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It is common practice for many large e-commerce operators to analyze daily logged transaction data to predict
customer purchase behavior, which may potentially lead to more effective recommendations and increased
sales. Traditional recommendation techniques based on collaborative filtering (CF), although having gained
success in video and music recommendation, are not sufficient to fully leverage the diverse information
contained in the implicit user behavior on e-commerce platforms. In this paper, we analyze user action records
in the Alibaba Mobile Recommendation dataset from the Alibaba Tianchi Data Lab, as well as the Retailrocket
recommender system dataset from the Retail Rocket website. To estimate the probability that a user will
purchase a certain item tomorrow, we propose a new model called Time-decayed Multifaceted Factorizing
Personalized Markov Chains (Time-decayed Multifaceted-FPMC), taking into account multiple types of user
historical actions not only limited to past purchases but also including various behaviors such as clicks, collects
and add-to-carts. Our model also considers the time-decay effect of the influence of past actions. To learn
the parameters in the proposed model, we further propose a unified framework named Bayesian Sparse
Factorization Machines (BSFM). It generalizes the theory of traditional Factorization Machines to a more
flexible learning structure and trains the Time-decayed Multifaceted-FPMC with the Markov Chain Monte
Carlo (MCMC) method. Extensive evaluations based on multiple real-world datasets demonstrate that our
proposed approaches significantly outperform various existing purchase recommendation algorithms.

CCS Concepts: • Applied computing→ Online shopping; • Computing methodologies→ Model devel-
opment and analysis; • Information systems→ Data mining.
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1 INTRODUCTION
Online business-to-consumer (B2C) commerce platforms (e.g., Amazon, Alibaba, eBay) can now
easily track and monitor the actions of their users, forming a large amount of implicit user behavior
data. While the amount of data collected is staggering, effective approaches to extract useful infor-
mation from such diverse data are still under development. In the e-commerce context, predicting

Authors’ addresses: Bang Liu, University of Alberta, Electrical and Computer Engineering, Edmonton, Canada, bang3@
ualberta.ca; Hanlin Zhang, University of Alberta, Electrical and Computer Engineering, Edmonton, Canada, hanlin3@
ualberta.ca; Linglong Kong, University of Alberta, Mathematical and Statistical Sciences, Edmonton, Canada, lkong@
ualberta.ca; Di Niu, University of Alberta, Electrical and Computer Engineering, Edmonton, Canada, dniu@ualberta.ca.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
1559-1131/2021/1-ART1 $15.00
https://doi.org/10.1145/3468227

ACM Trans. Web, Vol. 1, No. 1, Article 1. Publication date: January 2021.

HTTPS://ORCID.ORG/1234-5678-9012-3456
HTTPS://ORCID.ORG/1234-5678-9012-3456
HTTPS://ORCID.ORG/1234-5678-9012-3456
HTTPS://ORCID.ORG/1234-5678-9012-3456
https://doi.org/10.1145/3468227
https://orcid.org/1234-5678-9012-3456
https://orcid.org/1234-5678-9012-3456
https://orcid.org/1234-5678-9012-3456
https://orcid.org/1234-5678-9012-3456
https://doi.org/10.1145/3468227


1:2 Bang Liu, Hanlin Zhang, Linglong Kong, and Di Niu

customer purchase behavior can bring about multiple benefits, such as more accurate recommen-
dations, increased sales, higher customer acquisition rate, and enhanced competitiveness [27]. For
example, one specific problem proposed in the Alibaba Mobile Recommendation Competition [1]
is to predict the next-day purchases of users given the historical records of various user actions,
including the click, collect (adding to favorites), add-to-cart and payment. It is highly valuable to
learn from such historical implicit feedback and recommend appropriate items to interested users
at the right time.

Traditional approaches for recommendation include content filtering [25], collaborative filtering
(CF) [22], and matrix factorization (MF) [18], etc. However, these methods are not sufficient for
next-day purchase prediction. First, without explicit rating scores, it is challenging to measure the
similarities between users or between items just from historical actions, whereas finding user/item
similarities is a key idea for both content filtering and collaborative filtering to work. Second,
sometimes users might prefer to buy items that are different from what they already purchased. For
example, a person who has already purchased an iPhone is unlikely to buy another smartphone.
However, based on what users have bought, CF and MF usually tend to recommend similar items to
users. Third, unlike explicit product ratings, the main information we can use in next-day purchase
prediction contains the timestamped action sequences of each user, representing implicit feedback
in nature. New approaches need to be developed to discover insights from historical actions and
make recommendations based on such implicit feedback instead of explicit ratings.
In this article, we conduct an in-depth analysis of user action records in two datasets: the

Alibaba Mobile Recommendation dataset [1] and the Retailrocket recommender system dataset1.
The Alibaba Mobile Recommendation dataset is provided by the Alibaba group via Tianchi Data
Lab. Alibaba is one of the largest e-commerce company in the world and is currently using big data
to understand customer behavior and increase sales. The Retailrocket recommender system dataset
is collected from a real-world ecommerce website, Retail Rocket, which helps web shoppers make
better shopping decisions by providing personalized real-time recommendations to large amount
of users and retail partners over the world. Based on our analysis to the two datasets, we propose
multiple models in a unified framework to predict the next-day purchase behavior of users based
on their historical action records. The main contributions of this paper are summarized as follows:

First, we analyze the Alibaba Mobile Recommendation dataset and the Retailrocket recommender
system dataset.We argue that all types of historical user actionsmay influence their future purchases.
Besides, users’ interests for online shopping may vary with the day of week. Based on these
observations, we propose a novel model, named Multifaceted Factorizing Personalized Markov
Chains (Multifaceted-FPMC), to predict the probability that a user will buy a particular item on
the next day. Our model takes into account multiple types of historical user actions, as well as the
day-of-week information.

Second, we further observe that the influence of a user’s historical actions on her future purchase
decays as the time interval between the historical action and the purchase action increases. The
influence decay phenomenon approximately follows a power-law distribution. We find that this
phenomenon plays an important role in predicting the future behavior of users. Accordingly,
we further propose our Time-decayed Multifaceted Factorizing Personalized Markov Chains (Time-
decayed Multifaceted-FPMC) model, which incorporates the temporal decay phenomenon of the
past influence into purchase prediction.

1https://www.kaggle.com/retailrocket/ecommerce-dataset
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Finally, we propose a unified feature factorization framework, which we call Bayesian Sparse
Factorization Machine (BSFM), as a solution technique to our new models, and train model parame-
ters by Gibbs sampling. The proposed BSFM is similar to Factorization Machine [28, 29], yet only
keeping sparse interactions between features and disabling undesired interactions.
We have conducted extensive evaluations based on both the Alibaba E-commerce Recommen-

dation dataset and the Retailrocket recommender system dataset, and show that our proposed
approaches significantly outperform other existing recommendation algorithms, including matrix
factorization (MF) and Factorizing Personalized Markov Chains (FPMC).
The remainder of this paper is organized as follows. Sec. 2 reviews the related literatures and

shows their insufficiencies in our case. We describe the Alibaba Mobile Recommendation dataset
and existing approaches for online purchase prediction in Sec. 3. In Sec. 4, we conduct an in-
depth analysis to the Alibaba Mobile Recommendation dataset and the Retailrocket recommender
system dataset. We then present our mathematical models, including Multifaceted-FPMC and
Time-decayed Multifaceted-FPMC, for next-day purchase prediction. Furthermore, we propose the
Bayesian Sparse Factorization Machine (BSFM) framework as a unified form of our new models
in Sec. 5, and elaborate its relationship to and differences from the original factorization machine
(FM) model. We describe the Markov Chain Monte Carlo (MCMC) learning algorithm for model
training in Sec. 6. In Sec. 7, we conduct extensive evaluations based on the Alibaba dataset and
the Retailrocket recommender system dataset, and compare the performance of our proposed
approaches with other baseline algorithms. We conclude this article in Sec. 8.

