
1

Story Forest: Extracting Events and Telling Stories from
Breaking News

BANG LIU, University of Alberta, Canada
FRED X. HAN, University of Alberta, Canada
DI NIU, University of Alberta, Canada
LINGLONG KONG, University of Alberta, Canada
KUNFENG LAI, Tencent, China
YU XU, Tencent, China

Extracting events accurately from vast news corpora and organize events logically is critical for news apps
and search engines, which aim to organize news information collected from the Internet and present it to
users in the most sensible forms. Intuitively speaking, an event is a group of news documents that report the
same news incident possibly in different ways. In this paper, we describe our experience of implementing a
news content organization system at Tencent to discover events from vast streams of breaking news and to
evolve news story structures in an online fashion. Our real-world system faces unique challenges in contrast
to previous studies on topic detection and tracking (TDT) and event timeline or graph generation, in that we
1) need to accurately and quickly extract distinguishable events from massive streams of long text documents,
and 2) must develop the structures of event stories in an online manner, in order to guarantee a consistent
user viewing experience. In solving these challenges, we propose Story Forest, a set of online schemes that
automatically clusters streaming documents into events, while connecting related events in growing trees
to tell evolving stories. A core novelty of our Story Forest system is EventX, a semi-supervised scheme to
extract events from massive Internet news corpora. EventX relies on a two-layered, graph-based clustering
procedure to group documents into fine-grained events. We conducted extensive evaluations based on 1) 60 GB
of real-world Chinese news data, 2) a large Chinese Internet news dataset that contains 11, 748 news articles
with truth event labels, and 3) the 20 News Groups English dataset, through detailed pilot user experience
studies. The results demonstrate the superior capabilities of Story Forest to accurately identify events and
organize news text into a logical structure that is appealing to human readers.

CCS Concepts: • Information systems → Clustering; Data stream mining; Document topic models; •
Computing methodologies→ Natural language processing; Semi-supervised learning settings;

Additional Key Words and Phrases: Story Forest, EventX, Document clustering, News articles organization,
Community detection

Authors’ addresses: Bang Liu, University of Alberta, Electrical and Computer Engineering, Edmonton, Canada, bang3@
ualberta.ca; Fred X. Han, University of Alberta, Electrical and Computer Engineering, Edmonton, Canada, xuefei1@ualberta.
ca; Di Niu, University of Alberta, Electrical and Computer Engineering, Edmonton, Canada, dniu@ualberta.ca; Linglong
Kong, University of Alberta, Mathematical and Statistical Sciences, Edmonton, Canada, lkong@ualberta.ca; Kunfeng Lai,
Tencent, Platform and Content (Business) Group, Shenzhen, China, calvinlai@tencent.com; Yu Xu, Tencent, Platform and
Content (Business) Group, Shenzhen, China, henrysxu@tencent.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1556-4681/2020/1-ART1 $15.00
https://doi.org/10.1145/3377939

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.1145/3377939

1:2 B. Liu et al.

ACM Reference Format:
Bang Liu, Fred X. Han, Di Niu, Linglong Kong, Kunfeng Lai, and Yu Xu. 2020. Story Forest: Extracting Events
and Telling Stories from Breaking News. ACM Trans. Knowl. Discov. Data. 1, 1, Article 1 (January 2020),
28 pages. https://doi.org/10.1145/3377939

1 INTRODUCTION
With information explosion in a fast-paced modern society, tremendous volumes of news articles
are constantly being generated on the Internet by different media providers, e.g., Yahoo! News,
Tencent News, CNN, BBC, etc. In the meantime, it becomes increasingly difficult for average readers
to digest the huge volumes of daily news articles, which may cover diverse topics and contain
redundant or overlapping information. Many news app users have the common experience that they
are overwhelmed by highly redundant information about a number of ongoing hot events, while
still being unable to get information about the events they are truly interested in. Furthermore,
search engines perform document retrieval from large corpora based on user-entered queries.
However, they do not provide a natural way for users to view trending topics or breaking news.
An emerging alternative way to visualize news corpora without pre-specified queries is to

organize and present news articles through event timelines [38, 41], event threads [24], event
evolution graphs [42], or informationmaps [33, 34, 39]. All of these approaches require the extraction
of conceptually clean events from a large number of messy news documents, which involves
automated event extraction and visualization as a crucial step toward intelligent news systems.
However, few existing news information organization techniques successfully achieve this goal
due to several reasons:
First of all, prior research on Topic Detection and Tracking (TDT) [2] as well as text clustering

[1, 18] mainly focused on grouping related documents into topics—it is much harder to cluster
articles by events, where articles depicting the same event should be grouped together, since the
number of events that occur daily in the real world is unpredictable. As a result, we cannot use
some of the popular clustering algorithms, e.g., K-means, that require predefining the number of
clusters, to extract events. In addition, the sizes of event clusters are highly skewed, because hot
events may be extensively discussed by tens or even hundreds of news articles on the Internet. In
contrast, regular events will be reported by only a few or even one article. These single-document
events, however, constitute the majority of daily news collections, and should also be accurately
discovered to appeal to the diverse interests of readers.
Second, many recently proposed event graphs or information maps try to link events in an

evolution graph [42] or permitting intertwining branches in the information map [34]. However,
we would like to argue that such overly complex graph structures do not make it easy for users to
quickly visualize and understand news data. In fact, most breaking news follows a much simpler
storyline. Using complex graphs to represent breaking news may complicate and even blur the
story structure.
Third, most existing event time-line or event graph generation schemes are based on offline

optimization over the entire news corpora. However, for an automated event extraction system that
aids the visualization of breaking news, it is desirable to “grow” the stories in an online fashion as
news articles are published, without disrupting or restructuring the previously generated storylines.
On one hand, given the vast amount of daily news data, incremental and online computation will
incur less computation overhead by avoiding repeated processing of older documents. On the other
hand, an online scheme can deliver a consistent story development structure to users, so that users
can quickly follow newly trending events.
In this paper, we propose the Story Forest, a novel news organization system that addresses

the aforementioned challenges. To extract conceptually clean events, each of which is essentially

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.1145/3377939

Story Forest: Extracting Events and Telling Stories from Breaking News 1:3

a cluster of news documents describing the same physical breaking news event, Story Forest
incorporates a novel, semi-supervised, two-layered document clustering procedure that leverages a
wide range of feature engineering and machine learning techniques, including keyword extraction,
community detection, and graph-based clustering. We call this clustering procedure EventX. To
the best of our knowledge, it is the first document clustering scheme specially tailored for event
extraction among breaking news documents in the open domain.
We start with the observation that documents focusing on the same topic usually contain

overlapping keywords. Therefore, in the first layer of the clustering procedure in EventX, we utilize
a classifier trained on over 10, 000 news articles to distinguish keywords from non-keywords
for each document. We then apply an existing community detection algorithm onto a keyword
co-occurrence graph constructed from news corpora and extract subgraphs [32] of keywords to
represent topics. Each document is assigned a topic by finding out its most similar keyword subgraph.
However, a keyword community or a topic is still coarse-grained and may cover many events. In the
second layer of EventX, documents within each topic are further clustered into fine-grained events.
We construct a document relationship graph within each topic, where the relationship between
each pair of documents, i.e., whether they describe the same event, is predicted by a supervised
document pair relationship classifier trained on carefully handcrafted features. Finally, we apply
the graph-based community detection algorithm again to decompose the document relationship
graph of each topic into conceptually separate events.
To enhance event visualization, our Story Forest system further groups the discovered events

into stories, where each story is represented by a tree of interconnected events. A link between
two events indicates the temporal evolution or a causal relationship between the two events. In
contrast with existing story generation systems such as StoryGraph [42] and MetroMap [33], we
propose an online algorithm to evolve story trees incrementally as breaking news articles arrive.
Consequently, each story (called a story tree) is presented in one of several easy-to-view structures,
i.e., either a linear timeline, a flat structure, or a tree with possibly multiple branches, which we
believe are succinct and sufficient to represent story structures of most breaking news.
Currently, access to the related public data for event extraction and organization is extremely

limited. Therefore, to facilitate evaluation and further research on the problem of event clustering
and story formation for breaking news, we have created multiple datasets, with the effort of
dedicated editors. First, we have created the Chinese News Corpus dataset which contains 60 GB
of Chinese news documents collected from all major Internet news providers in China (including
Tencent, Sina, WeChat, Sohu, etc.) in a 3-month period from October 1, 2016 to December 31, 2016,
covering very much diversified topics in the open domain. Second, we further created the Chinese
News Events dataset, where each article is manually labeled with the true event label and story
label by editors and product managers at Tencent. It is also, to the best of our knowledge, the
first Chinese dataset for event extraction evaluation. The new datasets have been made publicly
available for research purposes.1
We evaluated the performance of Story Forest based on the Chinese News Corpus dataset, and

compared our EventX news document clustering algorithm with other approaches on the Chinese
News Events dataset. We also conducted a detailed and extensive pilot user experience study for
(long) news document clustering and news story generation to evaluate how our system as well
as several baseline schemes appeal to the habit of human readers. According to the pilot user
experience study, our system outperforms multiple state-of-the-art news clustering and story
generation systems, such as KeyGraph [32] and StoryGraph [42], in terms of logical validity of

1Our Chinese News Events dataset is currently available at:https://pan.baidu.com/s/12vWHHTD8gQLPvVftm6LQdg. For
the Chinese News Corpus dataset, we are currently under the process of publishing it to the public for research purposes.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:4 B. Liu et al.

the generated story structures, as well as the conceptual cleanness of each identified event/story.
Experiments show that the average time for our Java-based system to finish event clustering and
story structure generation based on the daily news data is less than 30 seconds on a MacBook Pro
with a 2 GHz Intel Core i7 processor, and 8 GB memory. Therefore, our system proves to be highly
efficient and practical.

To summarize, we make the following contributions in this paper:
• We formally define the problem of event extraction for breaking news articles in the open
domain, where the granularity of an event must conform to the physical events described
by the articles and can be implicitly guided by the labeled dataset in our semi-supervised
algorithms. We will describe it in more details in Sec. 2.

• We propose the EventX algorithm, which is a two-layered, graph-based document clustering
algorithm that can perform fast event extraction from a large volume of news documents in a
semi-supervised manner. Note that the main novelty of EventX includes a layered clustering
scheme to separate the problem of topic discovery from that of finer-grained event extraction.
Such a two-layered graph-based clustering scheme significantly improves the overall time
efficiency and scalability of the algorithm, making it applicable for industry practice.

• We explore a tree-of-events representation for visualizing news documents. We also introduce
an online algorithm to dynamically incorporate new events into the existing trees. Combining
this approach with the EventX algorithm, we create the Story Forest system, for intelligent
and efficient news story structure formation.

