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ABSTRACT

A large number of deep learning models have been proposed for
the text matching problem, which is at the core of various typical
natural language processing (NLP) tasks. However, existing deep
models are mainly designed for the semantic matching between a
pair of short texts, such as paraphrase identification and question
answering, and do not perform well on the task of relevance match-
ing between short-long text pairs. This is partially due to the fact
that the essential characteristics of short-long text matching have
not been well considered in these deep models. More specifically,
these methods fail to handle extreme length discrepancy between
text pieces and neither can they fully characterize the underlying
structural information in long text documents.

In this paper, we are especially interested in relevance match-
ing between a piece of short text and a long document, which is
critical to problems like query-document matching in information
retrieval and web searching. To extract the structural information
of documents, an undirected graph is constructed, with each vertex
representing a keyword and the weight of an edge indicating the
degree of interaction between keywords. Based on the keyword
graph, we further propose a Multiresolution Graph Attention Net-
work to learn multi-layered representations of vertices through a
Graph Convolutional Network (GCN), and then match the short
text snippet with the graphical representation of the document with
an attention mechanism applied over each layer of the GCN. Exper-
imental results on two benchmark datasets demonstrate that our
graph approach outperforms other state-of-the-art deep matching
models.
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1 INTRODUCTION

Matching two pieces of text has long been a core research problem
underlying numerous natural language processing tasks. The past
few years have seen the great success of deep models [11, 24, 27, 36]
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for semantic matching tasks such as question answering (QA) [39],
paraphrase identification [40] and automatic conversation [14] etc.
However, it is still challenging to estimate the relevance between a
pair of short and long text pieces. For example, in query-document
matching, user queries usually contain a few words, while the
lengths of documents could vary from hundreds to thousands of
words. Given rich semantic and syntactic structures that exist in
long documents and the extreme discrepancy between the lengths
of queries and documents, accurately estimating the relevance be-
tween them is hard.

Existing methods for text matching are typically categorized
into three types including unsupervised metrics [17], feature-based
models and deep matching models [11, 24, 27, 36]. For unsupervised
metrics, text documents are transferred to vectors with represen-
tation methods such as bag-of-words (BOW). Then the distance
between vectors are calculated according to metrics like euclidean
distance, cosine similarity and so on. However, such approaches are
principally based on the term frequency and ignore the semantic
structures of natural language. Thus leading to poor performance
for complicated tasks. Feature-based models, or feature engineering
[37] rely on hundreds or thousands of handcrafted features. In real-
ity, search engines also depend on other auxiliary information like
click history, numerous ad hoc rules and metadata, etc., to boost
query-document matching performance. Obviously, handcrafting
features is time-consuming, possibly incomplete and application-
specific.

Recently, a variety of deep models have also been applied to
text matching, e.g., [11, 24, 27, 36], which can be divided into
two categories depending on the model structures: representation-
focused and interaction-focused. Representation-focused deep mod-
els [27, 36] take the word embedding sequences of a pair of text
objects as the input, and learn its intermediate contextual represen-
tation through a Siamese convolutional or recurrent neural network,
on which final scoring is performed. But for interaction-focused
deep models [11, 24], which focus on local interactions between
two pieces of text and learn the complex interaction patterns for
relevance with deep neural networks. Comparing to unsupervised
metrics and feature-based models, deep matching models are gen-
eralized while maintaining high accuracy in various NLP tasks.

However, we show that most existing deep models do not yield a
satisfactory performance for relevance matching between a pair of
short and long text objects. It is due to the essential differences be-
tween semantic matching and relevance matching. Semantic match-
ing tasks, such as paraphrase identification and semantic textual
similarity, concentrate on identifying the semantic meaning and
inferring the semantic relations between two pieces of text. While
relevance matching tasks, such as query document matching in
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information retrieval, care more about whether the query and doc-
ument are related or not instead of whether they express the same
semantic meaning or not. We figured out that most existing deep
matching models [11, 24, 27, 36], whether they are representation-
focused or interaction-focused, mainly concern semantic matching
rather than relevance matching. Also, we point out that current
deep models [11, 24, 27, 36] are effectively dealing with text snip-
pets, e.g., a pair of sentences, but have difficulty handling extreme
short text and long documents. On one hand, encoding the query
consisting of only few words with complicated deep models usually
results in excessive deformation. On the other hand, it is more likely
to introduce “noise” and redundant information when dealing with
long documents using deep models.

To address the above problems, we propose a deep relevance
matching model based on graph and attention mechanisms to im-
prove the matching between a pair of short and long text objects. We
show that an appropriate semantic representation, beyond a linear
sequence of word vectors [25], of a document plays a central role
in relevance matching. Documents are represented as undirected,
weighted Keyword Graph, in which each vertex is a keyword in the
document, and edges indicate the degree of relevance between two
corresponding keywords. Such a graphical representation helps
to reveal the inner structure of document focuses. Based on such
representation, the problem of relevance matching is transformed
into a query-graph matching problem.

To match the query and keyword graph of a document, we de-
signed a novel deep matching model called the Multiresolution
Graph Attention Network (MGAN). It learns a multiresolution rep-
resentation for each keyword vertex through a multi-layered graph
convolutional network (GCN) [5, 16], an emerging variant of convo-
lutional neural networks that specifically encodes graphs. Moreover,
we develop deeper insights into the GCN model and improve it to
better cope with weighted graphs. By applying attention mecha-
nisms to word vectors of the query with the keyword representa-
tions learned by each layer of the GCN, MGAN is able to character-
ize the relevance between the query and keywords of the document,
utilizing multiresolution representations of keywords generated in
different layers.To handle the varying number of keywords in differ-
ent documents, a rank-and-pooling strategy is proposed to sort and
select keyword vertices. In each layer, we choose a fixed number of
query-keyword matching results, and concatenate them together
for aggregation. The final relevance score is generated by feeding
the concatenated matching vector into a multilayer perceptron
network.