2 RELATEDWORK
2.1 Traditional Recommender Systems
Online purchase prediction is related to the large amount of prior works done for recommendation
systems. Content filtering [25, 40] methods create a profile for each user or item to characterize its
nature and associate users with matched items. Content-based strategies are easy to express and
implement. However, they require gathering external information that might be unavailable or
hard to collect to create the profiles. Another problem of applying content filtering to purchase
prediction is that content filtering can only recommend similar items. Different from movie or
music recommendation, for online purchase, a user usually would not buy a similar item again
once they already own one.

Collaborative filtering (CF) is the most popular method in recommendation systems [22, 34]. It
has been widely used since 1990s and promoted the prosperity of recommendation systems [10].
Compared to content-based approaches, collaborative filtering does not require the creation of
explicit profiles, but relies only on past user actions such as previous transactions or explicit item
ratings. Collaborative filtering can further be divided into two primary classes: the neighborhood
methods and latent factor models (matrix factorization) [13]. The neighborhood methods include
user-based collaborative filtering and item-based collaborative filtering. The user-based collabo-
rative filtering measures the similarity of two customers in various ways to identify each user’s
neighbors and generates recommendations based on the past behavior of a few customers who
are most similar to the user, while the item-based collaborative filtering tracks user preferences
by identifying similar items. Collaborative filtering has also been tailored for implicit feedback
datasets in a scalable optimization procedure [14]. By optimizing the reconstruction loss with
confidence variables and regularization terms, the raw observations of user behaviors on items can
be factorized and utilized for recommendation.
Latent factor models [6, 16, 36, 38] try to explain the ratings by characterizing both items and

users with fixed-length vectors, or latent factors, inferred from the rating patterns. Some of the most
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successful realizations of latent factor models are based on matrix factorization. It characterizes
both items and users by vectors of factors inferred from item rating patterns. High correspondence
between item and user factors leads to a recommendation. However, both neighborhood methods
and latent factor models still suffer from the problem of recommending similar items. Besides,
it has been mentioned in [20] that e-commerce recommender is different from movie or music
recommendation systems. They should take into account the utility and utility plus of items, rather
than recommending similar items based on users’ historical action records.
Many works focus on tackling challenges in modeling interactions between a user, his or her

previously visited item(s), and the next item to consume for better next-day purchase prediction
performance. Trans4Rec[11] models such third-order relationships for large-scale sequential pre-
diction. Specifically, Trans4Rec embeds items into a transition space where users are modeled as
translation vectors operating on item sequences. GRU4Rec[12] proposes an RNN-based model for
the whole session so that effective recommendations can be provided.
A variety of ranking models in recommendation systems are aiming to learn a user-specific

rankings of items. The ranking scores of the items to a user are learned from the user’s past
interactions with the system. Bayesian Personalized Ranking (BPR) [30] is a pair-wise ranking
approach for recommendations, which takes as input either implicit feedbacks or explicit ratings
and outputs an ordered item list for each user. In BPR, item pairs are utilized as training data instead
of a single item. By optimizing the BPR-OPT criterion through maximum posterior estimation
(MAP), BPR is able to perform personalized ranking for users with factorized user-specific matrices.

2.2 Temporal Recommender Systems
In order to avoid the similar content recommendation problem and recommend more personalized
items to different users, some research works have taken the sequential and temporal pattern of user
historical actions into account. [5, 17, 19, 26, 31, 41] consider the temporal dynamics in collaborative
filtering model to learn the dynamic characteristics of users and items. [46] investigates how to
extract sequential patterns for next-state prediction, and describes a sequential recommender based
on Markov chains. [23, 43] discover sequential patterns by pattern mining methods. [35] also
develops a Markov-chain-based recommendation system using Markov decision processes (MDP).
[31] uses personalized transition graphs to combine the benefits of sequential Markov chains
with time-invariant user tastes. In particular, it proposes a model named Factorizing Personalized
Markov Chains (FPMC) that combines the latent factor model and Markov chains to predict what
products users will purchase on the next time. [39] proposes an opportunity model to estimate the
probability that a user will buy an item at specific time interval. [42] exploits both temporal and
social factors for B2B marketing campaign recommender system. [44, 45] exploit the time intervals
between purchase behaviors for next-item recommendation.

Our proposed recommendation algorithms also consider the sequential and temporal patterns to
predict next-purchase. Compared with previous works, we jointly model the sequential patterns
with different historical actions and the time intervals. The FPMC algorithm only utilizes the
order of purchased items. More information, such as the time gaps between different purchases,
can be utilized to improve the temporal diversity in recommendation systems. In addition to
historical purchase actions, other types of actions such as click, collect and add-to-cart can also be
leveraged in the recommendation. Our Multifaceted-FPMC model incorporates all these kinds of
information and jointly factorizes latent feature vectors for different observable features. Besides,
our proposed Time-decayed Multifaceted-FPMC model further considers the temporal influence
decay phenomenon of historical user actions to improve the accuracy of next-purchase prediction.

Factorization models have attracted a lot of attentions with their excellent prediction capabilities
shown in several applications. Factorization machines (FM) [28] have been proposed to combine
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Fig. 1. Users’ historical actions sequence on different items.

Table 1. The table fields of historical action records

COLUMN DESCRIPTION
user id Identity of users
item id Identity of items
action type The type of user actions, including click, collect, add-to-cart and payment.
time The time of the action to the nearest hours.

the advantages of general machine learning classifiers, such as the Support Vector Machine (SVM),
with factorization models. Factorization machines model the pairwise interactions between all
features via a real-valued input feature vector. However, when considering tens of context features,
the input feature vectors will be quite long and not all pairwise feature interactions are meaningful.
We propose Bayesian Sparse Factorization Machine (BSFM) as a unified form to express our newly
proposed models for online purchase prediction. Compared with traditional factorization machines,
it enables sparse feature interactions through a feature interaction matrix to avoid the unnecessary
interactions between irrelevant features.

3 NEXT DAY ONLINE PURCHASE PREDICTION
In this section, we first describe and analysis the user action records in the Alibaba Mobile Rec-
ommendation dataset (we briefly call it Alibaba dataset) retrieved from the Alibaba Tianchi Data
Lab, as well as the Retailrocket recommender system dataset (we briefly call it Retailrocket dataset)
collected from the Retail Rocket website. We then formally define our problem and present the
key notations used in this paper. Finally, we briefly describe the existing Matrix Factorization (MF)
approach and the existing Factorizing Personalized Markov Chains (FPMC) method for modeling
user interests on items, and show their limitations in utilizing the context information contained in
the historical user action data.

3.1 Data Analysis
The Alibaba dataset [1] contains the complete historical action records of 10, 000 users on 2, 876, 947
items. There are four types of actions: click, collect, add-to-cart, and payment. The time span of

ACM Trans. Web, Vol. 1, No. 1, Article 1. Publication date: January 2021.
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Table 2. Notations used in the article

SYMBOL DESCRIPTION
U,I,R set of users, items, historical action records
𝑢, 𝑖, 𝑎, 𝑡,𝑇 a user, an item, action, time, history length by day
𝑑 day-of-week
𝑝 (𝑢, 𝑖) the probability user 𝑢 will buy item 𝑖

𝑝 (𝑢, 𝑖 | 𝑗) the conditional probability user 𝑢 will buy item 𝑖 given that he/she
already purchased item 𝑗

𝑝 (𝑢, 𝑖 | 𝑗, 𝑎, 𝑑) the conditional probability user 𝑢 will buy item 𝑖 on predicted day 𝑑
given that he/she already performed action 𝑎 on item 𝑗

𝑣 latent feature vector
B𝑢 the item set user 𝑢 previously purchased
B𝑢,𝑎 the item set user 𝑢 previously performed action 𝑎 on
𝐶𝑢,𝑗,𝑎 the total times user 𝑢 performed action 𝑎 on item 𝑗

𝑡𝑢,𝑗,𝑎,𝑐 the time interval length between the time user𝑢 perform the 𝑐-th action
𝑎 on item 𝑗 and the predicted day

x, 𝑦 feature vector, target
𝑤0,w,𝑉 ,Φ model parameters of BSFM
𝜇0, 𝜆0, 𝜇𝑤𝜋 , 𝜆

𝑤
𝜋 , 𝜇

𝑣
𝑘,𝜋

, 𝜆𝑣
𝑘,𝜋

Regularization parameters of BSFM
𝛼0, 𝛽0, 𝛼𝜆, 𝛽𝜆, 𝜇0, 𝛾0 hyperparameters of BSFM

the historical records is from November 18𝑡ℎ , 2014 to December 18𝑡ℎ , 2014. For the Retailrocket
dataset, it contains three kinds of action records: click (named as view in the dataset), add-to-cart,
and payment (named as transactions in the dataset). The user behavior records are collected within
a period of 4.5 months, from May 3th, 2015 to September 18th, 2015. There are 2,756,101 records
in total, including 2,664,312 click, 69,332 add-to-cart, and 22,457 payment produced by 1,407,580
unique users.