• We have collected and labeled a large amount of data for the study and evaluation of event
extraction and story structure organization, since to our best knowledge, there is no publicly
available dataset specifically dedicated to news event clustering or extraction and story
formation.

Our algorithm has been successfully integrated into the hot event discovery feature of Tencent
QQ browser, which is one of the most popular mobile browsers that serves over 100 million daily
active users.
The remainder of this paper is organized as follows. Sec. 2 formally describes the problem of

event extraction and organization from massive news data. In Sec. 3, we propose the main design
of Story Forest system and EventX algorithm. In Sec. 4, we describe the Chinese News Events dataset
collected and created specifically for evaluating event extraction algorithms. We then compare and
discuss the experimental results of EventX and Story Forest among other baselines. Sec. 5 reviews
the related literature. The paper is concluded in Sec. 6.

2 PROBLEM DEFINITION AND NOTATIONS
In this section, we will first describe key concepts and notations used in this paper, and formally
define our problem. Then, we conduct a case study to clearly illustrate the idea of story trees.

2.1 Problem Definition
We first present the definitions of some key concepts in a bottom-up hierarchy, event → story →
topic, to used in this paper.

Definition 2.1. Event: an event E is a set of news documents reporting the same piece of real-world
breaking news.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Story Forest: Extracting Events and Telling Stories from Breaking News 1:5

Definition 2.2. Story: a storyS is a tree of related events that report a series of evolving real-world
breaking news. A directed edge from event E1 to E2 indicates a temporal development relationship
or a logical connection from the breaking news event E1 to event E2.

Definition 2.3. Topic: a topic consists of a set of stories that are highly correlated or similar to
each other.

In this work, we assume that two news articles are describing the same event as long as the
incident they cover/report has the same time of occurrence and involves the same participating
entities. This assumption is highly justifiable for breaking news articles on the Internet, which
unlike fictions, are usually short, succinct and focusing on reporting the incident of a group of
specific persons, organizations or other types of entities, taking actions at one or several locations.
We do not consider the stance, perspective or publishing date of an article. Additionally, we do
not model relationships between events, other than the weightless temporal evolution required for
building story trees. This allows each event to be conceptually cleaner and more specific.
In contrast, a topic is usually determined in a subjective manner, and is usually more vague

and broader compared to an event. For example, both American presidential election and 2016 U.S.
presidential election can be considered topics, with the second topic being a subset of the first
topic. We also make the assumption that each event has a single most appropriate corresponding
topic. This ensures that an event cannot appear under multiple topic clusters, which significantly
simplifies the clustering procedure. This assumption is also realistic for most breaking news articles,
where an article is usually written for timeliness to report only one real-world incident.

Each topic may contain multiple story trees, and each story tree consists of multiple logically
connected events. In our work, events (instead of news documents) are the smallest atomic units.
Each event is also assumed to belong to a single story and contributes partial information to the
overall story. For instance, considering the topic American presidential election, 2016 U.S. presidential
election is a story within this topic, and Trump and Hilary’s first television debate is an event within
this story.
The boundaries between events, stories and topics do not have to be explicitly defined. In

real-world applications, the labeled training dataset often implicitly captures and reflects their
differences. In this way, even documents that are not related to evolving physical events can be
clustered according to a specific granularity, as long as the labeled training dataset contains such
kinds of samples to define the boundary. Therefore, our EventX Event Extraction algorithm defines
a general framework to cluster documents into events that implicitly defined by any training
dataset.
Note that prior studies on text clustering usually focus on clustering at the granularity of

topics [1, 2], which are clusters of related articles. In contrast, the event extraction problem is much
more challenging, because on top of clustering documents that belong to the same topic, we also
need to utilize key information within each document to ensure that all documents within an event
cluster are reporting the same physical event.

2.2 Notations
We now introduce some notations and describe our problem formally. Given a news document
stream D = {D1,D2, . . . ,Dt , . . .}, whereDt is the set of news documents collected on time period
t , our objective is to: a) cluster all news documents D into a set of events E = {E1, . . . ,E |E | }, and
b) connect the extracted events to form a set of stories S = {S1, ...,S |S | }. Each story S = (E,L)
contains a set of events E and a set of links L, where Li, j :=< Ei , Ej > denotes a directed link from
event Ei to Ej , which indicates a temporal evolution or logical connection relationship.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:6 B. Liu et al.

Fig. 1. The story tree of “2016 U.S. presidential election.”

Furthermore, we require the events and story trees to be extracted in an online or incremental
manner. That is, we extract events from each Dt individually when the news corpus Dt arrives in
time period t , and merge the discovered events into the existing story trees that were found at time
t − 1. This is a unique strength of our scheme as compared to prior work, since we do not need
to repeatedly process older documents and can deliver the complete set of evolving yet logically
consistent story trees to users on-demand.

2.3 Case Study
To give readers more intuition on what the stories or events look like, here we use an illustrative
example to help further clarify the concept of stories vs. events. Fig. 1 showcases the story tree
of “2016 U.S. presidential election”. The story contains 20 nodes, where each node indicates an
event in 2016 U.S. election, and each link indicates a temporal evolution or a logical connection
between two events. For example, event 19 says America votes to elect new president, and event
20 says Donald Trump is elected president. The index number on each node represents the event
sequence over the timeline. There are 6 paths within this story tree, where the path 1→ 20 capture
the whole presidential election process, branch 3→ 6 are about Hilary’s health conditions, branch
7→ 13 are about television debates, 14→ 18 are related to the “mail door” investigation, etc. As we
can see, by modeling the evolutionary and logical structure of a story into a story tree, users can
easily grasp the logic of news stories and learn the main information quickly. Let us consider the
following 4 events under the topic 2016 U.S. presidential election: 1) First election television debate; 2)
Second election television debate; 3) FBI restarts “mail door" investigation; 4) America votes to elect the
new president. Intuitively, these 4 events should have no overlapping information between them.
A news article about Trump and Hillary’s First election television debate is conceptually separate
from another article that is reporting Trump and Hillary’s Second election television debate. For
news articles, different events under the same topic should be clearly distinguishable, because they
usually follow the progressing timeline of real-world affairs.
Let us represent each story by an empty root node s from which the story is originated, and

denote each event by an event node e . The events in a story can be organized in one of the following
four structures shown in Fig. 2: a) a flat structure that does not include dependencies between
events; b) a timeline structure that organizes events by their timestamps; c) a graph structure
that checks the connection between all pairs of events and maintains a subset of most strong
connections; d) a tree structure to reflect the structures of evolving events within a story. Compared
with a tree structure, sorting events by timestamps omits the logical connection between events,
while using directed acyclic graphs to model event dependencies without considering the evolving

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Story Forest: Extracting Events and Telling Stories from Breaking News 1:7

Fig. 2. Different structures to characterize a story.

Preprocessing Documents

1. Document filtering
2. Word segmentation

w
w

w

w

w

w

w

w

Community 1Community 2

w d e sKeyword Document Event Story

Tree 1
s

e

e

Tree 2
s

e e

Tree 2
s

e

e

e

e

e

Time

e
e

e

e eStory 1

Story 2

Recommend

w
w

w

w

w

w

w

w

Keyword Graph

Keyword Extraction

Prepare Data

1. Extract a variety of
 word features
2. Classify whether each
 word is a keyword

Construct Keyword Graph

Construct or update
keyword graph by
keyword co-occurrence in
new incoming
documents.

Split Keyword Graph

Keyword Graph

1. Identify changed part
 of keyword graph
2. Community detection
3. Filtering out small
 sub-graphs

Grow Story Forest

1. Compare new events
 with existing story
 nodes
2. Merge same events, or
 insert events to stories

Find Related Story

Grow Stories

1. Identify candidate
 stories
2. Find most related story
3. If no related story,
 create a new story

Second Layer Clustering

1. Doc-pair relationship
 classification
2. Construct doc graph
3. Community detection
 on doc graph

First Layer Clustering

Cluster Events

Cluster new documents
by keyword communities.

e
e e e

e e
e

d
d d

d

d
d

t Topic

KeywordsDocuments

Event 1
Event 2 Topic 1 Topic 2

w
w

w

w

w

w

w

w

EventX

Fig. 3. An overview of the system architecture of Story Forest.

consistency of the whole story can lead to unnecessary connections between events. Through
extensive user experience studies in Sec. 4, we show that tree structures are the most effective way
to represent breaking news stories.

3 THE STORY FOREST SYSTEM
In this section, we start with an overview of the proposed Story Forest system. Then, we separately
introduce the detailed procedures of event extraction from news documents, and how we model
stories’ evolutionary structure by story trees. Our implementation of the Story Forest system is
open-sourced for research purpose 2.
An overview of our Story Forest system is shown in Fig. 3, which mainly consists of four

components: preprocessing, keyword graph construction, clustering documents to events, and

2https://github.com/BangLiu/StoryForest

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:8 B. Liu et al.

Fig. 4. The structure of keyword classifier.

growing story trees with events. The overall process is divided into 8 steps. First, the input news
document stream will be processed by a variety of NLP and machine learning tools, including
document filtering and word segmentation. Then we perform keyword extraction, construct/update
keyword co-occurrence graph, and split the graph into sub-graphs. After that, we utilize our
proposed EventX algorithm to cluster documents into fine-grained events. Finally, we update the
story trees (formed previously) by either inserting each discovered event into an existing story
tree at the right place, or creating a new story tree if the event does not belong to any existing
story. Note that each topic may contain multiple story trees and each story tree consists of logically
connected events. We will explain the design choices of each component in detail in the following
subsections.

3.1 Preprocessing
When new documents arrive, the first task Story Forest performs is document preprocessing, which
includes the following sequential steps:

Document filtering: documents with content length smaller than a threshold (20 characters)
will be discarded.

Word segmentation: we segment the title and body of each document using Stanford Chinese
Word Segmenter Version 3.6.0 [8], which has proved to yield excellent performance on Chinese word
segmentation tasks. Note that for data in a different language, the corresponding word segmentation
tool in that language can be used.