We evaluated our model on two datasets for different tasks,
including the Ohsumed dataset for topic-document matching and
the NFCorpus dataset for query-document matching. Experimental
results demonstrate that our model boasts significantly improved
performance compared with existing state-of-the-art deep matching
models, including ARC-I [11], ARC-II [11], DSSM [13], C-DSSM
[34], MV-LSTM [36], and MatchPyramid [24].

The remainder of this paper is organized as follows. Sec. 2 for-
mally introduces the problem of relevance matching as well as its
characteristics. Sec. 3 presents the keyword graph construction of
long documents. In Sec. 4, we propose the Multiresolution Graph
Attention Network for relevance matching of short-long text pairs
based on the graph. Experimental results are demonstrated in Sec. 5.

We review the related literature in Sec. 6 and finally conclude the
paper in Sec. 7.

2 RELEVANCE MATCHING

In this section, we formally introduce the problem of relevance
matching, and show the differences between relevance matching
and semantic matching. Most importantly this section serves to
point out the challenges in matching the relevance between query
and document.

Denote a query as q and a text document as d. Given a query-
document pair (g, d), the relevance matching problem can be for-
malized as:

r=F($q(q)- $a(d)) (1)

where ¢4 and @, are representation functions that map query and
document to their feature space. ¥ is the scoring function based on
the interactions between query and document. The relevance score
r can be binary or numerical: binary r indicates whether the text pair
is related or not, while numerical r reflects the relevance degree
between a query and a document. This brand of text matching
problems are generally related to a variety of NLP tasks, such as
information retrieval that matches user queries with document
collections.

A lot of deep matching models have been proposed [11, 24, 27,
36], and most of them have only been demonstrated to be effective
on a set of NLP tasks such as semantic textual similarity, paraphrase
identification, question answering [8] and so on. However, when
these deep models are applied on relevance matching problem
such as the task of query document matching, their performance is
usually disappointing.

This is due to some fundamental differences between the tasks
of semantic matching and relevance matching, as pointed out by
[8]. The goal of semantic matching is to understand the semantic
meaning of the text or infer the relationship between two pieces
of text, which are usually homogeneous sentences. However, rel-
evance matching focuses on deciding whether two pieces of text
are describing the relevant topics. For example, “A man is playing
basketball” is semantically similar with “A man is playing football”,
but these two sentences are not relevant. Another example is that
“The stock price of Apple is increasing.” is relevant to “Apple is
an excellent company””, but they are not semantically similar. In
the semantic matching, since sentences usually consist of different
grammatical structures, it is more beneficial to implement syntactic
analysis. Compared with semantic matching, relevance matching
emphasizes more on the matching signals between query keywords
and a document. Actually, most existing models are concerned
about semantic matching problem, such as paraphrase identifica-
tion, question answering [8] and so on, but few of them consider
the characteristics of the relevance matching.

Besides, in the task of query document matching, query and
document vary considerably in text length and provide unbalanced
information for directly matching. The query is usually extremely
short and consists of only few words, while the document varies
considerably in length, from tens of words to tens of thousands
of words. Current deep models [11, 24, 27, 36] are effectively deal-
ing with text snippets, e.g., a pair of sentences, but have difficulty



Document:

The US Department of Commerce just announced a ban on
American exports to the Chinese smartphone maker ZTE. That
means American companies like Dolby and Qualcomm won’t be
able to export any parts to ZTE for up to seven years. The loss of
Qualcomm is particularly damaging, as it severely restricts
ZTE’s options for devices in the US market.

Keyword Graph:
US Department of Commerce/ ban
Chinese American Qualcomm
export
\ Dolby
smartphone ZTE

Figure 1: An example to show a piece of document and its
corresponding Keyword Graph representation.

handling extreme short text and long documents in query docu-
ment matching tasks. On one hand, encoding the query consisting
of only few words with complicated deep models usually results
in excessive deformation. On the other hand, it is more likely to
introduce “noise” and redundant information when dealing with
long documents using deep models.

What is more, most existing approaches consider text pieces
as sequences of words or word vectors. However, the semantic
structure information of text pieces is not fully utilized, which
can be helpful for the task of relevance matching between queries
and documents, especially when the document length is long. In
the next section, we will introduce our proposed procedures to
transform a document into a keyword graph. Such a graph rep-
resentation proves to be effective at uncovering the underlying
attention structure of a long text document such as a news article.

3 DOCUMENT AS GRAPH

To address the challenges of the relevance matching problem, we
model the document as a weighted, undirected keyword graph. The
aim of this graph representation is to model the interaction structure
of document keywords, as well as uncovering the term importance
of keywords induced by the topological structure of keyword in-
teractions. Compared with linear representation of text pieces, a
graphical representation can better capture the rich intrinsic se-
mantic structures in long text objects. Furthermore, it is helpful in
overcoming the long-distance dependency problem in NLP, as it
breaks the linear organization of words.

We first describe the structure of a document keyword graph
before presenting the detailed steps to derive it. Given an input
document D, our objective is to obtain a graph representation Gp
of D. Each vertex in Gp is a keyword in document 9. We link two
vertices by an edge if the word distance of the two keywords in the
document is smaller than a threshold (we set the threshold as 20 in
our experiments). The edge weight is proportional to the inverse
of the word distance between two keywords.

