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Abstract. The automatic generation of electronic medical record (EMR)
data aims to create EMRs from raw medical text (e.g., doctor-patient in-
terrogation dialog text) without human efforts. A critical problem is how
to accurately locate the medical entities mentioned in the doctor-patient
interrogation text, as well as identify the state of each clinical entity
(e.g., whether a patient genuinely suffers from the mentioned disease).
Such precisely extracted medical entities and their states can facilitate
clinicians to trace the whole interrogation process for medical decision-
making. In this work, we annotate and release an online clinical dialog
NER dataset that contains 72 types of clinical items and 3 types of
states. Existing conventional named entity recognition (NER) methods
only take a candidate entity’s surrounding context information into con-
sideration. However, identifying the state of a clinical entity mentioned
in a doctor-patient dialog turn requires the information across the whole
dialog rather than only the current turn. To bridge the gap, we further
propose CLINER, a CLinical Interrogation NER model, which exploits
both fine-grained and coarse-grained information for each dialog turn to
facilitate the extraction of entities and their corresponding states. Ex-
tensive experiments on the medical dialog information extraction (MIE)
task and clinical interrogation named entity recognition task show that
our approach shows significant performance improvement (3.72 on NER
F1 and 6.12 on MIE F1) over the state-of-art on both tasks.

Keywords: Clinical named entity recognition · Information extraction
· Coarse-grained and fine-grained context · Historical pattern memory ·
BERT

1 Introduction

Electronic medical records (EMR) are widely used in modern health care infor-
mation systems to store the information concerning individual health histories.

∗Equal contribution.
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  Medical Records

Name: Tom
Age: 60
Gender: Male
Chief Complaint: The
patient claimed angina.
Inspection: cardiac MRI
has been done. 

Diagnosis: Coronary
heart disease negative

Angina: Positive

Coronary heart disease: Positive

Angina: Positive

Coronary heart disease: Negative

State
update

Fig. 1. Clinical interrogation named entity recognition helps medics automatically gen-
erate EMRs from the doctor-patient dialogs.

While EMRs play a key role in modern health care systems, it is an exhausting
and time-consuming task for doctors to write an EMR for a patient. It was re-
ported that the time that doctors spend on administrative work is almost twice
as much as the time spent on consultation with patients, and the most time-
consuming part is manually creating EMRs [21]. To relieve the heavy burden on
doctors, the task of automatically converting doctor-patient dialogs into EMRs
has become an emerging field in natural language processing domain in recent
years [3, 19, 23]. To generate high-quality EMRs from doctor-patient dialogs, a
core research problem is how to accurately extract the medical entities and their
corresponding status from medical dialogs.

However, existing research focuses on extracting medical information in a
turn-level context without considering the global consistency of entities’ infor-
mation. Taking Fig. 1 as an example for illustration, the patient initially thought
he had coronary heart disease, but the doctor eventually overturned the hypoth-
esis. In this case, the doctor will write “coronary heart disease: negative” on the
EMR, where “coronary heart disease” is a medical named entity, and “negative”
is the entity’s state. However, existing approaches [6, 13, 28] only concentrate on
extracting the medical items that are expressed in current turns and ignore their
states, while the entity state (e.g., presence or absence of a symptom/disease) is
critical for automatic generation of EMRs.

To bridge the gap between existing research and real-world scenarios of med-
ical dialog, in this paper, we focus on accurately recognizing medical entities
and their states that are expressed according to the entire dialog by considering
both turn-level and dialog-level information. Specifically, we define the state of
a medical item as its genuine condition expressed according to the dialog, includ-
ing “positive”, “negative” and “unknown”, among which “positive” indicates that
the patient actually suffers from one certain symptom or the doctor’s diagnosis
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confirms one has the disease, while “negative” does the opposite. Specially, “un-
known” refers to uncertain condition, i.e., medical report hasn’t been prepared
or the doctor is explaining some general scientific knowledge of the disease. We
then define the state update mechanism. The entity state should comprehensively
consider the surrounding dialog turns other than only focus on the current turn.
Take the Fig. 1 for illustration, the patient perceives he may get Coronary heart
disease, however, the doctor’s decision denies his hypothesis, thus the correct
state should be “negative”.