Fig. 1 illustrates the concept of online shopping records. For each user, we record his/her various
kinds of actions on different items, together with the timestamps he/she performed that action.
That is, for each historical action, the user id, item id, action type and time information is recorded.
Table 1 describes the different table fields for recording each historical action.

In this paper, we conduct our evaluations on a subset of each dataset to filter out the influence of
web crawlers and outliers. Specifically, for the Alibaba dataset, we only keep the users who have
more than 20 purchase (or payment) actions during November 18𝑡ℎ , 2014 to December 18𝑡ℎ , 2014
and the items that have been bought by at least one user. After filtered by this criteria, the dataset
contains the historical action records of 1299 users and 1445 items. Likewise, for the Retailrocket
dataset, we only retain the users and items with more than 20 records of any type. After filtering,
there are 158,722 records between 6021 users and 3939 items.
Fig. 2 shows the distributions of the average daily amounts and the total amounts of different

type of actions in the Alibaba dataset and the Retailrocket dataset. The text boxes in Fig. 2 shows the
statistics of different types of actions (without logarithm). We can make the following observations
from Fig. 2. First, as shown in the figure, user action records are highly sparse in both datasets. The
average daily amount of click is 0.696 and 0.171 in the Alibaba dataset and the Retailrocket dataset,
respectively. The amounts of other actions are even smaller. Second, we can see that the amount of
click is much more than other actions. This is reasonable, as customers will browse lots of similar
items before they perform any further actions on an item. Third, the amount of collect actions are
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(a) The average daily amounts of different user actions in the Alibaba dataset (November 18𝑡ℎ , 2014 to December 18𝑡ℎ ,
2014).
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Fig. 2. The average daily amounts and the total amounts of different user actions in the Alibaba dataset and
the Retailrocket dataset.

smaller than that of add-to-cart and payment in the Alibaba dataset. This makes empirical sense as
users usually pay an item immediately instead of adding it as a collection if they plan to buy it.
Fig. 3 shows the distribution of the amounts of different type of actions in the Alibaba dataset

and the Retailrocket dataset. For the Alibaba dataset, we can note that the amounts of different
actions around December 18𝑡ℎ , 2014 is much higher than other days. A potential explanation is
that the Taobao Marketplace, under the Alibaba Group Holding Ltd, offers a variety of discounts to
customers on December 12𝑡ℎ . This is so-called Double-12 festival in China, similar to Black Friday.
Therefore, the users are more active near December 12𝑡ℎ . To normalize the bias caused by this
abnormal date, a small weight can be assigned to the amounts of actions in that date [21]. The
amounts of different actions over other dates are more smooth.
Fig. 4 compares the amounts of total user actions on different days of a week. As we can see,

customers are more active during weekdays than during weekends. This is a common phenomenon
since people usually prefer to participate in other activities or go shopping in physical stores rather
than shopping online during weekends.
We now study how a user’s previous action will affect his/her next purchase actions, taking

into account the time intervals between the two actions. For each user-item pair, we extract the
time interval between each purchase action of the user and his preceding action. Fig. 5 shows the
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(a) The distribution of the amounts of different actions in the Alibaba dataset (November 18𝑡ℎ , 2014 to December 18𝑡ℎ ,
2014).
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(b) The distribution of the amounts of different actions in the Retailrocket dataset (May 3𝑡ℎ , 2015 to
September 18𝑡ℎ , 2015).

Fig. 3. The distribution of the amounts of different actions in the Alibaba dataset and the Retailrocket dataset.
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Fig. 4. The amounts of all actions on different day-of-week in the Alibaba dataset (left) and the Retailrocket
dataset.

histogram of the lengths of such extracted time intervals. As shown in the histogram, many of the
intervals between payment actions and their preceding actions are within 1 hour, while the median
interval is 0, which means that more than a half of all such intervals are less than 1 hour. From Fig.
5, we conclude that most users usually make decisions to buy an item within 1 hour after he/she
performed the previous action on that item. The longer the time interval is, the less probable that
the user will finally purchase the item. Therefore, the influence of previous actions on a user’s
purchase decision shall decay as time goes. More specifically, we use the power-law distribution
[2] to model the temporal influence decay phenomenon, as shown in the right part of Fig. 5. Fig.
5 shows that the likelihood that a user will buy an item in 𝑡𝑔𝑎𝑝 hours after he/she has performed
an action on it fits the power-law distribution very well; the Probability Density Function (PDF)
of 𝑡𝑔𝑎𝑝 is approximately proportional to 𝑡−1.68𝑔𝑎𝑝 or 𝑡−1.51𝑔𝑎𝑝 , where 𝑡𝑔𝑎𝑝 represents the time intervals
between any purchase action and its previous action.
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(a) Alibaba dataset. Left: the histogram of time gaps between payment action and the previous action.
Right: fit the relation between the sample numbers and the time gaps by power-law distribution.
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(b) Retailrocket dataset. Left: the histogram of time gaps between payment action and the previ-
ous action. Right: fit the relation between the sample numbers and the time gaps by power-law
distribution.

Fig. 5. The power-law distribution of the time gaps between users’ payment action and the previous action.

3.2 Problem Formalization
We now formally present our next-day-purchase prediction problem. For ease of reference, we
define and list the frequently used notations in Table 2.

Definition 3.1 (Historical User Action Records). Denote a set of users by U = {𝑢1, 𝑢2, ..., 𝑢 |U |}
and a set of items by I = {𝑖1, 𝑖2, ..., 𝑖 |I |}. A historical user action record is a tuple (𝑢, 𝑖, 𝑎, 𝑡) ∈ R,
where 𝑢 ∈ U, 𝑖 ∈ I, 𝑎 ∈ {1, 2, 3, 4} (representing actions click, collect, add-to-cart, and payment,
respectively), and 𝑡 (in hours) represents the time when user 𝑢 performs action 𝑎 on item 𝑖 . R is the
set of all historical action records.

Given the definition of historical user action records, our problem is defined as follows:

Definition 3.2 (Problem Definition). Given a set of usersU, a set of items I, and the historical user
action records R betweenU and I during the last 𝑇 days, the task is to estimate the probability
𝑝 (𝑢, 𝑖 |𝑑,R) that a user 𝑢 ∈ U will purchase an item 𝑖 ∈ I during the next-day 𝑑 .

3.3 From Matrix Factorization to Factorizing Personalized Markov Chains
Matrix Factorization (MF) is used widely for purchase prediction and recommendation. The tra-
ditional matrix factorization algorithm characterizes users and items by latent feature vectors
inferred from user-item ratings. Fig. 6 illustrates how the matrix factorization approach works by
assuming a low-rank structure for the rating matrix to be factorized. The interest of user 𝑢 to item 𝑖

is estimated to be proportional to the corresponding rating score. Specifically, assuming the rating
of user 𝑢 on item 𝑖 is 𝑟𝑢,𝑖 , matrix factorization estimates the interest of user 𝑢 on item 𝑖 by

𝑝 (𝑢, 𝑖) ∝ 𝑟𝑢,𝑖 = ⟨𝑣𝑢, 𝑣𝑖⟩, (1)
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Fig. 6. Compare different models. The more information utilized, the more latent feature vectors extracted.
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where 𝑣𝑢 ∈ R𝑘 is the latent vector that describes user 𝑢 and 𝑣𝑖 ∈ R𝑘 is the latent vector of item 𝑖 .
More details about matrix factorization for recommender systems can be found in [18]. Tensor
factorization models, such as Tucker Decomposition [15], are an extension for relations over several
categorical variables. However, matrix/tensor factorization models are not applicable to standard
prediction data that usually be described by a real-valued feature vector [28]. Besides, specialized
models using factorized parameters [16, 31, 32] are usually derived individually for different specific
tasks, and require effort to design specific learning algorithms.