As a toy example, Fig. 1 illustrates how we convert a document
into a keyword graph. We can extract keywords or key phrases
such as ZTE, Qualcomm, US Department of Commerce, export and
so on from the document using common keyword extraction algo-
rithms [35]. These keywords represent the topics or concerns in
this document. We then connect the keyword vertices by weighted
edges, where the edge weight between a pair of keywords denotes
how close the they are related, and the whole topological structure
of the keyword graph shows the semantic structure of the docu-
ment. For example, in Fig. 1, export is highly correlated with ZTE,
Chinese, American and so on. In this way, we have transformed the
original document into a graph of different focal points, as well as
the interaction topology among them.

3.1 Keyword Graph Construction

We now introduce our detailed procedure to restructure a docu-
ment D into a desired keyword graph Gp as described above. The
whole process consists of three steps: 1) document preprocessing,
2) keyword extraction, and 3) edge construction.

Document preprocessing. The first step is preprocessing the
input documents. We can utilize off-the-shelf NLP tools such as
Stanford CoreNLP [20] to clean the text and tokenize words. Then,
we extract named entities from the document. For documents, espe-
cially news articles, the named entities are usually critical keywords.

Keyword extraction. The next step is to extract the keywords
of documents. As the named entities alone are not enough to cover
the main focuses of the document, we therefore apply a keyword
extraction algorithm to expand the keyword set. There are different
algorithms for keyword extraction [35], such as TF-IDF, TextRank,
RAKE and so on. Since TF-IDF takes the advantages of wide gen-
erality and high efficiency, we implemented it in our experiments.
More specifically, we first calculate the term frequencyaASinverse
document frequency (TF-IDF) value for each token, and choose the
top 20 percentage tokens to expand the set of document keywords.
Even though more sophisticated algorithms may achieve better
performance for the keyword extraction, in this paper, we concen-
trate on the graph modeling of documents and the algorithm of
relevance matching. After we extract the set of keywords from a
document, each keyword will be a vertex in the document’s graph.

Edge construction. Our last step is linking correlated keywords
in the document by weighted edges. For each pair of keyword ver-
tices v; and v}, we calculate the word distance d;; in the document.
Suppose keyword v; shows m times in the document and keyword
vj shows n times in the document, with m < n. For each v;, we
select the v; that is most close to it, and calculate the word distance
ditj for t;), keyword v;. The distance d;; is the mean distance be-
tween each v; and its most nearby v;. Based on the word distance
d;j, the weight w;; of the edge e;j between v; and v; is calculated
as

1 m
_—= . 2
dij XL, dit j @

Now, we have transformed an input document into a weighted
undirected graph of keywords. Compared with the original docu-
ment’s sequential structure, a graph structure organized keywords
in terms grants a correlation structure. Therefore, the problem of
long distance dependency can be alleviated as related keywords

wij = g(dij) =



are linked by weighted edges. Furthermore, the weighted edges
represent the strengths of interactions among these concepts. To-
gether with the topology structure of the whole graph, we can also
model the importance of different keyword in the document. A
keyword with a lot of edges linking it to other keywords is usually
more important than other keywords that only have a few edges. A
keyword that has strong connections with other keywords (i.e., the
edge weights are large) are typically more important than keywords
that only have edges with small weights.

There are also existing works that model a document as a graph
of sentences [2, 6, 21], or construct vertices and edges via more
complicated methods, such as linking terms in a document to real
world entities or concepts based on resources. On such example is
DBpedia [1], which extracts subject-predicate-object triples from
text based on syntactic analysis to construct directed edges [18], and
so forth. However, as the problem of relevance matching is more
focused on the exact matching signals between query keywords
and a document, we therefore choose to model the correlation be-
tween keywords of a document, rather than using sentences as
graph nodes. Compared with constructing a keyword graph with
complicated mechanisms rooted in a knowledge base or performing
syntactic analysis, which are usually time consuming, we choose to
model the structure of keyword correlations by a more efficient pro-
cedure described above to make it available for real world industry
applications. We will see that our keyword graph is both efficient
and able to improve the performance of relevance matching tasks
when combined with the Multiresolution Graph Attention Network
model, which we will describe in detail in the next section.

4 MULTIRESOLUTION GRAPH ATTENTION
NETWORK

In this section, we further exploit the keyword graph representa-
tion of documents in Sec. 3, and propose a deep relevance model
based on multi-layer graph convolutional networks and attention-
based matching, namely Multiresolution Graph Attention Network
(MGAN), for query document matching. Fig. 2 illustrates the overall
architecture of our proposed model, which mainly has five sequen-
tial stages. First, query and vertices in the document graph are
embedded with word vectors such as GloVe [25]. Second, the em-
bedded query and document graph are respectively encoded with
convolutional layers. Specifically, for the document graph, graph
convolutional layers are implemented to extract the local features of
vertices and iteratively revise the encoding vectors. Third, a Rank-
and-Pooling layer is utilized to sort the vertices in a specific order
and unify the graph size. Next, we compute the matching scores be-
tween query and selected vertices in each graph convolutional layer
based on the attention mechanism. Finally, these matching scores
are concatenated as a match vector and fed into the aggregation
layer to get the final relevance matching result. We will describe
each layer in detail in the following.

