
Guiding the Growth: Difficulty-Controllable Question Generation
through Step-by-Step Rewriting

Yi Cheng1, Siyao Li2, Bang Liu3∗, Ruihui Zhao1, Sujian Li4, Chenghua Lin5, Yefeng Zheng1

1Tencent Jarvis Lab, China 2LTI, Carnegie Mellon University
3RALI & Mila, Université de Montréal 4Peking University 5The University of Sheffield

{yicheng, zacharyzhao, yefengzheng}@tencent.com,
siyaol@andrew.cmu.edu, bang.liu@umontreal.ca,

lisujian@pku.edu.cn, c.lin@shef.ac.uk

Abstract

This paper explores the task of Difficulty-
Controllable Question Generation (DCQG),
which aims at generating questions with re-
quired difficulty levels. Previous research on
this task mainly defines the difficulty of a ques-
tion as whether it can be correctly answered
by a Question Answering (QA) system, lack-
ing interpretability and controllability. In our
work, we redefine question difficulty as the
number of inference steps required to answer
it and argue that Question Generation (QG)
systems should have stronger control over the
logic of generated questions. To this end, we
propose a novel framework that progressively
increases question difficulty through step-by-
step rewriting under the guidance of an ex-
tracted reasoning chain. A dataset is automat-
ically constructed to facilitate the research, on
which extensive experiments are conducted to
test the performance of our method.

1 Introduction

The task of Difficulty-Controllable Question Gen-
eration (DCQG) aims at generating questions with
required difficulty levels and has recently attracted
researchers’ attention due to its wide application,
such as facilitating certain curriculum-learning-
based methods for QA systems (Sachan and Xing,
2016) and designing exams of various difficulty
levels for educational purpose (Kurdi et al., 2020).

Compared to previous QG works which control
the interrogative word (Zi et al., 2019; Kang et al.,
2019) or the context of a question (Liu et al., 2020,
2019a), few works have been conducted on diffi-
culty control, as it is hard to formally define the
difficulty of a question. To the best of our knowl-
edge, Gao et al. (2019) is the only previous work of
DCQG for free text, and defines question difficulty
as whether a QA model can correctly answer it.

∗Corresponding author.

Figure 1: An example of generating a complex ques-
tion through step-by-step rewriting based on the reason-
ing chain extracted from a constructed context graph.

This definition gives only two difficulty levels and
is mainly empirically driven, lacking interpretabil-
ity for what difficulty is and how difficulty varies.

In this work, we redefine the difficulty level of a
question as the number of inference steps required
to answer it, which reflects the requirements on
reasoning and cognitive abilities (Pan et al., 2019).
Existing QA systems perform substantially worse
in answering multi-hop questions than single-hop
ones (Yang et al., 2018), also supporting the sound-
ness of using reasoning hops to define difficulty.

To achieve DCQG with the above definition, a
QG model should have strong control over the logic
and reasoning complexity of generated questions.
Graph-based methods are well suited for such logic
modelling (Pearl and Paz, 1986; Zhang et al., 2020).
In previous QG researches, Yu et al. (2020) and
Pan et al. (2020) implemented graph-to-sequence



frameworks to distill the inner structure of the con-
text, but they mainly used graphs to enhance doc-
ument representations, rather than to control the
reasoning complexity of questions.

In this paper, we propose a highly-controllable
QG framework that progressively increases diffi-
culties of the generated questions through step-by-
step rewriting. Specifically, we first transform a
given raw text into a context graph, from which we
sample the answer and the reasoning chain for the
generated question. Then, we design a question
generator and a question rewriter to generate an
initial simple question and step-by-step rewrite it
into more complex ones. As shown in Fig. 1, “Tom
Cruise” is the selected answer, and Q1 is the initial
question, which is then adapted into Q2 by adding
one more inference step (i.e. N1←N2) in the rea-
soning chain. That is, it requires to infer “Top
Gun” is “the film directed by Tony Scott” before
answering Q1. Similarly, we can further increase
its difficulty level and step-by-step extend it into
more difficult questions (i.e., Q3, Q4 and Q5).

To train our DCQG framework, we design ef-
fective strategies to automatically construct the
training data from existing QA datasets instead
of building one from scratch with intensive human
efforts. Specifically, we utilize HotpotQA (Yang
et al., 2018), a QA dataset where most questions
require two inference steps to answer and can be
decomposed into two 1-hop questions. Thus, we
get the dataset that contains 2-hop questions and
their corresponding 1-hop reasoning steps. Hav-
ing learned how to rewrite 1-hop questions into
2-hop ones with this dataset, our framework can
easily extend to the generation of (n+1)-hop ques-
tions from n-hop ones only with a small amount
of corresponding data, because the rewriting oper-
ation follows rather certain patterns regardless of
the exact value of n, as shown in Fig. 1.

Extensive evaluations show that our method can
controllably generate questions with required diffi-
culty, and keep competitive question quality at the
same time, compared with a set of strong baselines.

In summary, our contributions are as follows:
• To the best of our knowledge, this is the first

work of difficulty-controllable question genera-
tion, with question difficulty defined as the infer-
ence steps to answer it;

• We propose a novel framework that achieves
DCQG through step-by-step rewriting under the
guidance of an extracted reasoning chain;

• We build a dataset that can facilitate training
of rewriting questions into more complex ones,
paired with constructed context graphs and the
underlying reasoning chain of the question.