Based on the above principles, we first annotate and release a dataset for
CLinical Interrogation Named Entity Recognition (CLINER) considering the
state update mechanism as illustrated in Fig. 1. Our dataset distinguishes from
the conventional NER datasets since the state of each entity is not simply de-
termined by the context within the current turn, but may change as the dialog
proceeds. Besides, one certain named entity can have a massive quantity of vari-
ants as the colloquial expressions in our dataset are much more diverse than
the formal writing, where it also hinders the conventional NER tools to obtain
promising results. For example, in Fig. 1, both stabbing pain in my heart area
and angina refer to a same entity.

To address the two aforementioned challenges, we further propose a novel
NER model to recognize named entities from interrogation dialogs. Specifically,
we define a window as a dialog turn between the doctor and patient (e.g., we
have two dialog windows in Fig. 1). Our model integrates multi-level context
information from the dialog, to be specific, label-window interaction and inter-
window interaction is combined to enhance the encoding representation of the
current window. We then adopt a two-stage prediction manner. Firstly the model
classifies whether the window contains a specific type of entity, then it determines
the start and end positions of entity spans within the current window.

We evaluate the model on our dataset with two separate tasks: medical dialog
information extraction (MIE) and clinical interrogation named entity recognition
(CLINER). Experimental results show that the proposed model outperforms the
state-of-the-art results by 3.72% and 6.12% F1 score in MIE and NER tasks,
respectively.

2 Related Work

Named entity recognition (NER) [12, 27, 17, 18] is a well-studied field in the
natural language processing community. There are also many efforts in medical
NER from either EMRs or medical literature. The early attempts in the medical
NER [8] tended to apply the conditional random field (CRF) model along with
pre-defined features from a small labeled dataset. Recent works extract medical
entities from the literature by introducing pre-trained models. For example, [26]
addressed Chinese clinical NER task by fine-tuning BERT [4] on coronary arte-
riography reports. [2] leveraged data from the CCKS competitions and achieved
state-of-the-art result with a BERT-BiLSTM-CRF model. [5] proposed ZEN, a
BERT-based Chinese text encoder enhanced by n-gram representations, where
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different combinations of characters were considered during training. However,
previous attempts suffer from the limitations in text resource types [8] or prede-
fined medical named entity categories [25]. Some other attempts tackled medical
NER in different ways. [30] investigated a convolutional attention network for
Chinese NER, capturing the information from adjacent characters and sentence
contexts. [9] leveraged second-order lexicon knowledge of each character in the
sentence, in order to provide more lexical word information including semantic
and word boundary features for insufficient word information in Chinese NER.

The research on extracting information from medical dialog text just emerged
in the past few years, thus we only investigate a few representative research works
in this paper. Due to the limitation of available datasets, most of the works only
aim to extract the symptom from the dialogue. [7] proposed a pipeline that
mostly focus on the knowledge extraction module which combines rule-based
methods with supervised machine learning methods. [6] aimed at extracting
symptoms and their corresponding status with 186 symptoms and 3 pre-defined
status. [13] annotated Chinese online medical dialogs with BIO (i.e., begin,
inside, or other) schema but without considering the states, which is incompatible
with the real scenario.

The most relevant work is MIE [28]. It proposed a more detailed annotation
schema that contains 4 categories, 71 items and 5 status, as well as a pipeline
model to classify the whole labels iteratively. Although our annotation label is
consistent with MIE, there are two major differences: 1) MIE only provides the
coarse-grained annotations on window-level without exact span annotation of
an entity while we focus on annotating the named entities in each sentence. 2)
MIE deploys an unreasonable state update mechanism that the later annotation
states will blindly override the former ones. Based on our observation of the MIE
dataset, it is clear that this mechanism works only for a small set of entities and
is unreasonable for others.