4.1 Query Embedding and Encoding

The embedding layer turns each token of the query and each key-
word of the document into a dense vector. Given a query with dgq
words, a document graph with dy vertices and a de dimensional pre-
trained embedding vectors, we will get a query embedding matrix

Qemb € R4*dq and a graph vertex feature matrix Geyp, € Réexdg
after the word embedding layer. In this work, we utilize the pre-
trained, 300-dimensional Glove Word Vectors [25] for word embed-
ding in our experiments. Notice that the out-of-vocabulary (OOV)
words, which are not able to be embedded, can still play signifi-
cant roles in the matching. Especially for a query with only 2 or 3
terms, in this case, each word counts and should not be ignored. To
fully exploit these OOV words, we match them on a term level by
calculating how many common OOV words x,0¢ are in the query
and document graph. x,, is defined as the OOV feature, and will
be concatenated to the final match vector, which we will describe
later.

It is worth mentioning that we can potentially further improve
the performance of our model by combining the character-level
embedding with the feature embedding to form the final word repre-
sentations. A character-level embedding of a word (or token) can be
obtained by encoding the character sequences with a bi-directional
long short-term memory network (BiLSTM) and concatenating the
two last hidden states to form the embedding of the token [12]. In
this way, the meaningful embedding vectors of out-of-vocabulary
(OOV) words can also be learned.

After we embedded the query, we further use a simple 1D convo-
lutional neural network (CNN) as an encoder to produce a refined
encoding representation Q € R%*% of the query, where the i-th
column in Q is the context vector of token i that incorporates the
contextual information in the query.

4.2 Vertex Encoding based on Graph
Convolutional Network

Unlike the linearly structured query, the document is restructured
into a keyword graph. After we embedded the vertices by word
vectors, we utilize the ability of Graph Convolutional Network
(GCN) [16] to capture the interactions between vertices and get the
contextual representation for each vertex.

GCNs generalize traditional CNN from low-dimensional regu-
lar grids to high-dimensional irregular graph domains. Now let us
briefly describe the GCN propagation layers in our model, which
are used to encode graph vertices with contextual information and
revise the vertex vector representation iteratively. In our work,
we improve the graph convolutional network (GCN) proposed in
[16] to better deal with weighted graphs, and learn multiresolu-
tion vertex representations through multi-layer graph convolutions.
In this way, we can match query and document keywords in dif-
ferent semantic levels and enhance the performance of relevance
matching.

Graph Convolutional Network for Weighted Graphs. Let
G = (V,E) be an undirected weighted graph consisting of a set
of vertices V with [V| = N and a set of edges &. To clearly depict
the vertex-connection of a graph, the weighted adjacency matrix
A € RNXN s introduced, where A; j indicates the weight between
vertex V; and V. The diagonal degree matrix of A is denoted by
D € RNXN with D;; = Zj Aij.

Graph Laplacian, formally defined as L = D — A € RN*N s the
fundamental operator in the spectral graph analysis. In addition,
there are two normalized versions of the Graph Laplacian, known

as Symmetric Laplacian Lgys = I, — D_%AD_% and Random Walk
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Figure 2: An overview of the proposed Multiresolution Graph Attention Network (MGAN) for matching a short query and a

long text document.

Laplacian L, = I, — DA respectively. Since the graph G is
undirected and weighted, L is a symmetric positive semidefinite
matrix, which can be decomposed to L = UAUT with a diagonal
matrix of eigenvalues A = diag([Ao, A1, -+ , AnN—1]) and a matrix of
eigenvectors U = [ug, U1, ,UN-1]-

Let us consider the graph convolution in the Fourier domain. As
mentioned in [16], the spectral convolution can be generalized as
the Hadamard production of the graph signal and spectral filter in
the Fourier domain. Thus, we have the convolution result y defined
as:

y=Ugp(M)U " x 3)
where x € RN is the graph signal with scalar feature for each
vertex. Spectral filter gy(A) is a function of eigenvalues of L pa-
rameterized by 6 € RN Note that ¥ = U x represents the Fourier
transform (FT) of the signal x, while Ux is the inverse FT. However,
the convolution in Eq. 3 requires explicitly computation of Lapla-
cian eigenvectors, which is not feasible especially for large graphs.
To solve this problem, Chebyshev polynomials are implemented to
approximate the filter gg(A) as the K-localized filter gg (A):

K
9o(A) ~ g§ (A) = > O Te(A) )
k=0

where A = 1 2_ A—Iy is a diagonal matrix with scaled eigenvalues
ma

in the range [—Ji, 1]. 8 = [60, 61, - - - , Ok] is a vector of Chebyshev
coefficients, and Tj(A) is the k-th order Chebyshev polynomial
evaluated at A. By the approximation of the filter, Eq. 3 can be
estimated as the K-th localized convolution:

K
y= Z Ok Te(D)x (5)
k=0

where L = ﬁL — Iy Recall that Chebyshev polynomials Ty (L)

can be derived from a recurrence relation Tk(Z) = 2ka_1(f) -
Ty_o(L) with To(L) = 1 and Ty (L) = L. In this way, the computation
complexity is reduced to O(K |E]).

Rather than working on all vertices, the K-th localized convo-
lution only focus on the K-hop neighborhoods from the central

vertex. Let K = 1 and Apqx = 2, the above model is simplified as:
Yy =0px + 01(L - IN)x (6)

Properly reduce the number of parameters not only to accelerate
computations, but also avoid overfitting in the training process.

Unlike parameter settings in [16] with 6y = —6;, we constrain the
parameters to 6y = —A6;. Denote 6; by 0, we have:

y=0((A+ 1INy —-L)x (7)

Let X = [x1,x2, - ,xn] € RN%4e denotes the vertex feature

matrix with each x; € R4 representing a d.-dimensional feature
vector of vertex V;. When L = Ly, = Iy — D7!A, the graph
convolutional layer can be expressed as:

X" = o(D7YA + AN)X W) (8)

where 5,- i = A+ 2j Aij, and o is the active function in each layer
such as ReLU.