2 Related Work

Deep Question Generation Most of the previ-
ous QG researches (Zhou et al., 2017; Pan et al.,
2019; Liu et al., 2020) mainly focused on generat-
ing single-hop questions like the ones in SQuAD
(Rajpurkar et al., 2016). In the hope that AI sys-
tems could provoke more in-depth interaction with
humans, deep question generation aims at generat-
ing questions that require deep reasoning. Many
recent works attempted to conquer this task with
graph-based neural architectures. Talmor and Be-
rant (2018) and Kumar et al. (2019) generated com-
plex questions based on knowledge graphs, but
their methods could not be directly applied to QG
for free text, which lacks clear logical structures.
In sequential question generation, Chai and Wan
(2020) used a dual-graph interaction to better cap-
ture context dependency. However, they considered
all the tokens as nodes, which led to a very complex
graph. Yu et al. (2020) tried to generate multi-hop
questions from free text with the help of entity
graphs constructed by external tools. Our work
shares a similar setting with Yu et al. (2020), and
we further explore the problem of how to generate
deep questions in a more controllable paradigm.

Difficulty-Controllable Question Generation
DCQG is a relatively new task. Gao et al. (2019)
classified questions as easy or hard according to
whether they could be correctly answered by a
BERT-based QA model, and controlled the ques-
tion difficulty by modifying the hidden states
before decoding. Another research on QG for
knowledge graphs (Kumar et al., 2019) estimated
the question difficulty based on popularity of the
named entity. They manipulated the generation
process by incorporating the difficulty level into
the input embedding of the Transformer-based de-
coder. In our work, we control the question diffi-
culty based on the number of its reasoning hops,
which is more explainable.

Question Rewriting It is another emerging trend
in the recent researches, demonstrating benefits to
both QG and QA tasks. With rewriting, QG models
produced more complex questions by incorporating
more context information into simple questions



Figure 2: An overview of our proposed framework. The selected reasoning chain is marked as light blue nodes.

(Elgohary et al., 2019; Vakulenko et al., 2020), and
QA pipelines could also decompose the original
complex question into multiple shorter questions
to improve model performance (Min et al., 2019;
Khot et al., 2020).

3 Method

Given input context text C and a specific diffi-
culty level d, our objective is to generate a (ques-
tion, answer) pair (Q,A), where A is a sub-span
of C and Q requires d-hop reasoning to answer.
Fig. 2 and Algorithm 1 give an overview of our
proposed framework. First, we construct a con-
text graph GCG corresponding to the given context,
from which a subgraph GT is selected to serve as
the reasoning chain of the generated question. Next,
with the reasoning chain and other contextual in-
formation as input, a question generator (QGInitial)
produces an initial simple question Q1. Then, Q1

is fed to a question rewriting module (QGRewrite),
which iteratively rewrites it into a more complex
question Qi (i = 2, 3, . . . , d). In what follows,
we will introduce the whole generation process in
more details.

Context Graph Construction We follow the
method proposed by Fan et al. (2019) to build
the context graph GCG. Specifically, we first ap-
ply open information extraction (Stanovsky et al.,
2018) to extract 〈subject, relation, object〉 triples
from context sentences. Each triple is then trans-

formed into two nodes connected with a directed
edge, like A Perfect Murder is−→ a 1998 American
crime film in Fig. 2. The two nodes respectively
represent the subject and object, and the edge de-
scribes their relation. Coreference resolution (Lee
et al., 2017) is applied to merge nodes referring to
the same entity. For instance, A Perfect Murder is
merged with It in Fig. 2.

Reasoning Chain Selection With the context
graph constructed, we sample a connected sub-
graph GT consisting of d+ 1 nodes from it to serve
as the reasoning chain of the generated question.
A node N0 is first sampled as the answer of the
question, if it is, or linked with, a named entity that
has more than one node degree. Next, we extract
from GCG a maximum spanning tree GL, with N0

as its root node, e.g., the tree structure shown in
Fig. 1. GCG is temporarily considered as an undi-
rected graph at this step. We then prune GL into
GT to keep only d + 1 nodes. During pruning, we
consider the sentence position where each node
is extracted in order to make the reasoning chain
relevant to more context. In the following, we will
denote a node in GT asNi (i = 0, 1, . . . , d), where
each node is subscripted by preorder traversal of
GT , and NP (i) as the parent of Ni.

Step-by-step Question Generation Our step-
by-step QG process is described at lines 5-11 in
Algorithm 1. The following notations are defined
for clearer illustration:



Algorithm 1 Procedure of Our DCQG Framework
Input: context C, difficulty level d
Output: (Q,A)
1: GCG ← BuildCG(C)
2: N0 ← SampleAnswerNode(GCG)

3: GL ←MaxTree(GCG,N0)

4: GT ← Prune(GL, d)
5: forNi in PreorderTraversal(GT ) do
6: if i = 0 then continue
7: NP (i) = Parent(Ni)

8: Si = ContextSentence(C,Ni,NP (i))

9: Ri ←

{
Bridge ifNi=FirstChild(NP (i))

Intersection else

10: Qi ←

{
QGInitial(Ni,NP (i),Si) if i = 1

QGRewrite(Qi−1,Ni,NP (i),Si,Ri) else
11: end for
12: return (Qd,N0)

• Qi (i = 1, 2, . . . , d) represents the question gen-
erated at each step, whereQd is the final question
Q, and Qi+1 is rewritten from Qi by adding one
more hop of reasoning.