3 Dataset and Annotation

In this section, we elaborate on our dataset and the annotation procedure. Our
dataset originates from a Chinese online health community,§ where patients can
submit their health problems and then doctors kick off a conversation to com-
municate with the patients and provide professional suggestions. Compared to
conventional NER datasets, our proposed dataset focuses on medical dialog text
along with massive domain-specific items appearing in the text. It is a more
challenging benchmark dataset since there are plenty of colloquial expressions
amongst the dialog, which could be also annotated as entities. The dataset con-
tains 5 categories, 72 types of entities as well as 3 types of states. Each entity is
associated with a state and two labels with the same entity but different states
are considered as different rather than progressive.

The most frequent types include symptom:hyperglycemia, symptom:arrhythmia,
and so on. The detailed top-20 frequent labels can be found in Fig. 2.

§https://www.chunyuyisheng.com/. Our dataset will be released upon acceptance.
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Train Dev Test Total
Interrogation dialog 3,633 756 685 5,074
Window 6,746 1,410 1,354 9,510
NER label 7,853 1,765 1,551 11,169
MIE label 6,887 1,513 1,371 9,771
Updated state 1,686 337 277 2,300

Table 1. The statistics of our proposed dataset.

As shown in Table 1, our dataset includes 5,074 clinical interrogation text
dialog along with 11,169 NER labels and 9,771 MIE labels. The train/dev/test
is splited as listed in Table 1. Since we focus on the transition of states for each
label, we also count the number of states being updated, which are 2,300 in our
dataset. Due to the inherent data imbalance problem, 21 of its 72 entity types
only have fewer than 10 annotated instances.

An important characteristic of our dataset is that we take into considera-
tion the fact that the state of entities may be changed along with the clinical
interrogation. Based on our observation to the real data, the updating rules are
complex and can’t be listed with a finite set. We thus summarize our annotation
schema as follows: 1) entity state in current window is implicitly related to both
following and above window context. 2) entity state is not always updated with
contextual information, e.g., above dialog turns make hypothetical description
of the entity, which is redundant for state prediction. 3) state “unknown” aren’t
supposed to affect state “positive” and “negative”, while the state transformation
between “positive” and “negative” requires checking specific context.

Based on the criteria above, we invite six outsourcing staffs with medi-
cal background to participate in the dataset construction process. They cross-
annotated each conversation and assigned the pre-defined labels to each entity
by taking the whole dialog into account. If one entity was annotated differently
by two annotators, the third annotator would be invited and give a final decision.

Fig. 2. Data distribution of the top 20 entity types in our dataset.
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4 Proposed Method

In this section, we elaborate on the proposed CLINER, an end-to-end clinical
interrogation named entity recognition model. The framework of CLINER is
presented in Fig. 3, which contains five components: 1) a window encoder that
converts the raw input to contextual representation; 2) a fine-grained dialog-
aware aggregation module that preserves consistent entity mention semantics in
the whole dialog to provide complementary information for each given token; 3) a
label-aware fusion module that models the relevance of the label information with
the window representation; 4) a coarse-grained global contextual aggregation
module that takes the most informative following window into account; and
5) a predictor module that generates the tags for MIE task and NER task,
respectively. In addition, we share the model parameters for both MIE and NER
tasks, and jointly train them under a multi-task training framework.

Chest Pain: Positive
Chest Pain: Negative
Chest Pain: Unknown
…
Fever: Unknown

Doctor: May I help you?
Patient: I can’t breathe.
It seems that there is
phlegm in my throat.

Doctor: Has cardiac
ultrasound been done?
Patient: no, what medicine
should I take for myocarditis?

Doctor: Have you diagnosed
myocarditis?
Patient: I have difficulty in
breathing occasionally.

…
…

Window
Encoder

Fine-grained 
aggregation

Label-aware
fusion

Coarse-grained 
aggregation

MIE preditorNER preditor

embedding
of tokens in
current window

embedding
of tokens in

current label 

encoding of tokens
in current window

Memory set 
for each token

enhanced token representations in current
window by identity tokens in the dialog

label-aware
window representations

encoding of
current label

enhanced current window representation by
aggregating the most relevant later windowoutput the start and

end positions of the
recognized entities

in the current window
switch to the

next label

Fig. 3. Overview of the framework of CLINER.