The Factorizing Personalized Markov Chains (FPMC) model proposed in [31] further considers
the most recent shopping basket of a user and factorizes a transition cube that contains the transition
matrix of each user. Assuming 𝐶 is a transition cube, then 𝐶𝑢,𝑖, 𝑗 denotes the probability user 𝑢 will
buy item 𝑖 if he/she has already bought item 𝑗 . The original FPMC model utilizes a special case of
Tucker Decomposition. Its form is further simplified when implemented by factorization machines
[4, 29]. Assuming B𝑢 is the item set of user 𝑢’s last shopping basket, 𝑝 (𝑢, 𝑖 | 𝑗) gives the probability
that user 𝑢 will buy item 𝑖 when he/she has already bought item 𝑗 in the most recent shopping
basket. Then, the FPMC model approximates this probability by

𝑝 (𝑢, 𝑖 | 𝑗) ∝ ⟨𝑣𝑢, 𝑣𝑖⟩ + ⟨𝑣𝑢, 𝑣 𝑗 ⟩ + ⟨𝑣𝑖 , 𝑣 𝑗 ⟩, (2)

where 𝑣𝑢 ∈ R𝑘 , 𝑣𝑖 ∈ R𝑘 and 𝑣 𝑗 ∈ R𝑘 are the latent feature vectors of the user, the target item for
prediction, and the item the user has purchased in the most recent shopping basket. The overall
probability that user 𝑢 will buy item 𝑖 in the next shopping basket is given by

𝑝 (𝑢, 𝑖) =
∑
𝑗 ∈B𝑢

𝑝 (𝑢, 𝑖 | 𝑗)𝑝 ( 𝑗) ∝ ⟨𝑣𝑢, 𝑣𝑖⟩ +
∑
𝑗 ∈B𝑢

1
|B𝑢 |
(⟨𝑣𝑢, 𝑣 𝑗 ⟩ + ⟨𝑣𝑖 , 𝑣 𝑗 ⟩), (3)

By jointly training these latent feature vectors, the FPMC model combines the advantages of both
matrix factorization and Markov chains. Please refer to [31] for more details regarding the FPMC
model.

However, given historical user action records, more context information may yet to be leveraged
for next-day-purchase prediction. First, the FPMC model only considers the item set a user bought
in his/her last purchases. However, rather than only considering the last purchases of a user, we
can also take other types of actions into account such as click and collect. Second, while the FPMC
model utilizes the most recent shopping basket of a user, the time gap between each purchase
action and the target day for prediction is not considered. In fact, the outdatedness of the past
actions will have an important influence on a user’s future decisions and can thus be utilized to
improve prediction accuracy. Third, when summarizing the conditional probabilities 𝑝 (𝑢, 𝑖 | 𝑗), the
same prior probability 𝑝 ( 𝑗) = 1

|B𝑢 | is assigned to different items 𝑗 ∈ B𝑢 that have already been
bought. However, it is clearly an over-simplified assumption that different items purchased in the
past have the same impact on future purchases, without considering the quantity purchased and
the time when they were purchased.

4 MODELING NEXT-DAY-PURCHASE PROBABILITY FOR E-COMMENCE
In this section, we present our newly proposed models for online purchase prediction. We argue
that all different types of historical actions are informative for predicting future purchase behavior.
Based on this insight, we propose our Multifaceted-FPMC model. Furthermore, we utilize the
temporal decay phenomenon of the influence of historical actions based on real data, and propose
the Time-decayed Multifaceted-FPMC model that takes this phenomenon into account to estimate
next-day purchase probabilities.
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4.1 Multifaceted Factorizing Personalized Markov Chain
Our models are motivated by the various observations from the analysis of the Alibaba dataset
in Sec. 3. Apparently, if we only consider the previous payment actions, the utilized information
is just a tiny portion of all the available information. By taking all kinds of historical actions into
account, the information contained in the dataset will be fully utilized.

Based on the above assumption, we propose our Multifaceted-FPMC model to estimate a user’s
next-day purchase probability for each specific item. Denote the item set on which user 𝑢 ever
performed action 𝑎 within the last 𝑇 days as B𝑢,𝑎 . Assume 𝑑 ∈ {1, 2, ..., 7} represents the day-of-
week of the target day for prediction, where values 1 ∼ 7 represent Monday∼Sunday respectively.
The probability that user 𝑢 will buy item 𝑖 on the predicted day 𝑑 , given that he/she performed
historical action 𝑎 on item 𝑗 during the last 𝑇 days, is given by

𝑝 (𝑢, 𝑖 | 𝑗, 𝑎, 𝑑) ∝ ⟨𝑣𝑢, 𝑣𝑖⟩ + ⟨𝑣𝑢, 𝑣𝑑⟩ + ⟨𝑣𝑖 , 𝑣𝑑⟩ + ⟨𝑣𝑢, 𝑣 𝑗,𝑎⟩ + ⟨𝑣𝑖 , 𝑣 𝑗,𝑎⟩, (4)

where 𝑣𝑑 ∈ R𝑘 is the latent feature vector for different day-of-week 𝑑 , and 𝑣 𝑗,𝑎 is the latent feature
vector of item 𝑗 ∈ B𝑢,𝑎 .

Our Multifaceted-FPMC model estimates the probability that user 𝑢 will purchase item 𝑖 on the
next day 𝑑 by

𝑝 (𝑢, 𝑖 |𝑑) =
4∑

𝑎=1

∑
𝑗 ∈B𝑢,𝑎

𝑝 (𝑢, 𝑖 | 𝑗, 𝑎, 𝑑)𝑝 ( 𝑗, 𝑎 |𝑑)

∝ ⟨𝑣𝑢, 𝑣𝑖⟩ + ⟨𝑣𝑢, 𝑣𝑑⟩ + ⟨𝑣𝑖 , 𝑣𝑑⟩ +
4∑

𝑎=1

∑
𝑗 ∈B𝑢,𝑎

1
|B𝑢,𝑎 |

(⟨𝑣𝑢, 𝑣 𝑗,𝑎⟩ + ⟨𝑣𝑖 , 𝑣 𝑗,𝑎⟩),
(5)

where 𝑝 ( 𝑗, 𝑎 |𝑑) = 1
|B𝑢,𝑎 | is the prior probability for item 𝑗 ∈ B𝑢,𝑎 .

Our Multifaceted-FPMC model is different from the conventional FPMC model in two aspects.
First, rather than only considering the historical payment actions, it also takes other three types of
actions into account, which constitute a large part of utilizable information. Second, it also learns
a latent feature vector 𝑣𝑑 for each day-of-week to model the fact that user interests for online
purchase may vary on different days of a week, as has been shown in Fig. 4. Fig. 6 shows the idea of
our Multifaceted-FPMC model intuitively, in comparison with MF and FPMC. In our model, more
latent feature vectors are learned so that a larger portion of historical records such as click, collect
and add-to-cart, as well as more context information can be utilized in prediction.