• Si represents the context sentence from which
we extract the triple Ni → NP (i).

• Ri is the rewriting type of Qi (i = 2, 3, . . . , d).
Specifically, we consider two types of rewriting
patterns in this work: Bridge and Intersection.
As shown in Fig. 1, Bridge-style rewriting re-
places an entity with a modified clause, while
Intersection adds another restriction to an exist-
ing entity in the question. These two types can
be distinguished by whether Ni is the first child
of its parent node, i.e., whether its parent node
has already been rewritten once in Bridge style.
To generate the final question with the required

difficulty level d, we first use a question genera-
tor QGInitial to generate an initial simple question
based on N1, N0, and the corresponding context
sentence S1. Then, we repeatedly (for d− 1 times)
use QGRewrite to rewrite questionQi−1 into a more
complex one Qi, based on node Ni and its parent
node NP (i), context sentence Si, and the rewriting
typeRi (i = 2, 3, . . . , d). Formally, the generation
process of QGInitial and the rewriting process of
QGRewrite can be defined as:

Q1 = arg max
Q̄1

P (Q̄1|N1,N0,S1)

Qi = arg max
Q̄i

P (Q̄i|Qi−1,Ni,NP (i),Si,Ri)

where i = 2, 3, . . . , d.

Algorithm 2 Procedure of Data Construction
Input: context C = {P1,P2}, QA pair (Q2,A2), support-

ing facts F
Output: R1, (Q1,A1),S1,S2, {N0, E1,N1, E2,N2}
1: R1 ← TypeClassify(Q2)

2: ifR1 /∈ {Bridge, Intersection} then return
3: subq1, subq2 ← DecompQ(Q2)

4: suba1, suba2 ← QA(subq1),QA(subq2)

5: Q1,A1 ←

{
subq2, suba2 if A2 = suba2

subq1, suba1 else

6: S1,S2 ←

{
F ∩ P1,F ∩ P2 ifQ1 concerns P1

F ∩ P2,F ∩ P1 else
7: N2 ← FindNode(A2)

8: N0, E1,N1, E2 ←Match(subq1, subq2)

In our implementation, both QGInitial and
QGRewrite are initialized with the pre-trained
GPT2-small model (Radford et al., 2019), and then
fine-tuned on our constructed dataset (see Sec. 4).
The encoder of QGRewrite, as illustrated in Fig. 2,
is similar to Liu et al. (2020). IfNi points toNP (i),
then the input sequence is organized in the form of
“〈bos〉 Si 〈nodeC〉 Ni 〈edge〉 Ei 〈nodeP〉 NP (i) 〈type〉 Ri

〈subq〉 Qi−1 〈eos〉”, where Ei is the edge from Ni to
NP (i). The positions of “〈nodeC〉 Ni” and “〈nodeP〉
NP (i)” will be exchanged if NP (i) points to Ni. As
for QGInitial, its input is organized in the same way
except without “〈type〉 Ri 〈subq〉 Qi−1”.

The segment embedding layer is utilized to iden-
tify different segments. For those parts in Si and
Qi−1 that are the same as, or refer to the same
entity as NP (i), we replace their segment embed-
dings with the one of NP (i), considering that the
parent node of Ni plays an important role in denot-
ing what to ask about, or which part to rewrite, as
shown in Fig. 1.

4 Automatic Dataset Construction

Manually constructing a new dataset for our task
is difficult and costly. Instead, we propose to auto-
matically build a dataset from existing QA datasets
without extra human annotation. In our work, the
training data is constructed from HotpotQA (Yang
et al., 2018), in which every context C consists of
two paragraphs {P1,P2}, and most of the ques-
tions require two hops of reasoning, each con-
cerning one paragraph. HotpotQA also annotates
supporting facts F , which are the part of the con-
text most relevant to the question. In addition to
the information already available in HotpotQA,
we also need the following information to train



QGInitial and QGRewrite: i) (Q1,A1), the simple
initial question and its answer, which are used to
train QGInitial; ii) R2, the type of rewriting from
Q1 to Q2; iii) {N0,N1,N2}, the reasoning chain
of Q2; and iv) Si (i = 1, 2), the context sentences
where we extract N0, N1 and N2.

Algorithm 2 describes our procedure to obtain
the above information. The construction process is
facilitated with the help of a reasoning type classi-
fier (TypeClassify) and a question decomposer
(DecompQ), referring to Min et al. (2019). For
each question in HotpotQA (i.e. Q2), we first dis-
tinguish its reasoning type, and filter out those that
are not Bridge and Intersection. The reasoning
type here corresponds to the rewriting type Ri.
Then, DecompQ decomposes Q2 into two sub-
questions, subq1 and subq2, based on span predic-
tion and linguistic rules. For example, the Q2 in
Fig. 2 will be decomposed into subq1=“To which
film A Perfect Murder was a modern remake?”, and
subq2=“Who directed Dial M for Murder?”. After
that, an off-the-shelf single-hop QA model (Min
et al., 2019) is utilized to acquire the answer of the
two sub-questions, which should be “Dial M for
Murder” and “Alfred Hitchcock” in the example.

