the house price as non-
spatial attribute. To get a surface fitting of house prices, we
apply the SSR model to the dataset with λ = 10−3. Then we
calculate the PSD distance between each pair of houses to get
a distance matrix D.
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Fig. 3. MSE of house price predictions under different methods.
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Fig. 4. MRAE of house price predictions under different methods.

We then apply the CFSFDP clustering algorithm on the dis-
tance matrix D to divide houses into geographically separated
sub-regions. CFSFDP clustering algorithm spot clusters based
on the idea that cluster centers are characterized by a higher
density than their neighbours and by a relatively large distance
from points with higher densities. It is able to detect variant
shape clusters, and it doesn’t require to specify the number of
clusters. We refer to [15] and [16] for more details about PSD
and CFSFDP.

The resulted three clusters are shown in Fig. 2. The left
two subregions are split by the Riverbend Hill Road. The
houses in the left top subregion were built earlier than the
other two subregions and there are relatively more condos
in that subregion. This means geo-partition indeed generates
meaningful partition and our model will gain more prediction
power by learning local structure from those subregions.

V. PERFORMANCE EVALUATION

To evaluate the effectiveness our proposed approach in
modeling house values in typical urban regions in the North
America, we use the publicly accessible real-estate property
assessment data from the City of Edmonton, Alberta, Canada,
which is the 5th largest city in Canada. The dataset consid-
ered contains the assessed market values of 6130 residential
houses (including single houses, duplex and townhouses) in
the RiverBend area of Edmonton in 2015, together with their
corresponding features including effective build year, net area,
characteristics of basement, presence of a fire place, presence
of air conditioning, lot size, site coverage and north/south
location. The data considered is quite heterogeneous: the mean
house value is CAD 655,894 and the median is CAD 598,000,
while the house values range from only CAD 65,000 all the
way up to CAD 2,855,500, with the heat map of house values



TABLE I
THE CDF OF RELATIVE ABSOLUTE ERRORS (RAES).

Method < 1% < 2% < 3% < 5% < 10% < 15%
LR (non-log) 0.07 0.15 0.21 0.34 0.62 0.80

SSR (non-log) 0.08 0.17 0.24 0.40 0.69 0.84
HSFM (non-log) 0.12 0.23 0.36 0.52 0.79 0.91

LR (log) 0.09 0.19 0.28 0.42 0.71 0.85
SSR (log) 0.11 0.19 0.28 0.45 0.73 0.86

HSFM (log) 0.12 0.24 0.36 0.53 0.79 0.90

shown in Fig. 1. The datasets and code are made publicly
available 1 for future research.

It is worth noting that the collected data points are still
sparse and only represent half of the houses in the region being
considered in Fig. 1. To test the generalizability of the model,
we randomly sample 80% of all houses as the training set,
where we know the full information about the houses including
their assessed value, features and GPS locations. The other
20% of the houses serve as the test data, where only their
features and GPS locations are known. The objective is to
estimate the assessed values of houses in the test set.

In particular, we evaluate and compare the following ap-
proaches on the same data:

• LR: linear regression based on the model zi = wT
i β+ εi

without the spatial field.
• SSR (spatial field only): spatial spline regression based

on the model zi = f(pi) + εi.
• SSR: the spatial spline regression model (1) [10], [12]

solved by finite element functional analysis.
• HSFM (geo-partition): hierarchical spatial functional

model (2) with spatial constrained clustering based on
CFSFDP at the local scale.

For each model, we have two versions, where zi is either
the original value or log-value of house i. We always evaluate
the performance by the mean squared error (MSE) and mean
relative absolute error (MRAE) of the produced estimates for
the original (non-log) house value. For HSFM models, the geo-
partitioning can actually be precomputed before the global and
local spatial functional fitting happens.

Fig. 3 and Fig. 4 compare the performance of baseline
models and models proposed in this paper by presenting the
MSEs and MRAEs given by different methods respectively. As
we can see that our proposed models significantly outperforms
baseline models by a great percentage, which proves the
effectiveness of our models.

Comparing HSFM with geo-partition to the first 3 baseline
models, we can see that it improves a lot by introducing
the secondary level model fitting on local subregions. In this
way, after we fit the global trend of house price surface,
the local level model fitting is able to further characterize
different regions’ local variance, leading to the improvement
of modeling accuracy. Compare the MSEs of log version and
non-log version algorithms, we can see that the log version
method gives better MSE, while non-log version gives better
MRAE.

1https://github.com/BangLiu/RealEstateModeling/

As a summary, we compare the CDF of relative absolute
errors (RAEs) under different methods in Table I. We can see
that HSFM (log) yields the best performance with 53% of
estimates having an error less than 5%, proving the superior
performance of the new model.

VI. CONCLUDING REMARKS

We propose the Hierarchical Spatial Functional Model
(HSFM) for house price modeling based on the recent ad-
vancement in spatial functional data analysis. It models house
prices as a combination of a global spatial field, representing
the global-scale land desirability surface, and multiple local
spatial fields, each characterizing a local-scale land desirability
surface, as well as a linear regression from house features.
We propose effective methods to discover the hidden homo-
geneous sub-communities that may exist in a heterogeneous
region of interest based on spatial constrained clustering. We
then solve the proposed HSFM by applying a recently de-
veloped finite-element analysis technique called spatial spline
regression on both the global and local levels in sequence. We
demonstrate the effectiveness of our model for house price
estimation based on partially known house prices based on
more than 6000 houses in Edmonton, Alberta, Canada.
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