4.2 Time-decayed Multifaceted FPMC
Although the model described above generalizes the FPMC model in prior literature by considering
all action types and the day-of-week effect, however, both Multifaceted-FPMC and FPMC share a
same weakness. That is, when predicting the next-day purchase probability, they only consider
what actions users have performed in the past, but ignore when exactly these historical actions
happened. In other words, if user 𝑢 performed action 𝑎 on both item 𝑗1 and 𝑗2 in the last 𝑇 days,
both items will have the same impact in the next-day purchase prediction, even if the action for
one of the items happened more recently. Besides, the above models also ignore how many times
user 𝑢 has performed action 𝑎 on item 𝑗 . For example, if user 𝑢 has clicked item 𝑗1 for 10 times, but
has only clicked item 𝑗2 for one time, it is highly possible that 𝑢 is more interested in item 𝑗1 than
item 𝑗2. In a nutshell, in previous models, the same priori probabilities are assigned to different
historical actions.
The temporal influence decay phenomenon of historical actions, as we have shown in Fig. 5,

indicates that the influence of different historical actions shall be differentiated by the outdatedness.
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To incorporate the temporal influence decay into our online purchase prediction model, we further
revise the priori probability 𝑝 ( 𝑗, 𝑎) to take into account the time and frequency of each historical
action.
Suppose user 𝑢 has performed action 𝑎 on item 𝑗 for a total number of 𝐶𝑢,𝑗,𝑎 times. The time

interval between the 𝑐-th action and the predicted day 𝑑 is 𝑡𝑢,𝑗,𝑎,𝑐 . We assign an priori probability
𝑝 ( 𝑗, 𝑎 |𝑑) to item 𝑗 ∈ B𝑢,𝑎 according to the following equation

𝑝 ( 𝑗, 𝑎 |𝑑) ∝

𝐶𝑢,𝑗,𝑎∑
𝑐=1

𝑡−𝑏𝑢,𝑗,𝑎,𝑐

|B𝑢,𝑎 |
. (6)

According to the power-law fitting result in Fig. 5, we set 𝑏 = 1.68 for the Alibaba dataset and
𝑏 = 1.51 for the Retailrocket dataset. Based on this priori distribution for different historical items 𝑗 ,
we propose the Time-decayed Multifaceted Factorizing Personalized Markov Chains (Time-decayed
Multifaceted-FPMC) model:

𝑝 (𝑢, 𝑖 |𝑑) =
4∑

𝑎=1

∑
𝑗 ∈B𝑢,𝑎

𝑝 (𝑢, 𝑖 | 𝑗, 𝑎, 𝑑)𝑝 ( 𝑗, 𝑎 |𝑑)

∝ ⟨𝑣𝑢, 𝑣𝑖⟩ + ⟨𝑣𝑢, 𝑣𝑑⟩ + ⟨𝑣𝑖 , 𝑣𝑑⟩ +
4∑

𝑎=1

∑
𝑗 ∈B𝑢,𝑎

𝐶𝑢,𝑗,𝑎∑
𝑐=1

𝑡−𝑏𝑢,𝑗,𝑎,𝑐

|B𝑢,𝑎 |
(⟨𝑣𝑢, 𝑣 𝑗,𝑎⟩ + ⟨𝑣𝑖 , 𝑣 𝑗,𝑎⟩).

(7)

5 BAYESIAN SPARSE FACTORIZATION MACHINES
In this section, we introduce a unified framework named Bayesian Sparse Factorization Machines
(BSFM) which generalizes the existing Factorization Machines (FM) theory by only considering
sparse interactions between latent feature vectors. We show that BSFM can be used to express
both traditional models such as MF and FPMC, as well as our newly proposed models. In the next
section, we will describe the MCMC inference technique to lean the BSFM model.

5.1 Bayesian Sparse Factorization Machines
Given a prediction problem, we assume it is described by a design matrix 𝑋 ∈ R𝑛×𝑝 , where the 𝑖-th
row x𝑖 ∈ R𝑝 of 𝑋 describes one case with 𝑝 real-valued prediction variables. The prediction target
of the 𝑖-th case is 𝑦𝑖 . BSFM models the interactions between variables using factorized parameters.
The model equation for a 2-order BSFM is defined as:

𝑦 (x) := 𝑤0 +
𝑝∑
𝑗=1

𝑤 𝑗𝑥 𝑗 +
𝑝∑
𝑗=1

𝑝∑
𝑗 ′=𝑗+1

Φ𝑗, 𝑗 ′ ⟨v𝑗 , v𝑗 ′⟩𝑥 𝑗𝑥 𝑗 ′, (8)

where v𝑗 is the latent feature vector of length 𝑘 for prediction variable 𝑥 𝑗 . The model parameters
Θ = {𝑤0,𝑤1, ...,𝑤𝑝 , 𝑣1,1, ..., 𝑣𝑝,𝑘 } are

𝑤0 ∈ R, w ∈ R𝑝 , 𝑉 ∈ R𝑝×𝑘 . (9)

Compared with existing Factorization Machines (FM), BSFM explicitly introduces a sparse matrix
Φ ∈ R𝑝,𝑝 to indicate whether 𝑥 𝑗 and 𝑥 𝑗 ′ have interaction with each other. In particular, Φ is defined
as:

Φ𝑗, 𝑗 ′ =

{
1 if 𝑥 𝑗 interacts with 𝑥 𝑗 ′

0 if 𝑥 𝑗 doesn’t interacts with 𝑥 𝑗 ′
(10)
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Fig. 7. An example to show how to represent a recommender problem with real valued feature vectors x.
Each row represents a feature vector x𝑖 with its corresponding target 𝑦𝑖 . For easier interpretation, we use
different colors to group feature variables into indicators for different types of information, such as user id,
item id, historically purchased items and day-of-week.

The first part of BSFM is a linear regression model that contains the unary interactions of
every 𝑥 𝑗 with the target. The second part contains the pairwise interactions of input variables.
Compared with standard polynomial regression model, the key difference is that the interaction of
𝑥 𝑗 and 𝑥 𝑗 ′ is not modeled by an independent parameter𝑤 𝑗, 𝑗 ′ but with a factorized parameterization
𝑤 𝑗, 𝑗 ′ ≈ ⟨vj, vj′⟩ =

∑𝑘
𝑓 =1 𝑣 𝑗,𝑓 𝑣 𝑗 ′,𝑓 based on the assumption that the effect of pairwise interactions has

a low rank [29]. Compared with traditional factorization machines, the key distinction of BSFM is
that it introduces a matrix Φ to control sparse interactions between features, avoiding unnecessary
interactions, whereas the existing FM model can only express full interactions between all pairs of
features. It is easy to see that the BSFM will degenerate into the FM if we set all the elements of Φ
to be 1.

We show that both our newly proposed models and several existing models can be represented
in the form of BSFM by defining appropriate feature vector x and interaction matrix Φ for each
model. For different models, the corresponding feature vector x is defined as follows:
• MF: we can exactly approximate the matrix factorization (MF) algorithm by defining the
feature vector x using two categorical variables x𝑢 ∈ R |U | and x𝑖 ∈ R |I | , that is,

x𝑢 = (0, ..., 0, 1, 0, ..., 0︸             ︷︷             ︸
|U |

), (11)

x𝑖 = (0, ..., 0, 1, 0, ..., 0︸             ︷︷             ︸
|I |

), (12)

where each variable in x𝑢 denotes a user, and each variable in x𝑖 denotes an item. For a
user-item pair (𝑢, 𝑖), the 𝑢-th entry in x𝑢 is 1, and similarly the 𝑖-th entry in x𝑖 is 1, and the
rest is 0 (e.g., see the first two groups of Fig. 7). Using a feature vector x ∈ R |U |+|I | with
binary indicator variables as the input of BSFM,

(𝑢, 𝑖) → x = (x𝑢, x𝑖 ), (13)
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the BSFM will be exactly the same as a biased matrix factorization model [24, 37]:

𝑦 (x) = 𝑦 (𝑢, 𝑖) = 𝑤0 +𝑤𝑢 +𝑤𝑖 +
𝑘∑
𝑓 =1

𝑣𝑢,𝑓 𝑣𝑖,𝑓 . (14)

where 𝑤0 is the global bias. 𝑤𝑢,𝑤𝑖 refer to three categorical variables for user and item,
respectively [28].
• FPMC: the FPMC algorithm incorporates the historical purchased item set, factorizing an
MF model and Markov chain model jointly. BSFM can also mimic the FPMC algorithm by
appending a third part, x4 (with 4 representing the action payment), to the feature vector
x [29]. x4 is a set-categorical variable to represent the items that have been purchased by a
user in the past 𝑇 days, i.e.,

x4 = (0, ..., 1/|B𝑢 |, 0, ..., 1/|B𝑢 |, 0, ..., 0︸                                   ︷︷                                   ︸
|I |, historically purchased item set

) (15)

where the |B𝑢 | non-zero elements in it represent the items purchased by user 𝑢. The feature
vector representation x ∈ R |U |+2 |I | will be