4.1 Model Design

Window encoder. In our model, we define two consecutive utterances as a
window, which is constituted by an utterance from the doctor and an utterance
from the patient, respectively. Accordingly, the entire interrogation dialog D can
be divided into multiple windows {X1, X2, ..., XN}, where N denotes the number
of the windows.
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For each window Xi, we firstly concatenate the two utterances as a token
sequence Xi = {x1, x2, ..., xT } and encode them into contextual token represen-
tations Hi = {h1, h2, ..., hT } as follows:

ht = Encoder(xt). (1)

Different network architectures can be used for the Encoder, e.g., BiLSTM or
BERT. For each candidate label l in the label set L, we also adopt the above
method to encode it into contextual semantic vector hl.

Fine-grained dialog-aware aggregation. The state of an entity is related
to all the identical entities in the entire dialog. Intuitively, we can infer that
it is necessary for the model to leverage the holistic information from all other
instances into the current entity in order to gain the contextual knowledge.
We introduce the dialog-aware representation for each token by leveraging a
key-value memory network [16]. Specifically, we define a memory set M =
{(k1, v1), (k2, v2), ..., (kM , vM )} for each token to store all the identical tokens
within the dialog, where the key km represents the positional information of the
m-th instance, i.e., its window index amongst the dialog and its token index
amongst the window. The value vm represents the hidden state hm of the given
token. M is the number of instances. The hidden states of tokens are fine-tuned
during training and used to update the value part of the memory.

For each token xt, in order to aggregate the dialog-aware representation,
its contextual representation ht is adopted as attention key to calculate the
attention scores amongst the other hidden states hm in memory set M as follows:

stm =
ht · h⊤

m√
de

, (2)

where de denotes the dimension of token embedding. Accordingly, the dialog-
aware representation is computed as:

atm =
exp(stm)∑M
k=1 exp(stk)

, (3)

hd
t =

M∑
m=1

atm · vm. (4)

Then, we integrate the original hidden state ht with the dialog-aware represen-
tation hd

t to form a new contextual representation gt , which will be further fed
to the following label-sentence attention module:

gt = λ · ht + (1− λ) · hd
t , (5)

where λ is a hyper-parameter to balance the hidden state ht and dialog-aware
representation hd

t .
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Label-aware fusion. The label-sentence attention is devised to incorporate
the label information hl into the current window representation. Formally, we
treat label representation hl as a query in attention mechanism to compute the
attention scores towards each contextual token representations gt within the
window. Then we can obtain the label-specific current window representation cl

as follows:

slt =
hl · g⊤t√

de
, (6)

alt =
exp(slt)∑T

k=1 exp(s
l
k)

, (7)

cl =

T∑
t=1

altgt, (8)

where T is the sequence length of the current window. In this sense, the model
is capable of determining the existence of entities of label l type in the current
window, as well as predicting the entity spans.

Coarse-grained global contextual aggregation. Since the state in the cur-
rent window is not only determined by the current context, but also the relevant
information from the following windows, we need to take the interactions be-
tween windows into account. It is unnecessary to consider the windows prior to
the current window, as the states only update based on the following interroga-
tion text rather than the previous text.

We employ a dynamic attention mechanism to achieve this. Concretely, we
take the current i-th window embedding cli = cl as attention query Q, the
following window embeddings {cli+1, ..., c

l
N} as key matrix K and value matrix V.

It is so-called “dynamic" as the number of following window embeddings reduces
when the dialog proceeds, and the last window does not have any following
window embedding.

The following window embedding with the highest attention score clg will be
considered as the most informative embedding for the current window, and clg
will be adopted as our global contextual embedding and be concatenated to the
current window embedding to facilitate predicting the state.