The parameter A controls the balance between the central vertex
and its neighbor vertices. With larger A, the central vertex will
involve more in the convolutional operation. If A equals to zero, the
central vertex will have no contribution to its vertex convolution
result.

The convolutional layer of Eq. 8 is essentially a generalization of
the graph convolutional layer in [16][41] with A = 1. When Graph
Laplacian Lsys = In — D_%AD_%, the convolution layer becomes
the GCN in [16]. However, when Ly, = I, — D7!A, itis exactly the
same with graph convolutional layer in DGCNN [41]. Obviously,
with the introduced parameter A, the graph convolutional layer
of Eq. 8 can better deal with weighted graph for different scaler
of weights. For example, if the edge weights are all larger than a
hundred, let A = 1 just like it is in GCN and DGCNN, the central
vertex will almost have no influence on its convolution results.

Since a graph convolutional layer can be viewed as a 1-dimensional
Weisfeiler-Lehman algorithm on graphs, for our keyword graph, the
convolution process can be interpreted as iteratively revising the
representations of vertices based on their neighboring vertices. In
this way, the contextual information of each vertex in the document
is incorporated. With the increasing layers of graph convolution,



each vertex will incorporate the information of a broader context
(neighbors with a larger distance to it will be considered in the ver-
tex encoding). Therefore, the multi-layer graph convolution gives
multiresolution representations of the vertices.

4.3 Rank-and-Pooling Layer

After encoding graph vertices through a multi-layer GCN, we pro-
pose a Rank-and-Pooling mechanism to sort and select the vertices
for later processing. To be specific, let {x;1, xj9, - -, xldg} denotes
the d.-dimensional vector representations of the dy vertices in the
last graph convolution layer I. For each dimension of the vertex
features, we normalize it by calculating the softmax over all dg
vertices and then sum up the feature values of all dimensions. Ac-
cording to the sum, dj vertices are sorted. We then select the top K
vertices for further processing.

The Rank-and-Pooling operation is designed for two purposes.
First, as there is no order for the vertices in a graph, we use the
ranking mechanism to sort the vertices and find out the vertices
with significant feature values in the last graph convolution layer.
As the feature values of different dimensions may have different
scale, we apply softmax to normalize the feature values of each
dimension. Second, the number of keywords dg (or vertices) varies
for different documents. We apply the “max-pooling” operation to
select the top K vertices from each layer. In this way, we can focus
on significant keywords for relevance matching, and also control
the dimension of the final matching vector.

4.4 Attention-based Query-Graph Matching

Based on the above sorted K vertices, we apply an attention match-
ing scheme between the query and selected vertices in each layer.
Given the encoded query matrix Q € RéeXdq where d, is the en-
coding dimension and dg is the number of tokens in the query.
Suppose v; is the j-th keyword vertex vector in the graph. For each
vertex j, we calculate a vertex-aware query representation q; as:

qj = Attention(Q,v;) = Q- softmaX(QTVj), 1<j<K. (9

After we get q; for each vertex j, we then calculate the match score
between query and vertex as

spj = CosineSim(vj, q;), (10)

where s;; denotes the match score between query and vertex j in
layer I.

This layer helps each vertex to focus on the matching signals
with a part of the query tokens that are most related to that vertex.
If only a small portion of the tokens in the query are correlated to a
specific keyword vertex, our attention based query-vertex matching
will help to decrease the influence of uncorrelated tokens.

4.5 Aggregation Layer

In this layer, we concatenate the matching scores of each vertex
in each graph convolution layer, as well as the OOV feature x40
described above, to form a final matching vector m as following:

m = [$11,512," "+ »S1K>""* »Slk»""* »SL1,SL2> " ** »SLK»>Xoov], (11)

where s is the attention matching score between query and
k;p, vertex in I, layer. Apparently, m € RKL+DX1 with [, denotes
the number of graph convolution layers.

Table 1: Description of evaluation datasets.

Dataset Pos Neg Train Dev Test

Ohsumed 56976 56976 68370 22789 22793
NFCorpus 64467 35465 59959 19986 19987

We then feed the concatenated matching vector m into an ag-
gregation layer to get the final relevance matching result. In our
experiment, a one-layer feed forward neural network was imple-
mented with the hidden size set to 100.

5 EXPERIMENT

In this section, our proposed Multiresolution Graph Attention Net-
work is evaluated on two datasets and compared with other existing
deep matching models, including both representation-focused deep
neural matching models and interaction-focused models. Then, we
further execute an ablation study by removing different parts of
our model and evaluating the performance of the model variants.
The ablation study proves that each module in our model plays a
significant role in the task of relevance matching.

5.1 Description of Tasks and Datasets
In the experiment, we test our model on the following two datasets:

e Ohsumed dataset for topic document matching [10].
The Ohsumed dataset consists of 34394 documents from
medical abstracts and are classified into 23 categories of car-
diovascular disease groups. The dataset is originally for the
document topic classification. In our experiment, we gener-
ate topic-document pair samples from the original dataset,
where a positive sample means the topic is the true cate-
gory of the document. A negative topic-document sample
is generated by randomly assigning an incorrect topic to a
document. The average length of topic text and documents
are 2.6 and 109.4, respectively.

e NFCorpus dataset for medical information retrieval.
The NFCorpus dataset is a full-text English retrieval dataset
for the task of Medical Information Retrieval. It contains a
total of 3, 244 non-technical English queries that harvested
from the NutritionFacts.org site, with 169, 756 automatically
extracted relevance judgments for 9, 964 medical documents
(written in a complex terminology-heavy language), mostly
from PubMed [4]. We selected a subset of the original dataset
which contains 64,467 samples, as the original dataset is
extremely unbalanced. The average length of queries and
documents are 3.5 and 146.7, respectively.