As for Q1, it is one of the sub-questions. When
Q2 is of the Intersection type, Q1 can be either
subq1 or subq2. For the Bridge type, it is the sub-
question that shares the same answer asA2. For the
example above, Q1 is subq2 because suba2 = A2.
The context sentence Si is supposed to provide
supporting facts contained in the paragraph F that
concerns Qi (i = 1, 2). For the reasoning chain,
it is selected from the local context graph by first
locating N2 and then finding N0,N1 through text
matching with the two sub-questions.

5 Experiments

In the following experiments, we mainly evaluate
the generation results of our proposed method when
required to produce 1-hop and 2-hop questions, de-
noted as Ours1-hop and Ours2-hop. In Sec. 5.2, we
compare our method with a set of strong baselines
using both automatic and human evaluations on
question quality. In Sec. 5.3, we provide control-
lability analysis by manually evaluating their dif-
ficulty levels and testing the performance of QA
systems in answering questions generated by dif-
ferent methods. In Sec. 5.4, we test the effect of
our generated QA pairs on the performance of a
multi-hop QA model in a data augmentation setting.

In Sec. 5.5, we further analyze the extensibility of
our method, i.e., its potential in generating ques-
tions that require reasoning of more than two hops.
Our code and constructed dataset have been made
publicly available to facilitate future research.1

5.1 Experimental Setup

Datasets The constructed dataset described in
Sec. 4 consists of 57,397/6,072/6,072 samples for
training/validation/test. For context graph construc-
tion, we use the coreference resolution toolkit from
AllenNLP 1.0.0 (Lee et al., 2017) and the open
information extraction toolkit provided by the Plas-
ticity developer API.2 The question decomposer
and the reasoning type classifier follow the imple-
mentations of Min et al. (2019).

Baselines The following baselines are trained to
generate the 2-hop questions in the datasets:
• NQG++ (Zhou et al., 2017) is a seq2seq model

based on bi-directional Gate Recurrent Unit
(GRU), with features enriched by answer posi-
tion and lexical information.

• ASs2s (Kim et al., 2019) is a seq2seq model
based on Long Short-term Memory (LSTM),
which separately encodes answer and context.

• SRL-Graph and DP-Graph (Pan et al., 2020)
are two state-of-the-art QG systems. They en-
code graph-level and document-level informa-
tion with an attention-based Graph Neural Net-
work (GNN) and a bi-directional GRU, respec-
tively. SRL-Graph constructs the semantic graph
by semantic role labelling, and DP-Graph by de-
pendency parsing.

• GPT2 is a vanilla GPT2-based QG model. Its
input is the concatenation of context and sampled
answer. The position where the answer appears
in the context segment is denoted in the segment
embedding layer.

Implementation Details The baseline models
are trained to directly produce the 2-hop questions,
while QGInitial and QGRewrite are respectively
trained to generate 1-hop questions and rewrite
1-hop ones into 2-hop. QGInitial, QGRewrite, and
GPT2 are initialized with the GPT2-small model
from the HuggingFace Transformer library (Wolf
et al., 2019), and fine-tuned for 8, 10, and 7 epochs,
respectively, with batch size of 16. We apply top-p
nucleus sampling with p = 0.9 during decoding.

1 https://tinyurl.com/19esunzz
2 https://www.plasticity.ai/

https://tinyurl.com/19esunzz
https://www.plasticity.ai/


Model BLEU3 BLEU4 METEOR CIDEr
NQG++ 15.41 11.50 16.96 -
ASs2s 15.21 11.29 16.78 -
SRL-Graph 19.66 15.03 19.73 -
DP-Graph 19.87 15.23 20.10 1.40
GPT2 20.98 15.59 24.19 1.46
Ours2-hop 21.07 15.26 19.99 1.48

Table 1: Automatic evaluation results of the base-
line models and the 2-hop questions generated by our
method (Ours2-hop).

AdamW (Loshchilov and Hutter, 2017) is used
as optimizer, with the initial learning rate set to
be 6.25×10−5 and adaptively decays during train-
ing. For DP-Graph, we use their released model
and code to perform the experiment. For the other
three baselines, we directly refer to the experiment
results reported in Pan et al. (2020). The perfor-
mances of these baselines are compared under the
same setting as in Pan et al. (2020), where each con-
text is abbreviated to only include the supporting
facts and the part that overlaps with the question.
More implementation details can be found in our
code and the supplementary materials.

5.2 Evaluation of Question Quality

Automatic Evaluation The automatic evalua-
tion metrics are BLEU3, BLEU4 (Papineni et al.,
2002), METEOR (Lavie and Agarwal, 2007), and
CIDEr (Vedantam et al., 2015), which measure the
similarity between the generation results and the
reference questions in terms of n-grams. As the
four baselines are trained to generate 2-hop ques-
tions only, we only compare them with Ours2-hop.
As shown in Table 1, we can see that Ours2-hop and
GPT2 perform consistently better than the others.
Though the performances of Ours2-hop and GPT2
are close in terms of automatic metrics, we observe
that the questions generated by Ours2-hop are usu-
ally more well-formed, concise and answerable, as
illustrated in Table 2. These advantages cannot be
reflected through automatic evaluation.