Keyword extraction: extracting appropriate keywords to represent the main ideas of a docu-
ment is critical to the performance of the system.We have found that traditional keyword extraction
approaches, such as TF-IDF based keyword extraction and TextRank [23], cannot produce satis-
fying results on real-world news data. For example, the TF-IDF based method measures a word’s
importance by its frequency in the document. Therefore, it is unable to extract keywords that have
a relatively low frequency. The TextRank algorithm utilizes the word co-occurrence information
and is able to handle such cases. However, its computation time increases significantly as document
length increases. Another idea is to fine-tune a rule-based system to combine multiple keyword
extraction strategies. Still, such type of system heavily relies on the quality of the rules and often
generalizes poorly.
To efficiently and accurately extract keywords, we trained a binary classifier to determine

whether a word is a keyword to a document. In particular, we first extract the potential keywords
for a document from a massive vocabulary maintained by Tencent, which contains over 10 million
named entities. We regard an entity as a potential keyword if it appears in the document title or
the content. We then hire human judges to determine whether a candidate keyword is indeed a
keyword of the given document. Following this procedure, we collect 20, 000+ positive keywords
and 350, 000+ negative keywords from 10, 000+ documents. Each keyword is transformed into a
multi-view feature vector. Table 1 lists the main features that we found to be critical to the binary
classifier. For the LDA feature vector, we trained a 1000-dimensional LDA model based on news
data collected from January 1, 2016 to May 31, 2016 that contains 300, 000+ documents. The training
process costs 30 hours.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Story Forest: Extracting Events and Telling Stories from Breaking News 1:9

Table 1. Features for the keyword classifier.

Type Features

Word feature Named entity or not, location name or not, contains angle
brackets or not.

Structural feature TF-IDF, whether appear in title, first occurrence position in
document, average occurrence position in document, distance
between first and last occurrence positions, average distance
between word adjacent occurrences, percentage of sentences
that contains the word, TextRank score.

Semantic feature LDA

After acquiring the features for each word. A straightforward idea is to input them directly
to a Logistic Regression (LR) classifier. However, as a linear classifier, Logistic Regression relies
on careful feature engineering. To reduce the impact of human bias in handcrafted features, we
combine a Gradient Boosting Decision Tree (GBDT) with a LR classifier to get a keyword/non-
keyword classification result, as shown in Fig. 4. The GBDT component is trained to automatically
discover useful cross features or combinations and discretize continuous features. The output of
the GBDT will serve as the input to the LR classifier. The LR classifier will determine whether a
word is a keyword for the current document. We also tried SVM as the classifier in the second
stage instead of LR and observed similar performance. It is also worth mentioning that on another
Chinese keyword extraction dataset, our classifier achieved a precision of 0.83 and a recall of 0.76,
while they are 0.72 and 0.76 respectively if we exclude the GBDT component.

3.2 Event Extraction by EventX
After document preprocessing, we need to extract events. Event extraction here is essentially a
fine-tuned document clustering procedure to group conceptually similar documents into events.
Although clustering studies are often subjective in nature, we show that our carefully designed
procedure can significantly improve the accuracy of event clustering, conforming to human under-
standing, based on a manually labeled news dataset. To handle the high accuracy requirement for
long news text clustering, we propose EventX, a 2-layer clustering approach based on both keyword
graphs and document graphs. The major steps in EventX include keyword co-occurrence graph
construction, first-layer topic clustering based on keyword co-occurrence graph, and second-layer
event extraction based on document relationship graph.

Note that the concept of “event" in this paper and our proposed dataset is fundamentally different
from the “event mentions” in cross-document event coreference [19]. In our case, no matter how
many event mentions can be found in an article, there is always a single major event that the
news article is intended to report and cover or that triggers this report, with its narratives focusing
on this major event. The task of EventX is to extract events by identifying whether a group of
documents are reporting the same breaking news with different narratives or paraphrasing, instead
of identifying what event mentions a document contains. In the following, we provide a detailed
description on the inner workings of EventX.

3.2.1 Construct Keyword Co-occurrence Graph. Algorithm 1 shows the detailed steps of EventX.
We show that our two-layered approach significantly improves the accuracy of event clustering on
long news articles.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:10 B. Liu et al.

Algorithm 1 EventX Event Extraction Algorithm
Input: A set of news documents D = {d1,d2, ...,d |D | }, with extracted features described in Sec.

3.1; a pre-trained document pair relationship classifier.
Output: A set of events E = {E1, E2, ...,E |E | }.

1: Construct a keyword co-occurrence graph G of all documents’ keywords. Connectwi andw j
by an undirected edge ei, j if the times that the keywordswi andw j co-occur exceed a certain
threshold δe , and Pr{w j |wi }, Pr{wi |w j } are bigger than another threshold δp .

2: Split G into a set of small and strongly connected keyword communities C = {C1,C2, ...,C|C | },
based on the community detection algorithm [25]. The algorithm keeps splitting a graph by
iteratively deleting edges with high betweenness centrality score, until a stop condition is
satisfied.

3: for each keyword community Ci , i = 1, . . . , |C | do
4: Retrieve a subset of documents Di which is highly related to this keyword community by

calculating the cosine similarity between the TF-IDF vector of each document and that of
the keyword community, and comparing it to a threshold δ .

5: Connect document pairs inDi to form a document relationship graphGdi using the document
pair relationship classifier.

6: Split Gdi into a set of document communities Cd
i = {C

d
i,1,C

d
i,2, ...,C

d
i, |Cd

i |
}, based on the

community detection algorithm. Each community represents an event.
7: end for

Given a news corpus D, we construct a keyword co-occurrence graph [32] G. Each node in G is
a keywordw extracted by the scheme described in Sec. 3.1, and each undirected edge ei, j indicates
thatwi andw j have co-occurred in a same document. Edges that satisfy two conditions will remain
and other edges will be pruned: the times of co-occurrence shall be above a minimum threshold δe
(we set δe = 2 in our experiments), and the conditional probabilities of the occurrence Pr{w j |wi }

and Pr{wi |w j } also need to be greater than a predefined threshold δp (we use 0.15). The conditional
probability Pr{w j |wi } is calculated as

Pr{wi |w j } =
DFi, j

DFj
, (1)

where DFi, j represents the number of documents that contain both keywordwi andw j , and DFj is
the document frequency of keywordw j . It represents the probability thatwi occurs in a document
if that document containsw j .

3.2.2 Topic Clustering on Keyword Co-occurrence Graph. Next, we perform community detection
on the constructed keyword co-occurrence graph. The goal is to split the whole keyword graph
G into communities C = {C1,C2, ...,C|C | }, where each community (or subgraph) Ci contains the
keywords for a certain topic i (to which multiple events may be associated). The intuition is that
keywords related to a common topic usually will appear frequently in documents belonging to
that topic. For example, documents belonging to the topic “2016 U.S. presidential election” will
frequently mention keywords such as “Donald Trump”, “Hillary Clinton”, “election” and so on.
Such highly related keywords will be connected to each other in the keyword graph and form
dense subgraphs, while keywords that are not highly related will have sparse connections or no
connection. Our objective here is to extract dense keyword subgraphs associated with different
topics.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Story Forest: Extracting Events and Telling Stories from Breaking News 1:11

Table 2. Features for document pair relationship classification.

Feature type Description

Keyword Number of common keywords in titles or contents, percentage of
common keywords in titles or contents.

Textual similarity TF-IDF (and TF) similarities of titles or contents, TF-IDF (and TF)
similarities of the first N (N=1,2,3) sentences.

Semantic LDA cosine similarity of two documents, the absolute value of the
difference between the LDA vectors of the two documents.

The benefit of using community detection in the keyword graph is that it allows each keyword
to appear in multiple communities. In reality, it is not unusual to have one keyword appearing
under multiple topics. We also tried another method of clustering keywords by Word2Vec. But the
performance is worse than community detection based on co-occurrence graphs. The main reason
is that when clustering with pre-trained word vectors, words with similar semantic meanings are
more likely to be grouped together. However, unlike articles in a specialized domain, news topics
from the open domain often contain keywords with diverse semantic meanings.
To detect keyword communities, we utilize the betweenness centrality score [32] of edges to

measure the strength of each edge in the keyword graph. The betweenness score of an edge
is defined as the number of shortest paths between all pairs of nodes that pass through it. An
edge between two communities is expected to have a high betweenness score. Edges with high
betweenness score will be removed iteratively to divide the communities. If two edges have the same
betweenness score, the one with lower conditional probability will be removed. The conditional
probability of edge ei, j is calculated as (Pr{wi |w j } + Pr{w j |wi })/2. We calculate the betweenness score of
edges using breadth first search (BFS) and iteratively remove edges with the highest betweenness
score. Whenever we remove an edge, we recalculate the betweenness score of the remaining edges
in the graph. As the edges is constantly removed, on one hand, the maximum betweenness score of
all edges will keep decreasing. On another hand, a graph may become not fully connected and turn
into two sub-graphs. Once a keyword graph is no longer fully connected, we continue the same
process recursively on each newly created sub-graphs. The splitting process ends if the number
of nodes in each subgraph is smaller than a predefined threshold δд (we use 3), or the maximum
betweenness score of all edges in the subgraph is smaller than a threshold based on the subgraph’s
size. We refer interested readers to [32] for more details about community detection. We notice that
the betweenness-based community detection algorithm is used as an off-the-shelf tool in EventX
algorithm. There exist other community detection algorithms that are more efficient in terms of
time complexity [27], and we can easily switch to these algorithms if time efficiency is a concern.
After obtaining the keyword communities, we calculate the cosine similarities between each

document and each keyword community. The documents are represented as TF-IDF vectors. Given
a keyword community is essentially a bag of words, it can also be considered as a document.
We assign each document to the keyword community with the highest similarity, as long as the
similarity is also above a predefined threshold δ . At this point, we have finished clustering in the
first layer, i.e., the documents are now grouped by topics.

3.2.3 Event Extraction based on Document Relationship Graph. After we partition documents into
topics, we perform the second-layer document clustering within each topic to obtain fine-grained
events. We also call this process event clustering. An event cluster only contains documents that
talk about the same event. As mentioned before, since event clusters could vary dramatically in

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:12 B. Liu et al.

sizes, traditional unsupervised learning based algorithms, such as K-means, Non-negative Matrix
Factorization, Hierarchical clustering, are not appropriate. Instead, we adopt a supervised-learning-
guided clustering procedure in the second layer.

Specifically, in contrast with the keyword graph in the first layer, nowwe consider each document
as a graph node, and try to connect document pairs that discuss the same event. In the keyword co-
occurrence graph, judging whether two keywords are related is achieved through the co-occurrence
of keywords in documents. This is feasible because the granularity of a topic is relatively coarse
and subjective compared with an event. However, simply combining unsupervised strategies to
judge whether two documents are talking about the same event cannot produce satisfying results,
because events are highly diverse and the clustering granularity should be adjusted accordingly.