Table 1 shows a detailed breakdown of the datasets used in the
evaluation. For both of the two datasets, we use 60% of samples
as a training set, 20% of samples as a development set, and the
remaining 20% as a test set. We use training sets to train the models,
development sets to tune the hyper-parameters and each test set is
only used once in the final evaluation. We train our model by the
Adam optimizer with learning rate set to 0.001. The metrics we used
to evaluate the performance of our proposed models on the text
matching tasks are the accuracy and the F1 score of classification
results. For each model, we carry out training for 5 epochs. We



Table 2: Accuracy and F1-score results of different algo-
rithms on the Ohsumed dataset.

Algorithm Dev Test

Accuracy Fl-score | Accuracy Fl-score

ARC-I 0.5067 0.6676 0.5068 0.6681
ARC-II 0.5490 0.6759 0.5511 0.6775
DSSM 0.5243 0.4811 0.5138 0.4721
C-DSSM 0.5155 0.5650 0.5112 0.5613
MatchPyramid | 0.5597 0.6597 0.5648 0.6625
MV-LSTM 0.5610 0.4559 0.5555 0.4481
MGAN 0.8040 0.8090 0.8075 0.8118

then choose the model with the best validation performance to be
evaluated on the test set.

5.2 Compared Algorithms
In the following, We briefly describe the baseline methods:

e Convolutional Matching Architecture-I (ARC-I) [11]:
ARC-I is a typical representation-focused deep matching
model, which encodes each piece of text to a vector by CNN
and compares the representing vectors with a multi-layer
perceptron (MLP).

e Convolutional Matching Architecture-II (ARC-II) [11]:
ARC-II is built directly on the interaction space between two
texts, and intends to capture the rich matching patterns at
different levels with the 2-D convolution.

e Deep Structured Semantic Models (DSSM) [13]: DSSM
utilizes deep neural networks to map high-dimension sparse
features into low-dimensional dense features, and then com-
putes the semantic similarity of the text pair.

e Convolutional Deep Structured Semantic Models (C-
DSSM) [34]: C-DSSM learns low-dimensional semantic vec-
tors for input text by CNN. Particularly, DSSM and C-DSSM
are designed for Web search. However, they were only eval-
uated on (query, doc title) pairs.

e Multiple Positional Semantic Matching (MV-LSTM) [36]:
MV-LSTM matches two pieces of text with multiple posi-
tional text representations, and aggregates interactions be-
tween different positional representations to give a matching
score.

e MatchPyramid [24]: MatchPyramid calculates pairwise word
matching matrix, and models text matching as image recog-
nition, by taking the matching matrix as an image.

For the above baseline deep matching models, we utilized Match-
Zoo [7] for evaluation. For our MGAN model, since the edge weights
of the graph is in the range of 0 to 1, we set A = 1. Besides, con-
sidering the average length of documents, K is set to 20 in the
Rank-and-Pooling. The number of graph convolution layers L is 2.

5.3 Performance Analysis

Table 2 and Table 3 compares our model with existing deep match-
ing models on the Ohsumed dataset and the NFCorpus dataset, in
terms of classification accuracy and F1 score. Results demonstrate
that our Multiresolution Graph Attention Network achieves the

Table 3: Accuracy and F1-score results of different algo-
rithms on the NFCorpus dataset.

. Dev Test
Algorithm
Accuracy Fl-score | Accuracy Fl-score
ARC-I 0.5067 0.6676 0.7969 0.8548
ARC-II 0.5490 0.6759 0.7576 0.8361
DSSM 0.5243 0.4811 0.6336 0.7646
C-DSSM 0.5155 0.5650 0.6259 0.7590
MatchPyramid 0.5597 0.6597 0.6408 0.7811
MV-LSTM 0.5610 0.4559 0.6683 0.7564
MGAN 0.9425 0.9553 0.9407 0.9535

best classification accuracy and F1 score on both two datasets. This
can be attributed to multiple characteristics of our model. First, the
input to our neural network model is the keyword graph repre-
sentation of documents, rather than the original sequential word
representation. Based on it, we characterize the interaction pat-
terns between different keywords of the document. This helps to
incorporate the semantic structure information of a long document
into our model, and alleviates the problem of long-distance depen-
dency (as correlated words are connected by edges directly). Our
model solves the problem of matching query and document in a
“divide-and-conquer” manner to cope with the long length of docu-
ments: it matches the query with each keyword of the document
to get matching signals, and aggregate all the matching signals by
utilizing the correlations between keywords to give an overall rele-
vance matching result. Second, our model learns a multiresolution
encoding representation for each keyword vertex via a multi-layer
Graph Convolutional Network. In each graph convolution layer, the
representations of vertices are revised by taking their neighboring
vertices into account. In this way, the context information of the
keywords in the document is encoded into the high-level vertex rep-
resentations. Third, for each vertex in each graph convolution layer,
we learn a vertex-specific query representation through attention
mechanism to match the query with each vertex. This operation
helps the vertices to focus on the query information that is related
to it. Finally, our rank-and-pooling operation unifies the number
of vertices for different documents, and selects the most important
matching signals in each layer to get the final matching result.
Table 2 and Table 3 indicate that the baseline deep text match-
ing models lead to bad performance in query document relevance
matching tasks. The main reasons are the following. First, existing
deep text matching models are more suitable for the task of semantic
matching, where the main concerns in such tasks are the compo-
sitional meanings of text pieces and the global matching between
them. In our case, matching query and document is the problem of
relevance matching. This problem emphasizes more on the exact
matching signals between query keywords and documents. Both
the importance of different query keywords and the topic structure
of documents are critical to relevance matching, and we need to
take them into account. Second, existing deep text matching models
can hardly capture meaningful semantic relations between a short
query and a long document. When the document is long, it may
covers multiple topics, and the query may match only a part of
the document. In this case, it is hard to get an appropriate context



Table 4: Accuracy and F1-score results of MGAN and its vari-
ants on the Ohsumed dataset.