Human Evaluation We randomly sample 200
questions respectively from DP-Graph, GPT2,
Ours1-hop, Ours2-hop, as well as the reference 1-
hop and 2-hop questions in the constructed dataset
(Gold1-hop, Gold2-hop). The questions are man-
ually evaluated by eight human annotators, who
are graduate students, majoring in English Litera-
ture, Computer Science, or Electronic Engineering.
They voluntarily offer to help without being com-

Ours2-hop GPT2

When was the first theatre
director of African descent
born?

When was the first theatre di-
rector of African descent to
establish a national touring
company in the UK born?

What play by Carrie Hamil-
ton was run at the Good-
man Theatre in 2002?

What play by Carrie Hamil-
ton and Carol Burnett ran at
the Goodman Theatre and on
Broadway in 2002?

What was the review score
for the album that has been
reissued twice?

What was the review of the
album that includes previ-
ously unreleased tracks by
Guetta from its first major in-
ternational release?

Table 2: Examples of generation results from Ours2-hop
and GPT2

pensated in any form. Before annotation, they are
informed of the detailed annotation instruction with
clear scoring examples. The generated questions
are evaluated in the following four dimensions:
• Well-formed: It checks whether a question is se-

mantically correct. Annotators are asked to mark
a question as yes, acceptable, or no. Acceptable
is selected if the question is not grammatically
correct, but its meaning is still inferrable.

• Concise: It checks whether the QG models are
overfitted, generating questions with redundant
modifiers. The question is marked as yes if no
single word can be deleted, acceptable if it is a
little lengthy but still in a natural way, and no if
it is abnormally verbose.

• Answerable: It checks whether a question is
answerable according to the given context. The
anonnotion is either yes or no.

• Answer Matching: It checks whether the given
answer is the correct answer to the question. The
anonnotion is either yes or no.
The results are shown in Table 3. Overall, we

can see that Ours2-hop performs consistently better
than DP-Graph and GPT2 across all metrics and
comparable to the hand-crafted reference questions.
Our method performs especially well in terms of
concise, even better than the reference questions.
For reference, the average word number of the ques-
tions generated by DP-Graph, GPT2, Ours2-hop,
and Gold2-hop are 19.32, 19.26, 17.18, 17.44, re-
spectively. It demonstrates that the enriched graph
information and our multi-stage rewriting mecha-
nism indeed enhance the question structure and con-
tent. In comparison, we find that the questions gen-
erated by the two baselines tend to unreasonably
pile too many modifiers and subordinate clauses.



Difficulty
Level Model Well-formed Concise Answerable Answer Matching

Yes Acceptable No Yes Acceptable No Yes No Yes No

2-hop

DP-Graph 28% 41% 31% 41% 53% 6% 49% 51% 39% 61%
GPT2 57% 34% 9% 47% 50% 3% 69% 31% 66% 34%

Ours2-hop 74% 19% 7% 67% 30% 3% 78% 22% 69% 31%
Gold2-hop 72% 22% 6% 56% 40% 4% 92% 8% 87% 13%

1-hop Ours1-hop 46% 46% 8% 65% 25% 10% 81% 19% 72% 28%
Gold1-hop 56% 39% 5% 80% 16% 4% 84% 16% 79% 21%

Table 3: Human evaluation results of question quality.

Model Inference Steps
1-hop 2-hop 3-hop >3-hop

DP-Graph 26.1% 55.1% 8.7% 10.1%
GPT2 23.3% 57.1% 13.2% 6.4%

Ours2-hop 4.3% 67.7% 25.8% 2.2%
Ours1-hop 70.7% 28.2% 1.1% 0.0%

Table 4: Human evaluation results of the number of
inference steps required by the generated questions.

As for the 1-hop questions, Ours1-hop performs
well in terms of answerable and answer match-
ing, but not so competitive in terms of well-formed,
mainly due to the limitation of its training data. As
the 1-hop reference questions (Gold1-hop) are auto-
matically decomposed from the hand-crafted 2-hop
questions, a significant portion (44%) of them have
some grammatical errors, but most of them are still
understandable despite that.

5.3 Controllability Analysis

Human Evaluation of Controllability For con-
trollability analysis, we manually evaluate the num-
bers of inference steps involved in generated ques-
tions. DP-Graph and GPT2 are also evaluated for
comparison. The results are shown in Table 4.
70.65% of Ours1-hop require one step of inference
and 67.74% of Ours2-hop require two steps, prov-
ing that our framework can successfully control
the number of inference steps of most generated
questions. In comparison, DP-Graph and GPT2 are
not difficulty-aware and their generated questions
are more scattered in difficulty levels.

Difficulty Assessment with QA Systems For
further assessment of question difficulty, we test
the performance of QA models in answering ques-
tions generated by different models. Specifically,
we utilize two off-the-shelf QA models provided
by the HuggingFace Transformer library (Wolf
et al., 2019), which are respectively initialized with

Test Set BERT RoBERTa
EM F1 EM F1

DP-Graph 0.436 0.615 0.552 0.678
GPT2 0.419 0.581 0.669 0.772

Ours2-hop 0.295 0.381 0.506 0.663
Ours1-hop 0.618 0.737 0.882 0.937

Table 5: Performance of BERT- and RoBERTa-based
QA models on different generated QA datasets.

BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019b), and then fine-tuned on SQuAD (Ra-
jpurkar et al., 2016). We select those generated
questions that are ensured to be paired with cor-
rect answers by the human evaluation described
in Sec. 5.2, and test the performance of two QA
models in answering them. The evaluation metrics
include Exact Match (EM) and F1.

The results are shown in Table 5. We can see
that questions generated by Ours2-hop are more dif-
ficult than Ours1-hop not only to humans (requiring
more hops of reasoning), but also to the state-of-
the-art QA models. In comparison, with a more
scattered mix of 1-hop and 2-hop questions, the
performances on DP-Graph and GPT2 are between
Ours1-hop and Ours2-hop. This result demonstrates
that our method can controllably generate ques-
tions of different difficulty levels for QA systems
and that inference steps can effectively model the
question difficulty.

5.4 Boosting Multi-hop QA Performance

We further evaluate whether the generated QA pairs
can boost QA performance through data augmenta-
tion. Specifically, we heuristically sample the an-
swers and reasoning chains from the context graphs
in our constructed dataset to generate 150,305 two-
hop questions. As a comparison, we utilize GPT2
to generate the same amount of data with the same
sampled answers and contextual sentences. Some
low-quality questions are filtered out if their word



0.0 2.5 5.0 7.5 10
Number of Augmented Samples 

 (in thousands)

0.66
0.68
0.70
0.72
0.74
0.76
0.78
0.80

E
M

100%HotpotQA + Ours
100%HotpotQA + GPT2
25%HotpotQA + Ours
25%HotpotQA + GPT2

0.0 2.5 5.0 7.5 10
Number of Augmented Samples 

 (in thousands)

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

F1

100%HotpotQA + Ours
100%HotpotQA + GPT2
25%HotpotQA + Ours
25%HotpotQA + GPT2

Figure 3: Performance of the DistilBERT-based QA
system on HotpotQA, augmented with different quan-
tities of generated data.

counts are not between 6∼30 (4.7% for ours and
9.2% for GPT2), or the answers directly appear in
the questions (2.7% for ours and 2.4% for GPT2).
Finally, we randomly sample 100,000 QA pairs
and augment the HotpotQA dataset with them.

A DistilBERT-based (Sanh et al., 2019) QA
model is implemented. It takes as input the con-
catenation of context and question to predict the
answer span. To speed up the experiment, we only
consider those necessary supporting facts as the
question answering context. During training, the
original samples from HotpotQA are oversampled
to ensure that they are at least 4 times as the gener-
ated data. We use Adam (Kingma and Ba, 2015) as
the optimizer, with the mini-batch size of 32. The
learning rate is initially set to 3×10−5 and adap-
tively decays during training. The configurations
are the same in all the QA experiments, except that
the training datasets are different combinations of
HotpotQA and the generated data. The validation
and test sets are the same as those in HotpotQA.

We test the impact of the generated data un-
der both high-resource (using the whole training
set of HotpotQA) and low-resource settings (us-
ing only 25% of the data randomly sampled from
HotpotQA). Fig. 3 compares the QA performance,
augmented with different quantities of the data gen-
erated by our method and by GPT2, respectively.
We can see that under both settings, our method
achieves better performance than GPT2. Under the
low-resource setting, performance boost achieved
by our generated data is more significant and obvi-
ously better than that of GPT2. The performance
of the QA model steadily improves when the train-
ing dataset is augmented with more data. EM and
F1 of the QA model are improved by 2.56% and
1.69%, respectively, when 100,000 samples of our
generated data are utilized.

Context Reasoning QG Process

Hollywood Arms is a play 
by Carrie Hamilton and 
Carol Burnett. It ran at the 
Goodman Theatre and on 
Broadway in 2002…

Q :
What was run at the 
Goodman Theatre in 2002?

Q :
What play by Carrie 
Hamilton was run at the 
Goodman Theatre in 2002?

Reasoning Chain QG Process

Q : Which actor who starred in Top Gun?

Q : Which star of Top Gun was also in
the movie Rain Man?

Q :
Which star of Top Gun was also
in the movie directed by Barry
Levinson?

Q : Which actor who starred in Top Gun?

Q : What actor starred in the film that
was directed by Tony Scott?

Q :
What actor starred in the film that
was directed by Tony Scott and was
released in 1986?

1

1

2

3

2

3

Top Gun

Tom Cruise

Rain Man

starredstarred

Barry
Levinson

directed

Top Gun

Tom Cruise

Tony
Scott

directed

starred

a 1986
action film

is

Figure 4: Two examples of generating three-hop ques-
tions based on the extracted reasoning chains.

5.5 More-hop Question Generation

To analyze the extensibility of our method, we ex-
periment with the generation of questions that are
more than 2-hop, by repeatedly using QGRewrite to
increase question difficulty. Fig. 4 shows two ex-
amples of 3-hop question generation process. The
two intermediate questions and the corresponding
reasoning chains are also listed for reference.