Formally, given the current window embedding cli, we select the most infor-
mative following window by:

slij =
cli · clj

⊤

√
de

, (9)

alij =
exp(slij)∑N

k=i+1 exp(s
l
ik)

, (10)

clg = clargmax
j

(al
ij)

, (11)
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where i+1 ≤ g ≤ N . Then the window embedding clg with highest attention
score is concatenated to our current window embedding cli to form the global
embedding clG:

cli,G = [cli; c
l
g], (12)

where “ ;” denotes concatenation operation, and clg is set as zero vector if the
current window is the last one in the interrogation text.

Predictor

MIE predictor. The output of the global contextual aggregation module cli,G
is fed into this module. Specifically, we iterate over each MIE label l ∈ L and
adopt a binary classifier to predict the MIE label:

ỹli = Sigmoid(FFN(cli,G)), (13)

where FFN(·) is a feed-forward neural network. A positive result indicates that
at least one entity of type l exists in the current i-th window.

NER predictor. For each window, we first predict the MIE labels, then we
align MIE labels to the corresponding spans within the current window as our
predicted entities. Given an MIE label l, we adopt a PointerNet [24] to obtain
the start and end positions of each entity:

ỹli,t,start = Sigmoid(FFN([gi,t;hl])), (14)

ỹli,t,end = Sigmoid(FFN([gi,t;hl])), (15)

where i denotes the i-th window.

Training In our model, we jointly train the MIE and NER tasks and optimize
the cross entropy loss function as the following:

LMIE =
∑
l∈L

N∑
i=1

yli log ỹ
l
i, (16)

LNER =
∑

p∈{s,e}

∑
l∈L

N∑
i=1

T∑
t=1

yli,t,p log ỹ
l
i,t,p, (17)

Ljoint = LMIE + LNER, (18)

where N is the number of windows in the dialog, and s, e represent the start and
end positions, respectively.

5 Experiments

In this section, we carry out experiments on both NER and MIE tasks on the
proposed dataset.
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5.1 Baselines and Evaluation Metrics

For the NER task, on the one hand, we compare our proposed model with
the traditional sequence labeling models, including BiLSTM-CRF, BERT-
SOFTMAX, BERT-CRF, BERT-SPAN, and BERT-LSTM-CRF. On
the other hand, we also compare our model with the state-of-the-art NER meth-
ods in both the general domain and Chinese medical domain [14, 20, 22, 11, 29].
Due to lack of source code and the difficulty of model replication, several Chi-
nese dialog NER models are not selected as our baselines [7, 6, 13]. We report
Precision/Recall/F1 score for evaluation.

For the MIE task, we only use the dialog-level metric, as window-level metric
contains massive label redundancy, in which each label may be counted sev-
eral times for evaluation. Specifically, we merge the results of the windows that
belong to the same clinical interrogation, then we evaluate the results of each
interrogation text.

5.2 Experimental Settings.

For a fair comparison, our setups are basically consistent with MIE [28]. We
use 300-dimensional Skip-Gram [15] word embeddings pre-trained on medical
dialog corpora from a Chinese online health community. Additionally, we also
use Chinese-BERT-wwm [1] as our pre-trained model. The size of the hidden
states of both feed-forward network and Bi-LSTM is 400. Adam is adopted for
optimization [10], and we use dropout and L2 weight regularization to alleviate
the overfitting problem and adopt early stopping using the F1 score on the
development set. All experiments are run for three times and the averaged score
is reported to achieve reliable results.

5.3 Results and Analysis

NER results. Table 2 shows the precision, recall and F1 score of our model and
other baselines on the test set of the NER task. We observe that the BERT-based
baselines achieve about 45% F1 score on our dataset. The current state-of-the-
art models achieve similar results ranging from 45.42% to 48.13% in F1 score.
Furthermore, by fully exploiting the information in the scope of the entire dialog,
our proposed CLINER-LSTM outperforms the baseline models and obtained
48.61% F1 score even though we do not utilize pre-trained models. Finally, our
CLINER-BERT gains the state-of-the-art result with 52.01% precision, 51.70%
recall and 51.85% F1 score, respectively.