Algorithm Dev Test
Accuracy Fl-score | Accuracy Fl-score
No GCN 0.6837 0.6819 0.6850 0.6810
No Attention 0.7908 0.7882 0.7893 0.7865
No Query Encoding 0.7859 0.7900 0.7927 0.79576
Pooling Size K = 5 0.7602 0.7453 0.7642 0.7484
MGAN 0.8040 0.8090 0.8075 0.8118

Table 5: Accuracy and F1-score results of MGAN and its vari-
ants on the NFCorpus dataset.

Algorithm Dev Test
Accuracy Fl-score | Accuracy Fl-score
No GCN 0.8767 0.9053 0.8757 0.9039
No Attention 0.9432 0.9558 0.9433 0.9556
No Query Encoding 0.8616 0.8929 0.8629 0.8930
Pooling Size K = 5 0.9381 0.9520 0.9381 0.9517
MGAN 0.9425 0.9553 0.9407 0.9535

vector representation for relevance matching, and the part of docu-
ment that is not related with the query will overwhelm the match
signals of the related part. For interaction-focused models, most of
the interactions between words in the query and the document will
be meaningless, therefore it is not easy to extract useful interaction
features for further matching steps. Our model effectively solves the
above challenges by representing documents as keyword graphs,
and utilize the semantic structure of long documents through Graph
Convolution Network for relevance matching.

We also tried to represent a document by TF-IDF vector based on
its words or its keywords. Then we calculate the cosine similarity
to estimate the relevance level between a query and a document.
We found that the performance given by such shallow models are
quite bad: the accuracy is around 0.38 and F1 is smaller than 0.1.
This proves the necessity of representing words by word vectors,
and incorporating document structural information by graph con-
volution.

In overall, the experimental results demonstrate the superior
applicability and generalizability of our proposed model.

5.4 Impact of Different Modules and
Parameters

We also tested several model variants for ablation study. For each
model variant, we remove one module from the complete Multires-
olution Graph Attention Network model, and compare its perfor-
mance with our complete model on the two datasets to evaluate
the impact of the removed component.
Table 4 and 5 show the performance of all evaluated models for
ablation study. Specifically, we evaluated the following models:
e Multiresolution Graph Attention Network (MGAN). This
is our original proposed model.
e MGAN (no GCN). This is a variant model that removes the
graph convolutional layers in our neural network. In other

words, we just represent each vertex by the word vector, and
match each keyword with all query terms.

e MGAN (no attention). This variant model removes the
attention mechanism in our neural network. In this model,
we add a max-pooling layer over the encoded query words
to get the hidden vector representation of the query, and use
it to match with each vertex.

e MGAN (less keywords). In this model, we reduce the num-
ber of selected keywords by setting K = 5 instead of 20.

e MGAN (no query encoding). In this model, we remove
the 1D CNN encoder for query, and directly use the word
vectors to represent each query token.

Impact of graph convolution layers. Compare our model
with the version that do not contain any graph convolution lay-
ers. We can see that the performance is worse on both datasets
when we remove graph convolution from our model. The reason
is that the representation of each vertex will be local and does
not contain any context information of its neighboring vertices.
Therefore, the topological structure of keyword interactions in the
document are totally ignored. In our model with graph convolution
layers, in each layer, we lean an adaptive context vector for each
vertex. It incorporates the semantic meaning of its neighboring key-
words based on their vector representations and edge weights. The
multi-layer graph convolution leads to a multiresolution semantic
representation of keywords in the document, as in a higher layer,
the representation of a vertex covers the information of vertices in
a broader range.

Impact of query encoding. Compare our model with the ver-
sion that do not perform query encoding. When the query tokens
are only represented by the original word vectors and not refined
by any encoders to incorporate the contextual information, the
performance becomes worse. For example, if the main focus of
the query is a key phrase that contains multiple tokens, the CNN
encoder can help to combine the semantic information in tokens
to represent the key phrase, while the original sequence of word
vectors can hardly capture the compositional meaning.

Impact of query-vertex attention. Compare our model with
the version that do not implement query-vertex attention. In this
case, our model gets better performance on the Ohsumed dataset
and comparable performance on the NFCorpus dataset. Our model
use the attention mechanism to learn a vertex-aware query encod-
ing for each vertex. Thus, each vertex will focus on the matching
signals with a subset of the query tokens. In comparison, when we
remove the attention mechanism from our model, each vertex will
match with the same encoding vector of the query. Given a specific
vertex, the unrelated tokens in the query make the matching signal
between a query and a keyword less important. However, when
tokens in the query have similar meaning, the attention mechanism
won’t have significant impact on the performance of our model.

Impact of the number of selected keywords in the Rank-
and-Pooling. In the Rank-and-Pooling operation, we need to set
a parameter K and choose the matching results between the query
and the top K vertices for each graph convolution layer. We tested
K = 5 and K = 20 respectively, and the performance is better
when K = 20. That is reasonable, as K = 20, our keyword graphs of
documents retain more information of the original documents. If the
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Figure 3: Compare the accuracies and F1 scores given by dif-
ferent A on the Ohsumed dataset.

value of K is small, keywords related to the query are more likely to
be removed. However, if the value of K is too large, the unimportant
words in the document will become noise to the matching model
thus leading to bad performance. Furthermore, we should also
take the time complexity of the model into account. More vertices
selected in each layer, the more time we need for computation.