We can see that the intermediate questions,
serving as springboards, are effectively used by
QGRewrite to generate more complex questions.
With the training data that only contains 1-hop and
2-hop questions, our framework is able to generate
some high-quality 3-hop questions, demonstrating
the extensibility of our framework. It can be ex-
pected that the performance of our model can be
further strengthened if a small training set of 3-hop
question data is available.

Besides, it can also be observed that though the
contexts and answers of these two questions are
the same, two different questions with different
underlying logic are generated, illustrating that the
extracted reasoning chain effectively controls the
question content.

However, when generating questions with more
than 3 hops, we find that the question quality dras-
tically declines. The semantic errors become more
popular, and some content tend to be unreason-
ably repeated. It is probably because the input of
QGRewrite has become too long to be precisely en-
coded by the GPT2-small model due to the growing
length of the question. It will be our future work
to explore how to effectively extend our method to
more-hop question generation.



6 Conclusion

We explored the task of difficulty-controllable ques-
tion generation, with question difficulty redefined
as the inference steps required to answer it. A
step-by-step generation framework was proposed
to accomplish this objective, with an input sampler
to extract the reasoning chain, a question genera-
tor to produce a simple question, and a question
rewriter to further adapt it into a more complex one.
A dataset was automatically constructed based on
HotpotQA to facilitate the research. Extensive eval-
uations demonstrated that our method can effec-
tively control difficulty of the generated questions,
and keep high question quality at the same time.

Acknowledgments

Thanks to Zijing Ou, Yafei Liu and Suyuchen Wang
for their helpful comments on this paper.

References
Zi Chai and Xiaojun Wan. 2020. Learning to ask more:

Semi-autoregressive sequential question generation
under dual-graph interaction. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 225–237. Association for
Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional Transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186. Association for Computational Linguis-
tics.

Ahmed Elgohary, Denis Peskov, and Jordan L. Boyd-
Graber. 2019. Can you unpack that? Learning to
rewrite questions-in-context. In Proceedings of the
2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint
Conference on Natural Language Processing, pages
5917–5923. Association for Computational Linguis-
tics.

Angela Fan, Claire Gardent, Chloé Braud, and Antoine
Bordes. 2019. Using local knowledge graph con-
struction to scale seq2seq models to multi-document
inputs. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing, pages 4184–4194. Associ-
ation for Computational Linguistics.

Yifan Gao, Lidong Bing, Wang Chen, Michael R. Lyu,
and Irwin King. 2019. Difficulty controllable gener-

ation of reading comprehension questions. In Pro-
ceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, pages 4968–
4974.

Junmo Kang, Haritz Puerto San Roman, and Sung-
Hyon Myaeng. 2019. Let me know what to ask:
Interrogative-word-aware question generation. In
Proceedings of the 2nd Workshop on Machine Read-
ing for Question Answering, pages 163–171. Associ-
ation for Computational Linguistics.

Tushar Khot, Daniel Khashabi, Kyle Richardson, Peter
Clark, and Ashish Sabharwal. 2020. Text modular
networks: Learning to decompose tasks in the lan-
guage of existing models. CoRR, abs/2009.00751.

Yanghoon Kim, Hwanhee Lee, Joongbo Shin, and Ky-
omin Jung. 2019. Improving neural question gener-
ation using answer separation. In The Thirty-Third
AAAI Conference on Artificial Intelligence, pages
6602–6609. AAAI Press.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Interna-
tional Conference on Learning Representations.

Vishwajeet Kumar, Yuncheng Hua, Ganesh Ramakrish-
nan, Guilin Qi, Lianli Gao, and Yuan-Fang Li. 2019.
Difficulty-controllable multi-hop question genera-
tion from knowledge graphs. In The 18th Interna-
tional Semantic Web Conference, volume 11778 of
Lecture Notes in Computer Science, pages 382–398.
Springer.

Ghader Kurdi, Jared Leo, Bijan Parsia, Uli Sattler, and
Salam Al-Emari. 2020. A systematic review of auto-
matic question generation for educational purposes.
Int. J. Artif. Intell. Educ., 30(1):121–204.

Alon Lavie and Abhaya Agarwal. 2007. METEOR: an
automatic metric for MT evaluation with high levels
of correlation with human judgments. In Proceed-
ings of the Second Workshop on Statistical Machine
Translation, pages 228–231. Association for Compu-
tational Linguistics.

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle-
moyer. 2017. End-to-end neural coreference reso-
lution. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 188–197. Association for Computational Lin-
guistics.

Bang Liu, Haojie Wei, Di Niu, Haolan Chen, and
Yancheng He. 2020. Asking questions the human
way: Scalable question-answer generation from text
corpus. In The Web Conference, pages 2032–2043.
ACM / IW3C2.