We also evaluate our model and baselines on the subset of the test set which
only contains samples with updated states. As shown in Table 2, our model
outperforms the baseline models and achieves the best performance of 49.06%
F1 score. This is because our model involves more useful features from the whole
dialog via the designed fine-grained and coarse-grained aggregation models.
MIE results. The experimental results are shown in Table 3. Both MIE-single
and MIE-multi models obtain better results than the Plain-classifier model,
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which indicates that MIE architecture is more effective than a basic LSTM
representation method. Compared to the baseline model in MIE, our model
can not only capture the interactions between utterances and labels but also
integrate the information from the following windows. Therefore, our proposed
CLINER-BERT achieves the state-of-the-art results with 88.95% and 63.97%
F1 scores in category level evaluation and category-and-state level, respectively.
Even if we utilize the BiLSTM as model encoder as they did in the baselines,
our CLINER-LSTM still outperforms all these baselines by 2.78% and 0.58% F1
scores, respectively.

Full test set Test set with updated
states only

Prec. (%) Rec. (%) F1 (%) Prec. (%) Rec. (%) F1 (%)
LSTM-CRF 35.64 41.07 38.16 31.91 42.57 36.48
BERT-CRF 41.19 46.28 43.59 37.44 47.05 41.70

BERT-SOFTMAX 45.75 44.78 45.26 39.62 43.23 41.39
BERT-LSTM-CRF 42.15 49.49 45.53 37.67 49.67 42.85

BERT-SPAN 47.34 44.27 45.75 40.97 42.20 41.58
Qiu et al. [20] 44.90 45.95 45.42 39.49 43.76 41.52

FLAT [11] 44.44 48.24 46.26 41.07 45.61 43.22
Zhang et al. [29] 45.48 49.47 47.39 44.18 46.03 45.08

Sui et al. [22] 48.97 46.67 47.80 43.20 46.61 44.84
Ma et al. [14] 51.33 45.31 48.13 43.93 46.15 45.01

CLINER-LSTM 49.08 48.15 48.61 43.45 48.24 45.72
CLINER-BERT 52.01 51.70 51.85 46.30 52.16 49.06

Table 2. Experimental results of the NER task.

Category only Category and state
Prec.(%) Rec.(%) F1(%) Prec.(%) Rec.(%) F1(%)

Plain-classifier 81.75 73.76 77.29 59.98 52.65 56.08
MIE-single 87.02 80.02 83.46 61.15 61.30 61.09
MIE-multi 85.32 80.48 82.83 60.30 60.78 60.54

CLINER-LSTM 88.48 84.10 86.24 59.85 63.60 61.67
CLINER-BERT 91.02 86.97 88.95 62.31 65.72 63.97

Table 3. Experimental results of the MIE task with dialog-level evaluation metric [28].

Ablation study. In this section, we estimate the effectiveness of the differ-
ent model components in both NER and MIE tasks. CLINER-BERT represents
the full model with all modules that achieves the best performance. The results
shown in Table 4 suggest that getting rid of fine-grained dialog-aware representa-
tion deteriorates the F1 score with 1.68% and 2.30% drop. We can infer that the
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Category only Category and state
Prec.(%) Rec.(%) F1(%) Prec.(%) Rec.(%) F1(%)

CLINER-BERT 62.31 65.72 63.97 52.01 51.70 51.85
without memory 57.81 67.53 62.29 48.16 51.02 49.55

without global contextual aggregation 57.01 66.13 61.23 48.49 50.34 49.40
without label info in NER 56.34 64.40 60.10 46.92 48.54 47.72

Table 4. The ablation study with different settings.