Impact of parameter 1. We tested the performance of our
MGAN model on the Ohsumed dataset with different values of
A. Fig. 3 shows the comparison result in terms of accuracy and
F1 score. It shows that the performance of our model achieve the
best when A is set to be around 1. If A is too small or too large, the
accuracy and F1 score will decrease. The reason is that the value
of A shall be around the same scale with the edge weights in the
keyword graph. In our experiments, the edges weights are within
the range of 0 to 1. Large A means that we focus more on each ver-
tex’s own information and incorporate little contextual information
into it by graph convolution. In contrast, a small value of A makes
the graph convolution emphasize on incorporating the contextual
information of vertex’s neighboring vertices, but the vertex’s own
information plays a less important role. Therefore, A is significant
to the weighted graphs and should set to an appropriate scale.

6 RELATED WORK

There are mainly two research lines that are highly related to our
work: Document Graph Representation and Text Matching.

6.1 Document Graph Representation

Various of graph representations have been proposed for document
modeling. Based on the different types of graph nodes, a majority of
existing works can be generalized into four categories: word graph,
text graph, concept graph, and hybrid graph.

For word graphs, the graph nodes represent different non-stop
words in a document. [18] extracts subject-predicate-object triples
from text based on syntactic analysis, and merge them to form a
directed graph. [31, 32] represent a document as graph-of-word,
where nodes represent unique terms and directed edges represent
co-occurrences between the terms within a fixed-size sliding win-
dow. [38] connect terms with syntactic dependencies.

Text graphs use sentences, paragraphs or documents as vertices,
and establish edges by word co-occurrence, location or text similar-
ities. [2, 6, 21] connect sentences if they near to each other, share
at least one common keyword, or sentence similarity is above a

threshold. [23] connects web documents by hyperlinks. [26] con-
structs directed weighted graphs of sentences for evaluating text
coherence.

For concept graphs, they link terms in a document to real world
entities or concepts based on resources such as DBpedia [1], Word-
Net [22], VerbNet [33] and so forth. [9] identifies the semantic roles
in a sentence using WordNet and VerbNet, and combines these
semantic roles with a set of syntactic/semantic rules to construct a
concept graph.

Hybrid graphs contains multiple types of vertices and edges.
[28] uses sentences as vertices and encodes lexical, syntactic, and
semantic relations in edges. [15] extract tokens, syntactic structure
nodes, semantic nodes and so on from each sentence, and link them
by different types of edges.

In our case, as the relevance between a short query and a long
document mostly relies on the relations between query words and
document keywords, therefore, we construct a graph of keywords
to represent a document.

6.2 Text Matching

The most straight forward method for text matching in information
retrieval is lexical matching [3], which matches terms in the query
with those in the document. However, term level matching suffers
from synonymy as well as polysemy. Instead of directly matching
the words, bag-of-words (BOW) model matches text based on statis-
tics. For BOW model, text is vectorized with TF-IDF to evaluate the
co-occurrence of words. We then calculate the distance or similarity
between vectors with euclidean distance, cosine correlation, etc.
Besides, another metric Okapi BM25 [29] based on the probabilistic
model is also widely implemented in the industry. However, these
models are based on the assumption that words in the text are
independent, disregarding the word order and semantic meaning of
each word. Topic models such as latent semantic indexing (LSI) [30],
is designed to explore the second-order co-occurrence in the text
with singular value decomposition (SVD). Feature-based models,
like IRGAN [37], are effective. However, they rely on hundreds of
handcrafted features, which are time-consuming, incomplete and
over-specified.

Considering both word semantics and word sequences, deep
matching models have seen great success in recent years. Deep
matching models can be divided into two categories depending
on the models’ architecture: representation-focused model and
interaction-focused model. Representation-focused deep matching
models usually transform the word embedding sequences of text
pairs into context representation vectors through a neural network
encoder, followed by a fully connected network or score function
which gives the matching result based on the context vectors. Such
models include ARC-I [11], DSSM [13], C-DSSM [34] and so on.
Interaction-focused models build local interactions between words
or phrases to extract the matching features. Then aggregate the
matching features to give a matching result. Models such as ARC-II
[11], DeepMatch [19] and MatchPyramid [24] are all interaction-
focused. However, the intrinsic structural properties of long text
documents are not fully utilized by these neural models. Our model
combines the graphical representation of documents and Graph



Convolutional Network to incorporate the structural information
for relevance matching.

7 CONCLUSIONS

In this paper, we point out the key role of semantic structures of
documents in the task of relevance matching between short-long
text pairs, and show that most existing approaches cannot achieve
satisfactory performance for this task. We propose to model a long
document as a weighted undirected graph of keywords, with each
vertex representing a keyword in the document, and edges indicat-
ing their interaction levels. Based on the graph representation of
documents, we further propose the Multiresolution Graph Attention
Network (MGAN), a novel deep neural network architecture, which
learns multi-layer representations for keyword vertices through a
Graph Convolutional Network. It models the local interactions be-
tween query words and each document keyword based on attention
mechanism, and combines the multiresolution matching between
query and keywords on different graph convolution layers with a
rank-and-pooling procedure to give the final relevance estimation
result. We apply our techniques to the task of relevance match-
ing based on the Ohsumed dataset and the NFCorpus dataset. The
simulation results show that the proposed approach can achieve sig-
nificant improvement for relevance matching in terms of accuracy
and F1 score, compared with multiple existing approaches.
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