To address the above challenges, we propose a semi-supervised clustering scheme which incor-
porates a document pair relationship classifier to construct a document relationship graph, and
performs event extraction on that graph. Given a set of documents D = {d1,d2, ...,d |D | } within a
topic cluster, for each pair of documents ⟨di ,dj ⟩ that belongs to D, we add an edge edi, j if they are
talking about the same event. We trained a SVM classifier to determine whether a pair of documents
are talking about the same event using multiple document pair features, such as cosine similarity of
TF-IDF vectors, number of common keywords, LDA cosine similarity, as the input vector. Table 2
lists the main features we utilized to train the document pair relationship classifier. For each pair
of documents within the same topic, we decide whether to draw an edge between them based on
the prediction made by the document pair relationship classifier. Hence, documents in each topic
D will form a document relationship graph Gd . We then apply the same community detection
algorithm mentioned above to such graphs. Naturally, each community within a topic cluster now
represents an event. Note that the graph-based clustering on the second layer is highly efficient,
since the number of documents contained in each topic is significantly less after the first-layer
document clustering.
In a nutshell, our two-layered scheme first groups documents into topics based on keyword

community detection and then further groups the documents within each topic into fine-grained
events. It has multiple advantages compared with a number of existing clustering algorithms:

(1) It does not require a pre-defined number of event clusters. This is critical in real-world
applications, as for real-world data such as daily news, the exact number of events is almost
always unknown and varies dramatically. Most existing clustering algorithms require the
number of clusters as a parameter, or need to carefully choose parameters that control the
clustering granularity. For EventX, even though we still need to specify a stopping criteria
in the community detection algorithm, the threshold hyper-parameters in our algorithm
are much more stable and insensitive to different sizes of news documents. Therefore, these
thresholds can be selected using grid search, and do not require to be updated frequently for
news articles from a different date.

(2) Our algorithm can adaptively determine the granularity of different events based on the
pre-trained document pair relationship classifier, as well as community detection on the
document relationship graph.

(3) The performance of our algorithm is less sensitive to the parameter settings in the first layer,
because the granularity of a topic is usually subjective. We can set relatively low thresholds
in the first layer to ensure that documents belonging to the same event are grouped together,
then extract the fine-grained events in the second layer.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Story Forest: Extracting Events and Telling Stories from Breaking News 1:13

(4) The performance of event clustering can be improved by adding more features in Table 2
to represent the similarities between two documents or increasing training data to improve
the document pair relationship classifier in the second-layer clustering procedure, without
affecting keyword extraction and topic clustering in the first-layer clustering. We can also
apply a more sophisticated algorithm for document pair relationship classification by repre-
senting two documents as a Concept Interaction Graph and apply graph convolution, as we
have introduced in [20].

(5) The two-layered scheme of our algorithm makes event clustering highly efficient. Directly
performing relationship classification within a document corpora is not feasible, as the time
complexity is at least O (n2d) where nd is the number of documents. By utilizing the two-
layered scheme, the documents will be split into multiple topics (each topic usually contains
1 to 100 documents). Therefore, the time complexity for the second-layer event extraction is
approximately O (nd). The total time complexity that taking both two layers of clustering
into account is still much smaller than O (n2d), as we will discuss in Sec. 4.4

3.3 Growing Story Trees Online
Given the set of extracted events for a particular topic, we further organize these events into
multiple stories under this topic in an online manner. Each story is represented by a Story Tree
to characterize the evolving structure of that story. Upon the arrival of a new event and given an
existing story forest, our online algorithm to grow the story forest mainly involves two steps: a)
identifying the story tree to which the event belongs; b) updating the found story tree by inserting
the new event at the right place. If this event does not belong to any existing story, we create a
new story tree.

a) Identifying the related story tree. Given a set of new events Et = {E1, E2, ...,E |Et | } at
time period t and an existing story forest Ft−1 = {S1,S2, ...,S |Ft−1 | } that has been formed during
previous t − 1 time periods, our objective is to assign each new event E ∈ Et to an existing story
tree S ∈ Ft−1. If no story in the current story forest matches that event, a new story tree will be
created and added to the story forest.

We apply a two-step strategy to decide whether a new event E belongs to an existing story tree
S formed previously. First, as described at the end of Sec. 3.2, event E has its own keyword set CE .
Similarly, for the existing story tree S, there is an associated keyword set CS that is a union of all
the keyword sets of the events in that tree.
Then, we can calculate the compatibility between event E and story tree S as the Jaccard

similarity coefficient between CS and CE : compatibility(CS,CE) = |CS∩CE ||CS∪CE |
. If the compatibility is

bigger than a threshold, we further check whether at least a document in event E and at least a
document in story tree S share n or more common words in their titles (with stop words removed).
If yes, we assign event E to story tree S. Otherwise, they are not related. In our experiments, we
set n = 1. If the event E is not related to any existing story tree, a new story tree will be created.

b) Updating the related story tree. After a related story tree S has been identified for the
incoming event E, we perform one of the 3 types of operations to place event E in the tree: merge,
extend or insert, as shown in Fig. 5. The merge operation merges the new event E into an existing
event node in the tree. The extend operation will append the event E as a child node to an existing
event node in the tree. Finally, the insert operation directly appends event E to the root node of
story tree S. Our system chooses the most appropriate operation to process the incoming event
based on the following procedures.

Merge: we merge E with an existing event in the tree, if they essentially talk about the same
event. This can be achieved by checking whether the centroid documents of the two events are

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:14 B. Liu et al.

Fig. 5. Three types of operations to place a new event into its related story tree.

talking about the same thing using the document-pair relationship classifier described in Sec. 3.2.
The centroid document of an event is simply the concatenation of all the documents in the event.
If the centroid documents of the two events are talking about the same thing, we merge the new
incoming event with the existing event node. Otherwise, we continue the procedures below.
To merge a new incoming event with an existing event node, we add the set of documents

contained in the incoming event to the set of documents belonging to the existing event node.
Besides, the set of keywords of the incoming event is also merged into that of the existing event
node.

Extend and Insert: if event E does not overlap with any existing event, we will find the parent
event node in S to which it should be appended. We calculate the connection strength between the
new event E and each existing event Ej ∈ S based on three factors: 1) the time distance between
E and Ej , 2) the compatibility of the two events, and 3) the storyline coherence if E is appended to
Ej in the tree, i.e.,

ConnectionStrength(Ej , E) := compatibility(Ej , E)×
coherence(LS→Ej→E) × timePenalty(Ej , E).

(2)

Now we explain the three components in the above equation one by one. First, the compatibility
between two events Ei and Ej is given by

compatibility(Ei , Ej) =
TF(dci) · TF(dc j)
∥TF(dci)∥ · ∥TF(dc j)∥

, (3)

where dci is the centroid document of event Ei .
Furthermore, the storyline of Ej is defined as the path in S starting from the root node of S

ending at Ej itself, denoted by LS→Ej . Similarly, the storyline of E appended to Ej is denoted by
LS→Ej→E . For a storyline L represented by a path E0 → . . . → E |L | , where E0 := S, its coherence
[39] measures the theme consistency along the storyline, and is defined as

coherence(L) = 1
|L|

|L |−1∑
i=0

compatibility(Ei , Ei+1), (4)

Finally, the bigger the time gap between two events, the less possible that the two events are
connected. We thus calculate time penalty by

timePenalty(Ej , E) =

eδ ·(tEj −tE) if tEj − tE < 0
0 otherwise

(5)

where tEj and tE are the timestamps of event Ej and E respectively. The timestamp of an event is
the minimum timestamp of all the documents in the event.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Story Forest: Extracting Events and Telling Stories from Breaking News 1:15

We calculate the connection strength between the new event E and every event node Ej ∈ S
using (2), and append event E to the existing Ej that leads to the maximum connection strength. If
the maximum connection strength is lower than a threshold value, we insert E into story tree S by
directly appending it to the root node of S. In other words, insert is a special case of extend.

4 PERFORMANCE EVALUATION
We conduct two groups of experiments. The first group independently evaluates EventX, since
it is a core novelty within our Story Forest system. We report the performance of EventX on a
manually labeled Chinese News Events dataset and the openly available 20 Newsgroups dataset.
We then compare EventX against several clustering baselines. In the second group, we add the story
visualization structures and examine the overall performance of Story Forest on a much larger
news documents dataset, i.e., the Chinese News Corpus dataset. We also investigate the effects of
various hyper-parameters in EventX as well as the algorithm complexity of the entire system.

4.1 News Datasets

Cu
rre

nt
 e
ve
nt
s

So
cie

ty
M
ilit
ar
y

Fi
na
nc
e

Ve
hi
cle

Sp
or
ts

En
te
rta

in
m
en
t

Ho
us
e
pr
op
er
ty

Te
ch
no
lo
gy

Ed
uc
at
io
n

Fa
sh
io
n

Hu
m
an
ity

Ph
ot
og
ra
ph

y
Ga

m
e

To
ur

He
al
th

Co
ns
te
lla
tio

n
De

lic
ac
y

Ho
m
e

Bu
sin

es
s

Pa
re
nt
in
g

Sc
ie
nc
e

Se
xe
s

An
im
e

So
ul
 so

up
Jo
ke
s

Topics

0

1000

2000

3000

Nu
m
be
r o

f D
oc
um

en
ts

(a) Topic Distribution of Documents

Cu
rre

nt
 e
ve
nt
s

So
cie

ty
M
ilit
ar
y

Fi
na
nc
e

Ve
hi
cle

Sp
or
ts

En
te
rta

in
m
en
t

Ho
us
e
pr
op
er
ty

Te
ch
no
lo
gy

Ed
uc
at
io
n

Fa
sh
io
n

Hu
m
an
ity

Ph
ot
og
ra
ph

y
Ga

m
e

To
ur

He
al
th

Co
ns
te
lla
tio

n
De

lic
ac
y

Ho
m
e

Bu
sin

es
s

Pa
re
nt
in
g

Sc
ie
nc
e

Se
xe
s

An
im
e

So
ul
 so

up
Jo
ke
s

Topics

0

500

1000

1500

2000

Nu
m
be
r o

f E
ve
nt
s

(b) Topic Distribution of Events

Cu
rre

nt
 e
ve
nt
s

So
cie

ty
M
ilit
ar
y

Fi
na
nc
e

Ve
hi
cle

Sp
or
ts

En
te
rta

in
m
en
t

Ho
us
e
pr
op
er
ty

Te
ch
no
lo
gy

Ed
uc
at
io
n

Fa
sh
io
n

Hu
m
an
ity

Ph
ot
og
ra
ph

y
Ga

m
e

To
ur

He
al
th

Co
ns
te
lla
tio

n
De

lic
ac
y

Ho
m
e

Bu
sin

es
s

Pa
re
nt
in
g

Sc
ie
nc
e

Se
xe
s

An
im
e

So
ul
 so

up
Jo
ke
s

Topics

0

250

500

750

Nu
m
be
r o

f S
to
rie

s

(c) Topic Distribution of Stories

0 500 1000 1500 2000 2500 3000
Number of Words in a Document

0

25

50

75

100

125

Nu
m
be

r o
f D

oc
um

en
ts mean=733.67

median=579
minimum=29
maximum=21791

(d) Histogram of Document Lengths

0 5 10 15 20
Number of Documents in an Event

100

101

102

103

104

Nu
m
be

r o
f E

ve
nt
s mean=1.26

median=1
minimum=1
maximum=277

(e) Histogram of Event Sizes

0 5 10 15 20
Number of Documents in a Story

0

500

1000

1500

2000

2500

3000

Nu
m
be

r o
f S

to
rie

s mean=3.15
median=1
minimum=1
maximum=322

(f) Histogram of Story Sizes

0 20 40 60 80
Number of Keywords in a Document

0

500

1000

1500

2000

Nu
m
be

r o
f D

oc
um

en
ts mean=19.80

median=17
minimum=3
maximum=236

(g) Histogram of Document Keyword
Numbers

0 10 20 30 40 50
Time Spans of Events (day)

100

101

102

103

104

Nu
m
be

r o
f E

ve
nt
s mean=0.26

median=0
minimum=0
maximum=55

(h) Histogram of Event Time Spans by
Day

0 10 20 30 40 50 60
Time Spans of Stories (day)

100

101

102

103

Nu
m
be

r o
f S

to
rie

s mean=2.15
median=0
minimum=0
maximum=61

(i) Histogram of Story Time Spans by
Day

Fig. 6. The characteristics of the introduced Chinese News Event and Story dataset.