Positive NER Negative NER Unknown NER
P.(%) R.(%) F1.(%) P.(%) R.(%) F1.(%) P.(%) R.(%) F1.(%)

LSTM+CRF 39.04 56.20 46.07 15.68 7.76 10.39 10.01 13.71 11.56
BERT+CRF 54.84 50.19 52.41 41.66 27.78 33.33 31.94 34.67 33.25
CLINER-LSTM 52.32 55.69 53.95 50.01 26.38 34.55 39.46 36.87 38.12
CLINER-BERT 54.42 57.01 55.68 52.85 30.14 38.39 41.26 38.75 39.97
Table 5. State-specific evaluation on the NER task, where P., R., F. is abbreviate for
Precsion, Recall and F1 score, respectively.

model performance is directly related to the information from all instances of the
entity, which determines the change of the states in the entity-level. In addition,
the model performance decreases by 1.06% and 0.15% without global contextual
aggregation, as it incorporates the most informative window embedding in the
following text to aid the current window in capturing the change of states. Fi-
nally, if we ignore the label information, the model suffers by 1.13% and 1.68%
degradation in MIE and NER tasks, respectively. It indicates the label-sentence
attention can capture the interaction between the current candidate label and
the utterances as the most relevant tokens in the utterances will be highlighted,
and NER task is strongly affected by the involvement of label information.
Case study. We analyze our model by visualizing utterance-level and window-
level attention heat maps of our model on a prediction example. Fig. 4 presents
the visualization of token-level and window-level attention heat maps on a pre-
diction example of our model and baselines. The token-level attention visualiza-
tion indicates that our model detects the tokens that are semantically related
to the given category “myocardial infarction”. We can easily find that the la-
bel “myocardial infarction” attends to the text “myocardial infarction” with the
highest weight in the current window. To further determine the state, the model
computes the attention score between the current window and the following win-
dows. Window 2, which has the highest attention score, is selected as our global
information to add to the state prediction. We notice in the heatmap that the
token “no” is highlighted and further utilized as a crucial reference to correctly
predict the state “negative” for the given label in the current window. On the
contrary, conventional NER methods are impossible to predict this label prop-
erly without considering the information from window 2, which ultimately leads
to the failure of the state prediction in this window.
Performance for state prediction. In this part, we analyze the effectiveness of
the improvement for state prediction by our model. We carry out a quantitative
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Patient: I felt hard to breath, diagnosed as Myocardial infarction and Heart

failure.

Doctor: Hi, nice to talk to you. Is it acute myocardial infarction?

Patient: No. we don’t know when we got it.

Doctor: Heart failure? What’s the number of BNP? You at home or hospital?

Patient: Hospital. The doctor suggested heart stent. But I’m too old for that.

Doctor: It should not be Myocardial infarction, I would suggest to conduct

heart stent if it’s Coronary stenosis or Myocardial occlusion. Or it would

threaten your life next time.

Patient: How about intravenous infusion right now? There is still Pleural 

effusion

Doctor: What do you want to ask exactly?

Patient: I want to know about the success rate of conducting heart stent under

this situation.

Doctor: Heart stent is just a minimally invasive surgery, always with high

success rate.

Patient: OK, Thanks.

Doctor: No problem. Have a good one.

Window 0

Window 1

Window 2

Window 3

Window 4

Window 5

(b) token-level Attention

(a) Clinical Interrogation Text (c) Window-level Attention

Fig. 4. The token-level and window-level attention visualization of our model on an
example from the test set, which is assigned a ground-truth label “myocardial infarction:
negative". (a) the clinical interrogation text; (b) token-level attention; and (c) window-
level attention.

experiment to verify this. Specifically, we split the test set into three groups
according to the states and evaluate them separately. The results in Table 5
show that our proposed model outperforms the baselines in NER tasks across
all the state types. In particular, our model gains significant improvement over
unknown by 6.72% and 4.87% in F1 score respectively. As “unknown” is the state
that has been updated most frequently, our model can capture these variations
and obtain a promising result.

6 Conclusion

In this paper, we built a clinical interrogation NER dataset, and introduced an
effective model for the clinical interrogation NER task. Our proposed CLINER
model better captures the update of entity states by fully exploiting the rele-
vant context from the following windows of the current window. Experiments
in both NER and MIE tasks showed that our model could effectively boost the
performance and outperformed the baselines. Our research provides a promising
solution for the automatic EMR generation based on clinical interrogation. For
future work, we plan to further leverage the internal relations between labels
and incorporate medical domain knowledge into our model.
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