(𝑢, 𝑖) → x = (x𝑢, x𝑖 , x4). (16)

• Multifaceted-FPMC: we can incorporate more context information by adding more feature
sections into x. Similar to x4 in FPMC, we add three more set-categorical variables, x1, x2
and x3 that represent the item sets a user has clicked, collected or added-to-cart in the past 𝑇
days, respectively. Besides, considering that user interests for online shopping may change as
day-of-week varies, we further add a categorical variable x𝑑 to indicate which day-of-week
the predicted day is, i.e.,

x𝑑 = (0, ...0, 1, 0, ..., 0︸           ︷︷           ︸
7, day-of-week

). (17)

In this case, the feature vector x ∈ R |U |+5 |I |+7 will be

(𝑢, 𝑖) → x = (x𝑢, x𝑖 , x𝑑 , x1, x2, x3, x4). (18)

• Time-decayed Multifaceted-FPMC: the Time-decayed Multifaceted-FPMC model can be
represented in the form of BSFM similar to the Multifaceted-FPMC model. Assume that the
set-categorical variable 𝑥𝑡𝑎 (𝑎 = 1, 2, 3, 4) represents the items that user 𝑢 has performed the
action 𝑎 on in the past 𝑇 days, i.e.,

x𝑡𝑎 = (0, ...,
𝐶𝑢,𝑗1,𝑎∑
𝑐=1

𝑡−𝑏𝑢,𝑗1,𝑎,𝑐/|B𝑢,𝑎 |, 0, ...,
𝐶𝑢,𝑗2,𝑎∑
𝑐=1

𝑡−𝑏𝑢,𝑗2,𝑎,𝑐/|B𝑢,𝑎 |, 0, ..., 0︸                                                                     ︷︷                                                                     ︸
|I |, historically purchased item set

). (19)

In this case, the feature vector x ∈ R |U |+5 |I |+7 for the Time-decayed Multifaceted-FPMC
model will be

(𝑢, 𝑖) → x = (x𝑢, x𝑖 , x𝑑 , x𝑡1, x𝑡2, x𝑡3, x𝑡4). (20)

By defining the feature vectors as above, we are able to represent our models in the general form
of BSFM, with the corresponding interaction matrix Φ set according to (10).
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6 MARKOV CHAIN MONTE CARLO INFERENCE OF MODEL PARAMETERS
In this section, we introduce the Markov chain Monte Carlo (MCMC) [3, 8] inference for learning
model parameters in the form of BSFM. Compared with algorithms such as stochastic gradient
descent (SGD) or alternative least square (ALS), the MCMC algorithm is able to do automatic
hyperparameter learning or no learning hyperparameter. MCMC usually gives better accuracy
with structured Bayesian inference [8]. Here we present 2-order BSFM without loss of generality.

6.1 Model Structure

i = 1, ..., n

j = 1, ..., p

f = 1, ..., k

µw
π

λw
π

µv
f,π

λv
f,π

αλ, βλ

µ0, γ0

µ0, λ0

α0, β0vj,k

wj

xi,j

w0

αyi

  ΦΦ

Fig. 8. Graphical representation of BSFM.

Fig. 8 depicts the graphical representation of our BSFM framework. According to the functionali-
ties of different parameters, we divide them into three categories.
• Model parameters Θ := {𝑤0,w,𝑉 ,Φ}. The interaction matrix Φ is predefined according to
the feature interactions in a specific model. Other parameters will be sampled by MCMC
inference using Gibbs sampling.
• Regularization parameters Θ𝐻 := {𝜇0, 𝜆0, 𝜇𝑤𝜋 , 𝜆𝑤𝜋 , 𝜇𝑣𝑓 ,𝜋 , 𝜆

𝑣
𝑓 ,𝜋
}. These parameters regularize the

model parameters to prevent overfitting.
• Hyperparameters Θ0 := {𝛼0, 𝛽0, 𝛼𝜆, 𝛽𝜆, 𝜇0, 𝛾0}. These parameters are introduced in BSFM so
that the regularization valuesΘ𝐻 can be automatically determined, which is amajor advantage
of MCMC. The number of hyperpriors |Θ0 | is smaller than the number of regularization
parameters |Θ𝐻 |. More importantly, MCMC is typically insensitive to the choice of Θ0 [29].

6.2 Inference: Efficient Gibbs Sampling
We use Gibbs sampling to draw from the posterior of BSFM since posterior inference is analytically
intractable. Standard Gibbs sampling divides all inferred variables Θ and Θ𝐻 into disjoint blocks
and every block contains a subset of the parameters. However, it will leads to high time complexity
in the final Gibbs sampler. Therefore, we use single parameter Gibbs sampling instead of standard
block Gibbs sampling [29]. We exploit the multi-linear nature of BSFM for notational readability.

Definition 6.1 (Multi-linear Nature of BSFM). For each model parameter 𝜃 ∈ Θ, the BSFM is a
linear combination of two functions 𝑔𝜃 and ℎ𝜃 that are independent of the value 𝜃 . Therefore, (8)

ACM Trans. Web, Vol. 1, No. 1, Article 1. Publication date: January 2021.



Factorizing Historical User Actions for Next-Day Purchase Prediction 1:17

can be rewritten as [28]:
𝑦 (x|Θ) := 𝑔𝜃 (x) + 𝜃ℎ𝜃 (x),∀𝜃 ∈ Θ (21)

where

ℎ𝜃 (x) =
𝜕𝑦 (x|Θ)

𝜕𝜃
=


1 if 𝜃 is𝑤0

𝑥𝑙 if 𝜃 is𝑤𝑙

𝑥𝑙
∑

𝑗≠𝑙 Φ𝑙, 𝑗𝑣 𝑗,𝑓 𝑥 𝑗 if 𝜃 is 𝑣 𝑗,𝑓
(22)

The value of 𝑔𝜃 will be computed by 𝑔𝜃 (x) = 𝑦 (x|Θ) − 𝜃ℎ𝜃 (x) instead of computing directly,
therefore its definition is omitted here.

We now describe the MCMC inference for BSFM. MCMC samples from the posterior distributions
of parameters rather than learn an optimal value for each of them. For hyperparameters, as MCMC
is typically insensitive to the choice of Θ0, we introduce priors for the hyperparameters and choose
𝛼0 = 𝛽0 = 𝛼𝜆 = 𝛽𝜆 = 𝛾0 = 1, which allows model complexity to be controlled automatically basd on
the training data.
For regularization parameters, MCMC places distributions on the priors for integration of Θ𝐻 .

By integrating regularization parameters into the model, it avoids a time-consuming search for
these parameters. Specifically, for each pair (𝜇𝜃 , 𝜆𝜃 ) ∈ Θ𝐻 of prior parameters, we assume a Gamma
distribution for each prior precision 𝜆𝜃 and 𝛼 except 𝜆0, and a normal distribution for each mean
𝜇𝜃 of all model parameters 𝜃 ∈ Θ but 𝜇0:

𝜆𝑤𝜋 ∼ Γ(𝛼𝜆, 𝛽𝜆), 𝜇𝑤𝜋 ∼ N(𝜇0, 𝛾0𝜆𝑤𝜋 ), (23)

𝜆𝑣
𝑓 ,𝜋
∼ Γ(𝛼𝜆, 𝛽𝜆), 𝜇𝑣𝑓 ,𝜋 ∼ N(𝜇0, 𝛾0𝜆

𝑣
𝑓 ,𝜋
), (24)

𝛼 ∼ Γ(𝛼0, 𝛽0). (25)
Given 𝑛 observed samples (𝑦𝑖 , x𝑖 ) ∈ R𝑝+1, the corresponding conditional posterior distributions for
Θ𝐻 are [29]:

𝛼 |𝑦,𝑋,Θ0,Θ ∼ Γ

(
𝛼0 + 𝑛

2
,
1
2

[
𝑛∑
𝑖=1
(𝑦𝑖 − 𝑦 (x𝑖 |Θ))2 + 𝛽0

])
, (26)