To help evaluate Story Forest, we create the Chinese News Corpus dataset by collecting 60 GB of
Chinese news documents (approximately 1.5 millions of news articles) from major Internet news
providers in China, such as Tencent and Sina, in a three-month period from October 1, 2016 to
December 31, 2016 covering different topics in the open domain. The entire Story Forest system is

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:16 B. Liu et al.

tested on the full 60 GB of Chinese news documents and we employ human evaluators to analyze
its overall performance.

We then sample a smaller subset from these documents to create the Chinese News Events dataset,
which is manually labeled with the truth events and stories, by editors and product managers
at Tencent. It is also, to the best of our knowledge, the first Chinese dataset for event extraction
evaluation. In the creation of Chinese News Events dataset, we assume that 1) each article only has
one event ID, i.e., associated with the breaking news that leads to this article; 2) different events
from the same story are clearly distinguishable, partly because they usually follow the progressing
timeline of real-world affairs; 3) each article only belongs to one news story indicated by a unique
story ID (we ignore the complex storylines and entangled plots such as those in a fiction). We
train and evaluate the EventX algorithm on this labeled dataset of 11, 748 Chinese news articles.
When evaluating the whole Story Forest system on the Chinese News Corpus dataset, documents
belonging to the Chinese News Events dataset are removed.

Fig. 6 shows some statistics of the new dataset. Fig. 6(a), Fig. 6(b) and Fig. 6(c) demonstrate how
many documents, events and stories each topic contains. We can see that the distributions are
highly skewed. The top 3 largest topics are “entertainment”, “sports” and “current events”. Fig. 6(d)
shows the histogram of word counts in documents. The average number of words in a document is
733.67 and the longest document has 21, 791 words. From Fig. 6(g), we can see that the average
number of keywords extracted from each document is 19.8. In terms of the sizes of events and
stories, the histograms of the number of documents in each event and that in each story are shown
in Fig. 6(e) and Fig. 6(f), respectively. We can easily observe that for real-world news data, a majority
of events only contain a single document: the average size of an event is 1.26 (documents), while
the largest event contains 277 documents. The average size of a story is 3.15 (documents) and the
largest story contains 322 documents. Finally, Fig. 6(h) and Fig. 6(i) plot the distributions of the
time spans of each event and story. The average time span of an event is 0.26 days, and that of a
story is 2.15 days. These statistics help to justify the assumptions we made above when labeling
the dataset—most breaking news events and stories have relatively short lifespans with simple
narratives (in contrast to fictions or scientific articles).

4.2 Evaluation of EventX
4.2.1 Evaluation Datasets. We utilize the following datasets for evaluating EventX :
• Chinese News Events (CNE). This is the full dataset that contains 11, 748 news articles
belonging to 9, 327 events. The average number of words in documents is 733.67.
• Chinese News Events Subset 1. It is created by removing events containing less than 2
documents in the Chinese News Events dataset. It contains 3, 557 news articles belonging to
1, 136 events. The average number of words in documents is 768.07.
• Chinese News Events Subset 2. We further filter events that contain less than 4 documents
in the Chinese News Events dataset. This dataset contains 1, 456 news articles belonging to
176 events. The average length of documents is 760.04 words.
• 20 Newsgroups3. This is a classic dataset for the evaluation of text clustering algorithms. It
consists of 18, 821 documents that belong to 20 different news groups. The average length of
documents is 137.85 words.

For Chinese datasets, after word segmentation, we extract keywords from each document using
the supervised approach mentioned in Sec. 3.1. The binary classifier to classify whether a word is a
keyword to a document is trained on a dataset that we manually labeled. It contains the keywords of
10, 000+ documents, including 20, 000+ positive keyword samples and 350, 000+ negative samples.
3http://qwone.com/~jason/20Newsgroups/

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2020.

http://qwone.com/~jason/20Newsgroups/

Story Forest: Extracting Events and Telling Stories from Breaking News 1:17

On another Chinese keyword extraction evaluation dataset, our classifier achieved a precision
of 0.83 and a recall of 0.76, while they are 0.72 and 0.76 respectively if we exclude the GBDT
component. The average number of keywords for each document in our proposed Chinese News
Events dataset is 19.8. For English documents, we extracted keywords using RAKE [29].

4.2.2 Evaluation Metrics. The evaluation metrics we used include Homogeneity (H), Completeness
(C), V-measure score (V) [30] and Normalized Mutual Information (NMI). Homogeneity and com-
pleteness are intuitive evaluation metrics based on conditional entropy analysis. Homogeneity is
larger if each cluster contains only members from a single class. The completeness is maximized if
all members of a ground truth class are assigned to the same cluster. Homogeneity and completeness
scores are defined as:

H = 1 −
∑
c,k nc,k log

nc,k
nk∑

c nc log nc
N
, (6)

C = 1 −
∑
c,k nc,k log

nc,k
nc∑

k nk log nk
N
, (7)

where nc is the number of documents in class c , and nk is the number of documents in cluster k . nc,k
is the number of documents in class c as well as in cluster k , and N is the number of total documents
in the dataset. The V-measure is the harmonic mean between homogeneity and completeness:

V = 2 × H × C
H + C . (8)

Normalized mutual information [12] is also widely used for text clustering evaluation. It measures
the amount of statistical information shared by the ground truth cluster labels and the cluster
assignment results. The NMI is 1 if the cluster results perfectly match the truth labels, and it is close
to 0 when the cluster labels are randomly generated. Normalized mutual information is formally
defined as:

NMI =

∑
c,k nc,k log

nc,k ·N
nc ·nk√

(
∑
c nc log nc

N) (
∑

k nk log nk
N)

(9)

4.2.3 Methods for Comparison. We compare EventX to other document clustering methods, as
well as methods that utilize both word and document clusters:
• KeyGraph: the KeyGraph algorithm [32] clusters documents based on a keyword co-occurrence
graph, without the second-layer clustering based on document relationship graphs and docu-
ment pair relationship classifier.
• Co-clustering: this algorithm takes in a term-document matrix and simultaneously maps
rows to row-clusters and columns to column-clusters. Then, it calculates the mutual informa-
tion difference between the current row and column clusters and iteratively updates both
clusters until this difference is below a threshold [9].
• Word-to-Doc Clustering: this algorithm takes in a joint probability distribution, typically
a term-document matrix. It first computes word-clusters to capture the most information
about the documents. Relying on this new cluster-document matrix, the algorithm recursively
merges the documents into bigger clusters, such that the mutual information loss between
document clusters and word clusters is minimized [35].
• Non-negative Matrix Factorization (NMF): this algorithm coverts a corpus into a term-
document matrix where each element in the matrix is the TF-IDF value of a word in a
document. The factorized basis vectors correspond to different clusters. By examining the

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:18 B. Liu et al.

Table 3. Comparing different algorithms on Chinese News Events (CNE) dataset.

CNE (K = 2331) CNE (K = 4663) CNE (K = 9327)
Algorithm H C V NMI H C V NMI H C V NMI

EventX 0.990 0.954 0.972 0.972 0.990 0.954 0.972 0.972 0.990 0.954 0.972 0.972
KeyGraph 0.811 0.959 0.879 0.882 0.811 0.959 0.879 0.882 0.811 0.959 0.879 0.882
Co-Clustering 0.962 0.773 0.857 0.863 0.960 0.839 0.896 0.898 0.958 0.901 0.929 0.929
Word-Doc 0.965 0.820 0.887 0.890 0.964 0.891 0.926 0.927 0.959 0.974 0.966 0.966
NMF 0.514 0.954 0.668 0.700 0.403 0.940 0.564 0.615 0.231 0.910 0.368 0.458
K-means+LDA 0.266 0.105 0.151 0.167 0.355 0.126 0.186 0.211 0.466 0.147 0.224 0.262
K-means+TF-IDF 0.445 0.173 0.250 0.278 0.470 0.166 0.245 0.279 0.485 0.154 0.234 0.273

Table 4. Comparing different algorithms on Chinese News Events Subset 1.

CNE Subset 1 (K = 568) CNE Subset 1 (K = 1136) CNE Subset 1 (K = 2272)
Algorithm H C V NMI H C V NMI H C V NMI

EventX 0.973 0.841 0.902 0.905 0.973 0.841 0.902 0.905 0.973 0.841 0.902 0.905
KeyGraph 0.837 0.846 0.842 0.842 0.837 0.846 0.842 0.842 0.837 0.846 0.842 0.842
Co-Clustering 0.868 0.777 0.820 0.821 0.860 0.850 0.855 0.855 0.847 0.911 0.878 0.879
Word-to-Doc 0.897 0.822 0.858 0.859 0.876 0.914 0.895 0.895 0.850 0.979 0.910 0.912
NMF 0.491 0.913 0.638 0.669 0.351 0.931 0.510 0.572 0.156 0.714 0.256 0.334
K-means+LDA 0.886 0.351 0.503 0.558 0.956 0.340 0.502 0.570 0.989 0.314 0.477 0.558
K-means+TF-IDF 0.928 0.363 0.522 0.580 0.975 0.338 0.502 0.574 0.991 0.313 0.476 0.557

Table 5. Comparing different algorithms on Chinese News Events Subset 2.

CNE Subset 2 (K = 88) CNE Subset 2 (K = 176) CNE Subset 2 (K = 352)
Algorithm H C V NMI H C V NMI H C V NMI

EventX 0.964 0.680 0.798 0.810 0.964 0.680 0.798 0.810 0.964 0.680 0.798 0.810
KeyGraph 0.691 0.767 0.717 0.728 0.691 0.767 0.717 0.728 0.691 0.767 0.717 0.728
Co-Clustering 0.783 0.728 0.755 0.755 0.750 0.801 0.775 0.775 0.723 0.867 0.788 0.792
Word-to-Doc 0.886 0.765 0.821 0.823 0.805 0.865 0.834 0.835 0.731 0.927 0.817 0.823
NMF 0.753 0.853 0.800 0.802 0.801 0.809 0.805 0.805 0.745 0.802 0.773 0.773
K-means+LDA 0.783 0.430 0.555 0.581 0.890 0.408 0.559 0.602 0.940 0.380 0.541 0.598
K-means+TF-IDF 0.857 0.469 0.606 0.634 0.928 0.424 0.582 0.627 0.959 0.379 0.543 0.603

Table 6. Comparing different algorithms on 20 Newsgroups dataset.

20 Newsgroups (K = 10) 20 Newsgroups (K = 20) 20 Newsgroups (K = 40)
Algorithm H C V NMI H C V NMI H C V NMI

EventX 0.996 0.340 0.507 0.582 0.996 0.340 0.507 0.582 0.996 0.340 0.507 0.582
KeyGraph 0.995 0.340 0.507 0.581 0.995 0.340 0.507 0.581 0.995 0.340 0.507 0.581
Co-Clustering 0.421 0.318 0.362 0.366 0.374 0.368 0.371 0.371 0.351 0.423 0.384 0.386
Word-to-Doc 0.578 0.306 0.400 0.421 0.540 0.390 0.453 0.459 0.515 0.464 0.488 0.489
NMF 0.315 0.529 0.395 0.408 0.396 0.468 0.429 0.431 0.456 0.413 0.433 0.434
K-means+LDA 0.245 0.352 0.368 0.293 0.333 0.352 0.342 0.342 0.321 0.279 0.298 0.299
K-means+TF-IDF 0.350 0.282 0.312 0.194 0.368 0.264 0.308 0.159 0.332 0.301 0.316 0.236

largest component of a document along any of the vectors, we can decide the cluster mem-
bership of that document [40].
• K-means with LDA: extract the 1000-dimensional LDA vector of each document, and cluster
them by the K-means algorithm [18], which is probably the most widely used method for
clustering.
• K-means with TF-IDF: represent each document by TF-IDF vector, and cluster by K-means.

For the compared baseline methods, we vary the number of clusters for each dataset. For
algorithms that require iterative updates, we set a maximum iteration of 20 (which proved to be
enough for convergence). Notice that our EventX algorithm and the KeyGraph algorithm do not
require a pre-defined number of clusters.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Story Forest: Extracting Events and Telling Stories from Breaking News 1:19

The EventX algorithm needs to pre-train a document relationship classifier. For the Chinese
News Events dataset and subsets, we trained a document-pair relationship classifier using 5, 000
labeled news pairs, collected from the web from January 01, 2017 to April 04, 2017. For the 20
Newsgroups dataset, we used the training set4 to construct a document-pair relationship dataset
and trained a classifier, then evaluated the algorithms on the test set.

4.2.4 Comparison with Existing Methods. Table 3 shows the performance of different algorithms
on the four datasets with different number of clusters K . As we can see, our approach achieves the
best V-measure and NMI scores in most cases. And our method achieves overall high homogeneity
scores among all datasets. This implies that most event clusters we obtain are pure: each event
only contains documents that talk about the same event. In comparison, the homogeneity for
other methods varies widely across datasets. The reason is that we adopted two layers of graph-
based clustering algorithms to extract events at a more appropriate granularity. For completeness,
even though our approach scored a little bit lower than KeyGraph, it is more or less expected.
As we further split the topic clusters in the second layer document relationship graph, it is more
likely for documents labeled as one class to appear in different clusters, simply because with a
two-layered clustering scheme, we have more clusters. Considering the significant improvements
of homogeneity, we believe the slightly lower completeness score would not strongly affect the
real-world performance of our model.

The performance of the Word-to-Doc Clustering algorithm is slightly better than our algorithm
on the Chinese News Events Subset 2. However, our algorithm does not need the number of clusters
ahead of time, while the performance of the Word-to-Doc Clustering algorithm is highly dependent
on this parameter. For real-world news data, the event size distribution is highly skewed like the
Chinese News Events full dataset, rather than the subsets.

Considering the results on the 20 Newsgroups dataset. Our algorithm achieves better performance
than the other algorithms in terms of the Homogeneity, V-measure score and NMI. We can also
observe that the completeness of our algorithm is relatively low on the 20 Newsgroups dataset,
while the homogeneity is still high. The reason is that the documents in 20 Newsgroups dataset are
grouped according to topics rather than events. Therefore, two documents belonging to the same
cluster may have entirely different keywords, and our algorithm will assign them two different
cluster labels. For the same reason, we can see that the performance of KeyGraph is similar to
EventX on the 20 Newsgroups dataset. After the first layer keyword co-occurrence graph based
clustering, the clusters are already pure and the second layer document relationship graph based
clustering would not further split it.

4.2.5 Influence of Parameters. The main parameter that will influence the final clustering result
of EventX is the threshold δ that assigns each document to a keyword subgraph in the first layer
clustering step. Fig. 7 shows its influence on the clustering performance on the Chinese News
Events dataset. As we can see, the performance is quite robust when δ ≤ 0.3. If we keep increasing
δ , the number of clusters increases, leading to an increase in homogeneity and a decrease in
completeness. The reason is that, when δ is within a reasonable range (usually between 0.1 to
0.3), the performance of our algorithm is insensitive to it, as the first layer keyword co-occurrence
graph based clustering will split documents into topics, and the value of δ will only influence the
granularity of the clustered topics. The events within each topic will not be divided, and they will
be extracted by the second layer clustering procedure. If δ keeps increasing, at some point, events
will split in the first layer, resulting in an increase in homogeneity and a decrease in completeness.

4The splitting of training and testing set for the 20 Newsgroups is the same with http://csmining.org/index.php/
id-20-newsgroups.html.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2020.

http://csmining.org/index.php/id-20-newsgroups.html
http://csmining.org/index.php/id-20-newsgroups.html

1:20 B. Liu et al.

0.1 0.2 0.3 0.4 0.5
δ

0.95

0.96

0.97

0.98

0.99

1.00
P
e
rf
o
rm

a
n
ce

 m
e
tr
ic

Homogeneity

Completeness

V-measure

NMI

(a) Clustering performance

0.1 0.2 0.3 0.4 0.5
δ

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

N
u
m
b
e
r
o
f
cl
u
st
e
rs

1e4

(b) Number of clusters

Fig. 7. The influence of parameter δ to the clustering performance and number of clusters on the Chinese
News Events dataset.

Fig. 8. The number of documents on different days in the Story Forest evaluation dataset.

For other parameters, such as the δe , δp and δд we defined in Sec. 3.2.1 and Sec. 3.2.2, they are
parameters that influence the construction of keyword co-occurrence graph and subgraphs. Our
event extraction algorithm is also insensitive to these parameters as long as they are within a
reasonable range. The reason is the same with δ .

4.3 Evaluation of Story Forest
Now we evaluate the complete Story Forest system. Fig. 8 shows the amounts of documents on
different days in the larger 60 GB dataset. The average number of documents in one day during that
period is 164, 922. For the following experiments, we use the data in the first 7 days for parameter
tuning. The remaining data serves as the test set.
We test different event timeline and story generation algorithms on the large 3-month news

dataset through pilot user evaluation. To make fair comparisons, the same preprocessing and
event extraction procedures before developing story structures are adopted for all methods, with
261 stories detected from the dataset. The only difference is how to construct the story structure
given a set of event nodes. We compare our online Story Forest system with the following existing
algorithms:
• Flat Cluster (Flat): this method clusters related events into a story without revealing the
relationships between events, which approximates some previous works in TDT [3, 43].
• Story Timeline (Timeline): this method organizes events linearly according to the times-
tamps of events [31, 32].
• Story Graph (Graph): this method calculates a connection strength for every pair of events
and connect the pair if the score exceeds a threshold [42].

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Story Forest: Extracting Events and Telling Stories from Breaking News 1:21

(a) Percentage of incorrect edges (b) Percentage of inconsistent paths

(c) Number of times rated as the most readable struc-
ture

Fig. 9. Comparing the performance of different story structure generation algorithms.

Table 7. Comparing different story structure generation algorithms.

Tree Flat Thread Timeline Graph
Correct edges 82.8% 73.7% 66.8% 58.3% 32.9%
Consistent paths 77.4% − 50.1% 29.9% −

Best structure 187 88 84 52 19

• Event Threading (Thread): this algorithm appends each new event to its most similar
earlier event [24]. The similarity between two events is measured by the TF-IDF cosine
similarity of the event centroids.

We enlisted 10 human reviewers, including product managers, software engineers and senior un-
dergraduate students, to blindly evaluate the results given by different approaches. Each individual
story was reviewed by 3 different reviewers. When the reviewers’ opinions are different, they will
discuss to give a final result. For each story, the reviewers answered the following questions for
each of the 5 different structures generated by different schemes:
(1) Do all the documents in each story cluster truly talk about the same story (yes or no)?

Continue if yes.
(2) Do all the documents in each event node truly talk about the same event (yes or no)? Continue

if yes.
(3) For each story structure given by different algorithms, how many edges correctly represent

the event connections?

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:22 B. Liu et al.

(a) Histogram of the number of events in each story(b) Histogram of the number of paths in each story

(c) Numbers of different story structures

Fig. 10. The characteristics of the story structures generated by the Story Forest system.

(4) For each story structure given by story forest, event threading and story timeline, how many
paths from ROOT to any leaf node exist in the graph? And how many such paths are logically
coherent?

(5) Which algorithm generates the structure that is the best in terms of revealing the story’s
underlying logical structure?

Note that for question (3), the total number of edges for each tree equals to the number of events
in that tree. Therefore, to make a fair comparison, for the story graph algorithm, we only retain the
n edges with the top scores, where n is the number of events in that story graph.

We first report the clustering effectiveness of our system in the pilot user evaluation on the
3-month dataset. Among the 261 stories, 234 of them are pure story clusters (yes to question 1), and
furthermore there are 221 stories only contains pure event nodes (yes to question 2). Therefore, the
final accuracy to extract events (yes to both question 1 and 2) is 84.7%.

Next, we compare the output story structures given by different algorithms from three aspects:
the correct edges between events, the logical coherence of paths, and the overall readability of
different story structures. Fig. 9(a) compares the CDFs of incorrect edge percentage under different
algorithms. As we can see, Story Forest significantly outperforms the other 4 baseline approaches.
As shown in Table 7, for 58% story trees, all the edges in each tree are reviewed as correct, and the
average percentage of correct edges for all the story trees is 82.8%. In contrast, the average correct
edge percentage given by the story graph algorithm is 32.9%.