𝜆𝜋 |Θ0,Θ𝐻 \ {𝜆𝜋 },Θ ∼ Γ

(
𝛼𝜆 + 𝑝𝜋 + 1

2
,
1
2

[
𝑝∑
𝑗=1

𝛿 (𝜋 ( 𝑗) = 𝜋)
(
𝜃 𝑗 − 𝜇𝜃

)2 + 𝛾0 (𝜇𝜋 − 𝜇0)2 + 𝛽𝜆]) , (27)
𝜇𝜋 |Θ0,Θ𝐻 \ {𝜆𝜋 },Θ ∼ N

(
1

𝑝𝜋 + 𝛾0

[
𝑝∑
𝑗=1

𝛿 (𝜋 ( 𝑗) = 𝜋) 𝜃 𝑗 + 𝛾0𝜇0

]
,

1
(𝑝𝜋 + 𝛾0) 𝜆𝜋

)
, (28)

where

𝑝𝜋 :=
𝑝∑
𝑗=1

𝛿 (𝜋 ( 𝑗) = 𝜋) , (29)

and 𝛿 is the indicator function

𝛿 (𝑏) :=
{
1 if 𝑏 is true
0 if 𝑏 is false

(30)

For model parameters, we assume normal distribution. With 𝑛 observed samples (𝑦𝑖 , x𝑖 ), the
corresponding conditional posterior distributions for Θ satisfy:

𝑝 (Θ|y, 𝑋,Θ𝐻 ) ∝
𝑛∏
𝑖=1

√
𝛼𝑒−

𝛼
2 (𝑦𝑖−𝑦 (x𝑖 ,Θ))

2 ∏
𝜃 ∈Θ

√
𝜆𝜃𝑒
− 𝜆𝜃

2 (𝜃−𝜇𝜃 )
2
. (31)
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Using the multi-linear representation form of BSFM, we can infer that the conditional posterior
distribution for each model parameter 𝜃 ∈ Θ is:

𝜃 |𝑋,𝑦,Θ \ {𝜃 },Θ𝐻 ∼ N(𝜇̃𝜃 , 𝜎̃2
𝜃
), (32)

where

𝜎̃2
𝜃
:=

(
𝛼

𝑛∑
𝑖=1

ℎ2
𝜃
(x𝑖 ) + 𝜆𝜃

)−1
, (33)

𝜇̃𝜃 := 𝜎̃2
𝜃

(
𝛼𝜃

𝑛∑
𝑖=1

ℎ2
𝜃
(x𝑖 ) + 𝛼

𝑛∑
𝑖=1

ℎ𝜃 (x𝑖 ) 𝑒𝑖 + 𝜇𝜃𝜆𝜃

)
, (34)

𝑒𝑖 is the prediction error of the 𝑖-th sample:

𝑒𝑖 := 𝑦𝑖 − 𝑦 (x𝑖 |Θ). (35)

6.3 Learning Procedures
Algorithm 1 depicts the learning procedures of Gibbs sampling for BSFM. First, we initialize

the model parameters to be zero or random values. For each sampling iteration, we sample the
regularization parameters and model parameters in sequence. Before sampling the next parameter,
the depending variables and parameters must be updated using the sampled new parameters.

We need to make two changes for binary classification task. First, after we get the probabilities,
we need to map the normal distributed 𝑦 to a probability 𝑃 (𝑦) ∈ [0, 1] that defines the Bernoulli
distribution for binary classification [9]. Here we use the CDF function of a normal distribution for
mapping:

𝑃 (𝑦) := Φ(𝑦). (36)
Second, in algorithm 1, instead of regressing to 𝑦, we sample it in each iteration from its posterior
that has a truncated normal distribution

𝑦 ′𝑖 |x𝑖 , 𝑦𝑖 ,Θ ∼
{
N(𝑦 (x𝑖 ,Θ), 1)𝛿 (𝑦 ′𝑖 < 0) if 𝑦𝑖 belongs to negative class
N(𝑦 (x𝑖 ,Θ), 1)𝛿 (𝑦 ′𝑖 ⩾ 0) if 𝑦𝑖 belongs to positive class

. (37)

Sampling from this distribution is efficient [33].

7 EXPERIMENTS
In this section, we compare our approaches with multiple state-of-the-art algorithms and show the
benefits of incorporating various context information and the temporal influence decay phenome-
non of historical actions.

7.1 Experimental Setup and Metrics
Our performance evaluation is conducted on the subset of the Alibaba and Retailrocket e-commerce
Recommendation dataset, as described in Sec. 3. Our objective is to predict the user-item pairs
that will have purchase actions on a prediction date based on previous action records, which is a
binary classification problem. We have run experiments on different prediction dates with different
historical record lengths (number of days) and observed similar results. Thus, without loss of
generality, our model takes as input the records of first 𝑇 days in each dataset as training data,
and predict the purchase decisions in the next day. For example, the time span of the historical
records is from November 18th, 2014 to December 18th, 2014 in the Alibaba dataset. For a historical
length of 𝑇 = 7, we take the records from November 18th, 2014 to November 25th, 2014 as our
training data, and evaluate the performance of different models on November 26th, 2014. Similarly
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ALGORITHM 1: Markov Chain Monte Carlo Inference (MCMC) for BSFM
Input: Training data 𝑆𝑡𝑟𝑎𝑖𝑛 , test data 𝑆𝑡𝑒𝑠𝑡 , initialization 𝜎 .
Output: Prediction 𝑦𝑡𝑒𝑠𝑡 for test cases.

Initialization Step:
1: 𝑤0 ← 0; w← (0, ..., 0); V ∼ N(0, 𝜎);
2: #𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ← 0;

Gibbs Sampling Step:
1: repeat
2: ŷ← predict all cases 𝑆𝑡𝑟𝑎𝑖𝑛 ;
3: e← y − ŷ;
4: //update the regularization parameters
5: sample 𝛼 using (26);
6: for (𝜇𝜋 , 𝜆𝜋 ) ∈ Θ𝐻 do
7: sample 𝜆𝜋 using (27);
8: sample 𝜇𝜋 using (28);
9: end for
10: //update the model parameters
11: sample𝑤0 from N(𝜇̃𝑤0 , 𝜎̃

2
𝑤0 ) (32);

12: for 𝑙 ∈ {1, ..., 𝑝} do
13: sample𝑤𝑙 from N(𝜇̃𝑤𝑙

, 𝜎̃2𝑤𝑙
) (32);

14: update e;
15: end for
16: for 𝑓 ∈ {1, ..., 𝑘} do
17: for 𝑙 ∈ {1, ..., 𝑝} do
18: sample 𝑣𝑙,𝑓 from N(𝜇̃𝑣𝑙,𝑓 , 𝜎̃2𝑣𝑙,𝑓 ) (32);
19: update e;
20: end for
21: end for
22: #𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ← #𝑠𝑎𝑚𝑝𝑙𝑒𝑠 + 1;
23: ŷ∗𝑡𝑒𝑠𝑡 ← predict all cases S𝑡𝑒𝑠𝑡 (37);
24: ŷ𝑡𝑒𝑠𝑡 ← ŷ𝑡𝑒𝑠𝑡 + ŷ∗𝑡𝑒𝑠𝑡 ;
25: until stopping criterion is met
26: ŷ𝑡𝑒𝑠𝑡 ← 1

#𝑠𝑎𝑚𝑝𝑙𝑒𝑠
ŷ𝑡𝑒𝑠𝑡 ;

for 𝑇 ∈ {1, 7, 14, 28}. We report our experimental results on the two datasets to compare the
performance of different methods.

To evaluate the performance of different approaches, we are interested in finding out how many
user-item pairs that have purchase actions on the predicted day can be correctly predicted by
different methods. Denote 𝑁𝑇𝑃 as the number of correctly predicted user-item purchase pairs,
𝑁𝐹𝑃 as the number of incorrectly predicted user-item implicit action pairs, 𝑁𝑇𝑁 as the number
of correctly predicted negative user-item purchase actions, and 𝑁𝐹𝑁 the number of incorrectly
predicted negative user-item purchase actions. We compute the following metrics for evaluation:
• Precision: the ratio of correctly predicted purchase actions to total 𝑁𝑇𝑃 + 𝑁𝐹𝑃 pairs predicted
to have purchase actions on the predicted day.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑁𝑇𝑃

𝑁𝑇𝑃 + 𝑁𝐹𝑃

, (38)
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• Recall: the ratio of correctly predicted purchase actions to the 𝑁𝑇𝑃 + 𝑁𝐹𝑁 pairs that really
have purchase actions on the predicted day.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑁𝑇𝑃

𝑁𝑇𝑃 + 𝑁𝐹𝑁

, (39)

• Precision-Recall curve (PR curve): The Precision-Recall curve shows the trade-off between
precision and recall for different thresholds. Compared with ROC curve, Precision-Recall
curve is preferable in highly skewed datasets such as e-commerce purchase datasets where
the number of negative instances is far more than positive instances since it gives more
informative reflections about the performance of a classifier [7].
• Receiver Operating Characteristic curve (ROC curve): the ROC curve is created by plotting the
Recall against the false positive rate (FPR) at various threshold settings, where FPR is defined
as:

𝐹𝑃𝑅 =
𝑁𝐹𝑃

𝑁𝐹𝑃 + 𝑁𝑇𝑁

. (40)

• Area Under the Curve (AUC): the area under an ROC curve, which is insensitive to sample
imbalance. The AUC is larger AUC when the performance of a classifier is better.

7.2 Evaluated Approaches
We compare our approaches with multiple existing algorithms. By incorporating different features
into the feature vector that describes a user-item pair, we are able to utilize different context
information and factorize multifaceted latent factors for prediction and recommendation. Specif-
ically, we compare the performance of the following methods: MF, FPMC, Multifaceted-FPMC
and Time-decayed Multifaceted-FPMC that described in Sec. 5, as well as Bayesian Personalized
Ranking (BPR) [30] and Collaborative Filtering (CF) for implicit feedback datasets [14]. Considering
historical information in our datasets, we also compare our model with two strong baselines:
GRU4Rec[12] and TransRec[11].
We compare the performance of different approaches over the Alibaba and Retailrocket data

subsets described in Sec. 3.1. For hyper-parameters, we use the the history records of length {1, 7,
14, 28} for training, the next day of historical ends for validation (for choosing hyper-parameters
such as lengths of latent vectors) and the next following day of history records for testing in the
Alibaba dataset and the Retailrocket dataset. As MCMC is typically insensitive to the choice of Θ0
due to the huge amount of explanatory variables [8], we introduce priors for the hyper-parameters
and initially set 𝛼0 = 𝛽0 = 𝛼𝜆 = 𝛽𝜆 = 𝛾0 = 1. We set the time span of historical records to be
𝑇 ∈ {1 𝑑𝑎𝑦, 7 𝑑𝑎𝑦𝑠, 14 𝑑𝑎𝑦𝑠, 28 𝑑𝑎𝑦𝑠}, as reported in Fig. 9 and Fig. 10. For ranking-based models
such as BPR, we specify a list of items with length N ∈ {10, 20, . . . , 100}, regularization factor
∈ {0.001, 0.1, 10} and use grid search to fine-tune the models. In particular, for every user-item
feature vector in the records, we generate an item list with length 𝑁 for that user, if this item is in
the list, the model will predict that the user will purchase this item.

7.3 Performance Analysis
Fig. 9 and Fig. 10 demonstrates the effectiveness of our new proposed models. The Multifaceted-
FPMC model outperforms the FPMC model and MF model significantly in most cases, which proves
the importance of taking all types of historical actions into account. When history length is not long
(such as 1 day or 7 days), incorporating actions other than payment is quite necessary. The reason
is that it is highly possible that users may have only a few purchase actions or even no purchase
action during the last few days. However, the times of other actions such as click are usually much
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Fig. 9. Compare different algorithms with various history lengths based on the Alibaba dataset.
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Fig. 10. Compare different algorithms with various history lengths based on the Retailrocket dataset.
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more than payment action. In this case, the Multifaceted-FPMC model achieves benefits by utilizing
the information of other actions for future purchase prediction.

Compared with other approaches, the performance of Time-decayed Multifaceted-FPMC keeps
being the best under different experiment settings. As we can see, after taking the time intervals of
historical actions into account and model the temporal influence decay phenomenon by power-law
distribution, the Time-decayed Multifaceted-FPMC model further improves the prediction AUC
and outperforms all other approaches. This demonstrates the key role of time intervals for purchase
prediction, where other approaches such as MF, FPMC, and Multifaceted-FPMC fail to take into
account.
BPR generally performs worst under a sparse and long time span setting. BPR fails to utilize

the supervised labels for training. Instead, it learns in an unsupervised manner by incorporating
all kinds of user actions. The primary objective of BPR is providing a user with a ranked list of
items of interest based on the BPR-OPT criterion, which is a differentiable maximum posterior
estimator composing the sum of logarithmic predicted preferences and the regularization term [30].
The BPR-OPT criterion is preferable for a ranking task where we are classifying the difference of
two predictions (𝑥𝑢𝑖 − 𝑥𝑢 𝑗 ) between user 𝑢 and two items 𝑖 and 𝑗 to create user specific pairwise
preferences using rank-based metrics. However, for purchase prediction, our task is not to predict
a list of items that the target user is most likely to access in his next visit. Instead, we treat the
next-item recommendation task as a binary classification problem, where we takes as input the
feature vector of every record and output whether the corresponding user would purchase the item
or not. In this case, BPR and CF yield bad results as they treat the items that a user has interacted
with homogeneously. We can also see that most of the methods’ performance improves with the
growth of the history length. However, both the performance of CF and BPR remain constant in
the Alibaba dataset. This clearly demonstrates the effectiveness of exploiting sequential strategies,
i.e., users’ historical sequential preferences, to improve the recommendation performances.
In our additional comparison with two strong baselines incorporating the whole historical

records, our model performs better than Trans4Rec[11] and GRU4Rec[12] in Precision@N, where
N ∈ {300, 600, 1000} as shown in the table 3. We perform a paired t-test at significance level 10% to
show that our model is comparable to Trans4Rec and GRU4Rec. Although Trans4Rec and GRU4Rec
both capture personalized sequential behavior and model third-order interactions between users,
their previously consumed item, and their next item, they fail at incorporating time-decaying
effects of user historical behaviors, which leads to inferior performance as demonstrated in our
experiments.

In our experiments, we consistently compare the performance of proposed models and baselines
on the two datasets with different lengths of history. It is shown that choosing a history length of 7
days or 14 days performs the best in general. It makes empirical sense since people are more likely
to buy products they recently browsed. The performance decreases significantly with 4-week’s
history length, which proves that choosing an appropriate length of history is of great importance

Table 3. Performance comparison with Trans4Rec[11] and GRU4Rec[12]

Tianchi Retailrocket

Precision@N 300 600 1000 300 600 1000

Ours 0.025 0.023 0.018 0.035 0.032 0.031
Trans4Rec 0.021 0.020 0.015 0.027 0.026 0.023
GRU4Rec 0.023 0.021 0.017 0.029 0.025 0.023
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to the performance of different approaches. Long historical records are usually too noisy and
redundant for the next-day purchase prediction task.

8 CONCLUSIONS
To summarize, traditional approaches for recommendation and future purchase prediction, such as
Matrix Factorization and Factorizing Personalized Markov Chains, are insufficient to fully utilize
the various context information contained in users’ historical records data. In this article, based
on the two historical user action records datasets from Alibaba group and Retail Rocket website,
we investigate the characteristics of real users’ actions and get some insights. First, we show that
different types of actions user performed previously are informative and helpful for users’ future
purchase prediction. Based on this discovery, we propose our Multifaceted-FPMCmodel that utilizes
all different kinds of actions. Second, we further observe that users’ historical actions’ influence
on their future purchase actions decays with the time intervals between historical actions and
purchase actions. The decay speed is approximately following a power law distribution. Based on
this temporal influence decay phenomenon, we further propose our Time-decayed Multifaceted-
FPMC model for future purchase probability estimation. Finally, we show that our models can be
represented in a unifiedmanner and propose the Bayesian Sparse FactorizationMachines framework.
Extensive evaluations show that the proposed models can achieve better performance than previous
approaches such as Matrix Factorization and Factorizing Personalized Markov Chains.
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