An interesting observation is that the average percentage of correct edges given by the simple flat
structure is 73.7%, which is a special case of our tree structures. This can be explained by the fact
that most real-world breaking news that last for a constrained time period are not as complicated
as a novel with rich logical structure, and a flat structure is often enough to depict their underlying

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Story Forest: Extracting Events and Telling Stories from Breaking News 1:23

Fig. 11. The running time of our system on the 3-month news dataset.

logic. However, for stories with richer structures and a relatively longer timeline, Story Forest gives
better results than other algorithms by comprehensively considering the event similarity, path
coherence and time gap, while other algorithms only consider parts of all the factors.

For path coherence, Fig. 9(b) shows the CDFs of percentages of inconsistent paths under different
algorithms. Story Forest gives significantly more coherent paths: the average percentage of coherent
paths is 77.4% for our algorithm, and is 50.1% and 29.9%, respectively, for event threading and story
timeline. Note that path coherence is meaningless for flat or graph structure.
Fig. 9(c) plots the overall readability of different story structures. Among the 221 stories, the

tree-based Story Forest system gives the best readability on 187 stories, which is much better than
all other approaches. Different algorithms can generate the same structure. For example, the Story
Forest system can also generate a flat structure, a timeline, or the same structure as the event
threading algorithm does. Therefore, the sum of the number of best results given by different
approaches is bigger than 221. It’s worth noting that the flat and timeline algorithms also give 88
and 52 most readable results, which again indicates that the logic structures of a large portion of
real-world news stories can be characterized by simple flat or timeline structures, which are special
cases of story trees. And complex graphs are often an overkill.

We further inspect the story structures generated by Story Forest. Fig. 10(a) and Fig. 10(b) plot the
distributions of the number of events and the number of paths in each story tree, respectively. The
average numbers of events and paths are 4.07 and 2.71, respectively. Although the tree structure
includes the flat and timeline structures as special cases, among the 221 stories, Story Forest
generates 77 flat structures and 54 timelines, while the remaining 90 structures generated are
still story trees. This implies that Story Forest is versatile and can generate diverse structures for
real-world news stories, depending on the logical complexity of each story.

4.4 Algorithm Complexity and System Overhead
In this section, we discuss the complexity of each step in the Story Forest. For a time slot (e.g.,
in our case is one day), let Nd be the number of documents, Nw the number of unique words in
corpora, note Nw << Nd , Ne the number of different events, Ns the number of different stories,
and Nk represents the maximum number of unique keywords in a document.

As discussed in [32], building keyword graph requiresO (NdNk+N
2
w) complexity, and community

detection based on betweenness centrality requires O (N 3
w). The complexity of assigning documents

to keyword communities is O (NdNkNe). So by far the total complexity is O (NdNkNe +N
3
w). There

exist other community detection algorithms requiring only O (N 2
w), such as the algorithm in [27].

Thus we can further improve efficiency by using faster community detection algorithms.
After clustering documents by keyword communities, for each cluster the average number of

documents is Nd/Ne . The pair-wise document relation classification is implemented in O ((Nd/Ne)2).
The complexity of the next document graph splitting operation is O ((Nw/Ne)3). Therefore, the total
complexity is O (Ne ((Nd/Ne)2 + (Nw/Ne)3)). Our experiments show that usually 1 ≤ Nd/Ne ≤ 100.
Combining with Nw << Nd , the complexity is now approximately O (Ne).

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:24 B. Liu et al.

To grow story trees with new events, the complexity of finding the related story tree for each event
is of O (NsT), where T is the history length to keep existing stories and delete older stories. If no
existing related story, creating a new story requires O (1) operations. Otherwise, the complexity of
updating a story tree isO (T Ne/Ns). In summary, the complexity of growing story trees isO (NeT (Ns+
Ne/Ns)) ≈ O (TNeNs), as our experience on the Tencent news dataset shows that 1 ≤ Ne/Ns ≤

200. Our online algorithm to update story structure requires O (Ne/Ns) complexity and delivers
a consistent story development structure, while most existing offline optimization based story
structure algorithms require at least O ((Ne/Ns)2) complexity and disrupt the previously generated
story structures.
Fig. 11 shows the running time of our Story Forest system on the 3 months news dataset. The

average time of processing each day’s news is around 26 seconds, and increases linearly with the
number of days. For the offline keyword extraction module, the processing efficiency is approxi-
mately 50 documents per second. The performance of the keyword extraction module is consistent
with time and doesn’t require frequently retraining. The LDA model is incrementally retrained
every day to handle new words. For keyword extraction, the efficiency of event clustering and
story structure generation can be further improved by a parallel implementation.

5 RELATEDWORK
There are mainly two research lines that are highly related to our work: Text Clustering and Story
Structure Generation.

5.1 Text Clustering
The problem of text clustering has been well studied by researchers [1]. Distance based clustering
algorithms measure the closeness between text pieces with similarity functions such as cosine
similarity. Various representations, such as TF-IDF, BM25 term weighting [7], can be utilized to
represent a text object. After transforming text into features, different strategies can be applied for
clustering. Partition-based algorithms such as K-means [18] or K-medoids [26] divide the corpus
into pre-defined number of clusters. The Spherical K-means algorithm [6] is especially suitable for
text clustering due to its low memory and computational requirement. However, such algorithms
are sensitive to variations in parameter values and need to specify the number of clusters. The
selection of features also plays a key role in the final performance of clustering [21]. Hierarchical
algorithms [13] recursively find nested clusters and create a tree-like structure, but they still need
to assume the number of clusters or a similarity threshold. Density-based algorithms [11] do not
need to specify the number of clusters in advance, but they do not scale well to high-dimensional
sparse data like text [18].
Word and phrase based algorithms find important clusters of words or phrases. [4] clusters

documents based on frequent pattern mining. [35] proposes a two-phase clustering procedure that
finds word-clusters such that most of the mutual information between words and documents
is preserved, and leverages the word-clusters to perform document clustering. Co-clustering
algorithms [9] simultaneously cluster words and documents, as the problem of clustering words
and clustering documents are closely related. There are also approaches which utilize the document
keywords co-occurrence information to construct a keyword graph, and clustering documents by
applying community detection techniques on the keyword graph [32].

Non-negative Matrix Factorization is particularly suitable for clustering as a latent space method
[40]. It factorizes a term-document matrix, where the vectors in the basis system directly correspond
to different clusters. It has been shown that matrix factorization is equivalent to spectral clustering
[10].

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Story Forest: Extracting Events and Telling Stories from Breaking News 1:25

Probabilistic model-based algorithms aim to create a probabilistic generative model for text
documents. Topic models such as Latent Dirichlet Allocation (LDA) [5] and Probabilistic Latent
Semantic Indexing (PLSA) [15] assume documents are generated by multiple topics. The Gaussian
Mixture Model (GMM) [14] assumes that data points are generated by a mixture of Gaussian
distributions. However, such model-based algorithms are computationally intensive and do not
produce satisfying results when clustering at a finer granularity.

There are also some works concerning the events described in text objects. [36] presents a news
event extraction system to extract violent and disaster events from online news. [28] proposes
a system to extract an open-domain calendar of significant events from Twitter. In contrast, our
EventX algorithm is specially tailored for event extraction among news documents in the open
domain. The length of news articles are relatively long compared to Twitters, and the types of
events are not restricted to violent and disaster events.

5.2 Story Structure Generation
The Topic Detection and Tracking (TDT) research spot news events and group by topics, and track
previously spotted news events by attaching related new events into the same cluster [2, 3, 32, 42].
However, the associations between related events are not defined or interpreted by TDT techniques.
To help users capture the developing structure of events, different approaches have been proposed.
[24] proposed the concept of Event Threading, and tried a series of strategies based on similarity
measure to capture the dependencies among events. [42] combines the similarity measure between
events, temporal sequence and distance between events, and document distribution along the
timeline to score the relationship between events, and models the event evolution structure by a
directed acyclic graph (DAG). [22] discover and summarize the evolutionary patterns of themes in a
text stream by first generating word clusters for each time period and then use the Kullback-Leibler
divergence measure to discover coherent themes over time.

The above research works measure and model the relationship between events in a pairwise man-
ner. However, the overall story consistency is not considered. [37] generates story summarization
from text and image data by constructing a multi-view graph and solving a dominating set problem,
but it omits the consistency of each storyline. TheMetro Mapmodel proposed in [34] defines metrics
such as coherence and diversity for story quality evaluation, and identifies lines of documents by
solving an optimization problem to maximize the topic diversity of storylines while guaranteeing
the coherence of each storyline. [39] further summarize documents with key images and sentences,
and then extract story lines with different definitions of coherence and diversity. These works
consider the problem of discovering story development structure as optimizing problems with
given news corpora. However, new documents are being generated all the time, and systems that
are able to catch related news and update story structures in an online manner are desired.
As studies based on unsupervised clustering techniques [41] perform poorly in distinguishing

storylines with overlapped events [16], more recent works introduce different Bayesian models
to generate storyline. However, they often ignore the intrinsic structure of a story [17] or fail to
properly model the hidden relations [44]. [16] proposes a hierarchical Bayesian model for storyline
generation, and utilize twitter hashtags to “supervise” the generation process. However, the Gibbs
sampling inference of the model is time consuming, and such twitter data is not always available
for every news stories.

6 CONCLUDING REMARKS AND FUTUREWORKS
In this paper, we describe our experience of implementing Story Forest, a news content organization
system at Tencent, which is designed to discover events from vast streams of trending and breaking
news and organize events in sensible story trees in an online manner. Our system is specifically

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:26 B. Liu et al.

tailored for fast processing massive amounts of breaking news data, whose story structures can
most likely be captured by either a tree, a timeline or a flat structure. We proposed EventX, a
semi-supervised text clustering algorithm designed to efficiently extract events from vast news
corpora. EventX is a two-layered, graph-based document clustering scheme. In the first layer, we
leveraged keyword co-occurrence graphs to cluster documents into topics, while in the second
layer, we utilized a novel document relationship graph constructed through supervised learning
to further split each topic into events, leading to an overall semi-supervised learning procedure.
Our system further organizes the events into story trees with efficient online algorithms upon the
arrival of daily news data.
We conducted extensive performance evaluation based on 60 GB of real-world (Chinese) news

data, although our ideas are not language-dependent and can easily be extended to other languages,
through detailed pilot user experience studies. To stimulate future research in event extraction, we
also created a large Chinese News Events dataset that contains 11, 748 long news articles collected
from all major Internet news portals in China from October 01, 2016 to November 30, 2016, with
ground truth event labels. We evaluated EventX on the Chinese News Events dataset, as well
as the 20 Newsgroups English dataset. Extensive results suggest that our clustering procedure
is significantly more effective at accurate event extraction than existing algorithms. For event
extraction, the V-measure score and NMI of the clustering results on the Chinese News Events
dataset are both 0.972, demonstrating the effectiveness of EventX to extract conceptually clean
event clusters from vast and unstructured Internet news data. For story generation, 83% of the event
links generated by Story Forest are logically correct as compared to an accuracy of 33% generated
by more complex story graphs, demonstrating the ability of our system to organize trending news
events into a logical structure that appeals to human readers.

In our future work, we will extend our proposed Story Forest and EventX framework to make it
applicable to a continuous stream of news documents. Currently, we can use EventX in a batch-
based manner: for example, we can extract the events for each batch of documents collected in
different hours, and merge a new event with an existing event if they are talking about the same
one. We can further improve our framework by maintaining a dynamic keyword graph, performing
dynamic keyword community detection, and run incremental event extraction based on such a
dynamic keyword graph. Whenever a new document stream comes in, we update the keyword
graph to find out new keyword communities, and cluster new documents into new events or assign
them to existing events. In this way, our framework can be directly applied to a continuous stream
of news documents, rather than processing them in batches.

REFERENCES
[1] Charu C Aggarwal and ChengXiang Zhai. 2012. A survey of text clustering algorithms. In Mining text data. Springer,

77–128.
[2] James Allan. 2012. Topic detection and tracking: event-based information organization. Vol. 12. Springer Science &

Business Media.
[3] James Allan, Ron Papka, and Victor Lavrenko. 1998. On-line new event detection and tracking. In SIGIR. ACM, 37–45.
[4] Florian Beil, Martin Ester, and Xiaowei Xu. 2002. Frequent term-based text clustering. In KDD. ACM, 436–442.
[5] David M Blei, Andrew Y Ng, and Michael I Jordan. 2003. Latent dirichlet allocation. JMLR 3, Jan (2003), 993–1022.
[6] Christian Buchta, Martin Kober, Ingo Feinerer, and Kurt Hornik. 2012. Spherical k-means clustering. Journal of

Statistical Software 50, 10 (2012), 1–22.
[7] Stefan Büttcher, Charles LA Clarke, and Brad Lushman. 2006. Term proximity scoring for ad-hoc retrieval on very

large text collections. In SIGIR. ACM, 621–622.
[8] Pi-Chuan Chang, Michel Galley, and Christopher D Manning. 2008. Optimizing Chinese word segmentation for

machine translation performance. In ACL. 224–232.
[9] Inderjit S Dhillon, Subramanyam Mallela, and Dharmendra S Modha. 2003. Information-theoretic co-clustering. In

KDD. ACM, 89–98.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Story Forest: Extracting Events and Telling Stories from Breaking News 1:27

[10] Chris Ding, Xiaofeng He, and Horst D Simon. 2005. On the equivalence of nonnegative matrix factorization and
spectral clustering. In SDM. SIAM, 606–610.

[11] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. 1996. A density-based algorithm for discovering
clusters in large spatial databases with noise.. In KDD, Vol. 96. 226–231.

[12] Pablo A Estévez, Michel Tesmer, Claudio A Perez, and Jacek M Zurada. 2009. Normalized mutual information feature
selection. IEEE TNN 20, 2 (2009), 189–201.

[13] Benjamin CM Fung, Ke Wang, and Martin Ester. 2003. Hierarchical document clustering using frequent itemsets. In
SDM. SIAM, 59–70.

[14] Xiaofei He, Deng Cai, Yuanlong Shao, Hujun Bao, and Jiawei Han. 2011. Laplacian regularized gaussian mixture model
for data clustering. IEEE TKDE 23, 9 (2011), 1406–1418.

[15] Thomas Hofmann. 1999. Probabilistic latent semantic indexing. In SIGIR. ACM, 50–57.
[16] Ting Hua, Xuchao Zhang,WeiWang, Chang-Tien Lu, and Naren Ramakrishnan. 2016. Automatical Storyline Generation

with Help from Twitter. In Proceedings of the 25th ACM International on Conference on Information and Knowledge
Management. ACM, 2383–2388.

[17] Lifu Huang and Lian’en Huang. 2013. Optimized Event Storyline Generation based on Mixture-Event-Aspect Model..
In EMNLP. 726–735.

[18] Anil K Jain. 2010. Data clustering: 50 years beyond K-means. Pattern recognition letters 31, 8 (2010), 651–666.
[19] Heeyoung Lee, Marta Recasens, Angel Chang, Mihai Surdeanu, and Dan Jurafsky. 2012. Joint entity and event

coreference resolution across documents. In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning. Association for Computational Linguistics, 489–
500.

[20] Bang Liu, Di Niu, Haojie Wei, Jinghong Lin, Yancheng He, Kunfeng Lai, and Yu Xu. 2019. Matching Article Pairs
with Graphical Decomposition and Convolutions. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics. Association for Computational Linguistics, Florence, Italy, 6284–6294. https://doi.org/10.
18653/v1/P19-1632

[21] Luying Liu, Jianchu Kang, Jing Yu, and Zhongliang Wang. 2005. A comparative study on unsupervised feature
selection methods for text clustering. In Natural Language Processing and Knowledge Engineering, 2005. IEEE NLP-KE’05.
Proceedings of 2005 IEEE International Conference on. IEEE, 597–601.

[22] Qiaozhu Mei and ChengXiang Zhai. 2005. Discovering evolutionary theme patterns from text: an exploration of
temporal text mining. In KDD. ACM, 198–207.

[23] Rada Mihalcea and Paul Tarau. 2004. TextRank: Bringing order into texts. ACL.
[24] Ramesh Nallapati, Ao Feng, Fuchun Peng, and James Allan. 2004. Event threading within news topics. In Proceedings

of the thirteenth ACM international conference on Information and knowledge management. ACM, 446–453.
[25] Yukio Ohsawa, Nels E Benson, and Masahiko Yachida. 1998. KeyGraph: Automatic indexing by co-occurrence graph

based on building construction metaphor. In Research and Technology Advances in Digital Libraries, 1998. ADL 98.
Proceedings. IEEE International Forum on. IEEE, 12–18.

[26] Hae-Sang Park and Chi-Hyuck Jun. 2009. A simple and fast algorithm for K-medoids clustering. Expert systems with
applications 36, 2 (2009), 3336–3341.

[27] Filippo Radicchi, Claudio Castellano, Federico Cecconi, Vittorio Loreto, and Domenico Parisi. 2004. Defining and
identifying communities in networks. PNAS 101, 9 (2004), 2658–2663.

[28] Alan Ritter, Oren Etzioni, Sam Clark, et al. 2012. Open domain event extraction from twitter. In Proceedings of the 18th
ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 1104–1112.

[29] Stuart Rose, Dave Engel, Nick Cramer, and Wendy Cowley. 2010. Automatic keyword extraction from individual
documents. Text Mining (2010), 1–20.

[30] Andrew Rosenberg and Julia Hirschberg. 2007. V-Measure: A Conditional Entropy-Based External Cluster Evaluation
Measure.. In EMNLP-CoNLL, Vol. 7. 410–420.

[31] Hassan Sayyadi, Matthew Hurst, and Alexey Maykov. 2009. Event detection and tracking in social streams.. In Icwsm.
[32] Hassan Sayyadi and Louiqa Raschid. 2013. A graph analytical approach for topic detection. ACM TOIT 13, 2 (2013), 4.
[33] Dafna Shahaf, Carlos Guestrin, and Eric Horvitz. 2012. Trains of thought: Generating information maps. In Proceedings

of the 21st international conference on World Wide Web. ACM, 899–908.
[34] Dafna Shahaf, Jaewon Yang, Caroline Suen, Jeff Jacobs, Heidi Wang, and Jure Leskovec. 2013. Information cartography:

creating zoomable, large-scale maps of information. In Proceedings of the 19th ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM, 1097–1105.

[35] Noam Slonim and Naftali Tishby. 2000. Document clustering using word clusters via the information bottleneck
method. In SIGIR. ACM, 208–215.

[36] Hristo Tanev, Jakub Piskorski, and Martin Atkinson. 2008. Real-time news event extraction for global crisis monitoring.
In International Conference on Application of Natural Language to Information Systems. Springer, 207–218.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.18653/v1/P19-1632
https://doi.org/10.18653/v1/P19-1632

1:28 B. Liu et al.

[37] Dingding Wang, Tao Li, and Mitsunori Ogihara. 2012. Generating Pictorial Storylines Via Minimum-Weight Connected
Dominating Set Approximation in Multi-View Graphs.. In AAAI. Citeseer.

[38] Lu Wang, Claire Cardie, and Galen Marchetti. 2016. Socially-informed timeline generation for complex events. arXiv
preprint arXiv:1606.05699 (2016).

[39] Shize Xu, Shanshan Wang, and Yan Zhang. 2013. Summarizing Complex Events: a Cross-Modal Solution of Storylines
Extraction and Reconstruction.. In EMNLP. 1281–1291.

[40] Wei Xu, Xin Liu, and Yihong Gong. 2003. Document clustering based on non-negative matrix factorization. In SIGIR.
ACM, 267–273.

[41] Rui Yan, Xiaojun Wan, Jahna Otterbacher, Liang Kong, Xiaoming Li, and Yan Zhang. 2011. Evolutionary timeline
summarization: a balanced optimization framework via iterative substitution. In SIGIR. ACM, 745–754.

[42] Christopher C Yang, Xiaodong Shi, and Chih-Ping Wei. 2009. Discovering event evolution graphs from news corpora.
IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans 39, 4 (2009), 850–863.

[43] Yiming Yang, Jaime Carbonell, Ralf Brown, John Lafferty, Thomas Pierce, and Thomas Ault. 2002. Multi-strategy
learning for topic detection and tracking. In Topic detection and tracking. Springer, 85–114.

[44] Deyu Zhou, Haiyang Xu, and Yulan He. 2015. An Unsupervised Bayesian Modelling Approach for Storyline Detection
on News Articles.. In EMNLP. 1943–1948.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2020.

	Abstract
	1 Introduction
	2 Problem Definition and Notations
	2.1 Problem Definition
	2.2 Notations
	2.3 Case Study

	3 The Story Forest System
	3.1 Preprocessing
	3.2 Event Extraction by EventX
	3.3 Growing Story Trees Online

	4 Performance Evaluation
	4.1 News Datasets
	4.2 Evaluation of EventX
	4.3 Evaluation of Story Forest
	4.4 Algorithm Complexity and System Overhead

	5 Related Work
	5.1 Text Clustering
	5.2 Story Structure Generation

	6 Concluding Remarks and Future Works
	References