Bang Liu, Mingjun Zhao, Di Niu, Kunfeng Lai,
Yancheng He, Haojie Wei, and Yu Xu. 2019a. Learn-
ing to generate questions by learningwhat not to gen-
erate. In The World Wide Web Conference, pages
1106–1118.

https://www.aclweb.org/anthology/2020.acl-main.21/
https://www.aclweb.org/anthology/2020.acl-main.21/
https://www.aclweb.org/anthology/2020.acl-main.21/
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/D19-1605
https://doi.org/10.18653/v1/D19-1605
https://doi.org/10.18653/v1/D19-1428
https://doi.org/10.18653/v1/D19-1428
https://doi.org/10.18653/v1/D19-1428
https://doi.org/10.24963/ijcai.2019/690
https://doi.org/10.24963/ijcai.2019/690
https://doi.org/10.18653/v1/D19-5822
https://doi.org/10.18653/v1/D19-5822
http://arxiv.org/abs/2009.00751
http://arxiv.org/abs/2009.00751
http://arxiv.org/abs/2009.00751
https://doi.org/10.1609/aaai.v33i01.33016602
https://doi.org/10.1609/aaai.v33i01.33016602
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-030-30793-6_22
https://doi.org/10.1007/978-3-030-30793-6_22
https://doi.org/10.1007/s40593-019-00186-y
https://doi.org/10.1007/s40593-019-00186-y
https://www.aclweb.org/anthology/W07-0734/
https://www.aclweb.org/anthology/W07-0734/
https://www.aclweb.org/anthology/W07-0734/
https://doi.org/10.18653/v1/d17-1018
https://doi.org/10.18653/v1/d17-1018
https://doi.org/10.1145/3366423.3380270
https://doi.org/10.1145/3366423.3380270
https://doi.org/10.1145/3366423.3380270


Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
RoBERTa: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Ilya Loshchilov and Frank Hutter. 2017. Fixing
weight decay regularization in Adam. CoRR,
abs/1711.05101.

Sewon Min, Victor Zhong, Luke Zettlemoyer, and Han-
naneh Hajishirzi. 2019. Multi-hop reading compre-
hension through question decomposition and rescor-
ing. In Proceedings of the 57th Conference of the
Association for Computational Linguistics, Volume
1: Long Papers, pages 6097–6109. Association for
Computational Linguistics.

Liangming Pan, Wenqiang Lei, Tat-Seng Chua, and
Min-Yen Kan. 2019. Recent advances in neural
question generation. CoRR, abs/1905.08949.

Liangming Pan, Yuxi Xie, Yansong Feng, Tat-Seng
Chua, and Min-Yen Kan. 2020. Semantic graphs
for generating deep questions. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 1463–1475. Association
for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318. ACL.

Judea Pearl and Azaria Paz. 1986. Graphoids: Graph-
based logic for reasoning about relevance relations
or when would x tell you more about y if you al-
ready know z? In Advances in Artificial Intelligence
II, Seventh European Conference on Artificial Intel-
ligence, ECAI, pages 357–363. North-Holland.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100, 000+ questions
for machine comprehension of text. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 2383–2392.
Association for Computational Linguistics.

Mrinmaya Sachan and Eric Xing. 2016. Easy ques-
tions first? A case study on curriculum learning
for question answering. In Proceedings of the 54th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
453–463, Berlin, Germany. Association for Compu-
tational Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. DistilBERT, a distilled version
of BERT: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Gabriel Stanovsky, Julian Michael, Luke Zettlemoyer,
and Ido Dagan. 2018. Supervised open information
extraction. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 885–
895. Association for Computational Linguistics.

Alon Talmor and Jonathan Berant. 2018. The web as
a knowledge-base for answering complex questions.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 641–651. Associa-
tion for Computational Linguistics.

Svitlana Vakulenko, Shayne Longpre, Zhucheng Tu,
and Raviteja Anantha. 2020. Question rewriting for
conversational question answering. arXiv preprint
arXiv:2004.14652.

Ramakrishna Vedantam, C. Lawrence Zitnick, and
Devi Parikh. 2015. CIDEr: Consensus-based image
description evaluation. In IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 4566–
4575. IEEE Computer Society.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. HuggingFace’s Trans-
formers: State-of-the-art natural language process-
ing. CoRR, abs/1910.03771.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W. Cohen, Ruslan Salakhutdinov, and
Christopher D. Manning. 2018. HotpotQA: A
dataset for diverse, explainable multi-hop question
answering. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 2369–2380. Association for Compu-
tational Linguistics.

Jianxing Yu, Xiaojun Quan, Qinliang Su, and Jian Yin.
2020. Generating multi-hop reasoning questions to
improve machine reading comprehension. In The
Web Conference, pages 281–291. ACM / IW3C2.

Yuyu Zhang, Xinshi Chen, Yuan Yang, Arun Rama-
murthy, Bo Li, Yuan Qi, and Le Song. 2020. Effi-
cient probabilistic logic reasoning with graph neural
networks. In 8th International Conference on Learn-
ing Representations. OpenReview.net.

Qingyu Zhou, Nan Yang, Furu Wei, Chuanqi Tan,
Hangbo Bao, and Ming Zhou. 2017. Neural ques-
tion generation from text: A preliminary study. In
In Proceedings of 6th CCF International Confer-
ence on Natural Language, volume 10619 of Lec-
ture Notes in Computer Science, pages 662–671.
Springer.

Kangli Zi, Xingwu Sun, Yanan Cao, Shi Wang, Xi-
aoming Feng, Zhaobo Ma, and Cungen Cao. 2019.
Answer-focused and position-aware neural network

http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
https://doi.org/10.18653/v1/p19-1613
https://doi.org/10.18653/v1/p19-1613
https://doi.org/10.18653/v1/p19-1613
http://arxiv.org/abs/1905.08949
http://arxiv.org/abs/1905.08949
https://www.aclweb.org/anthology/2020.acl-main.135/
https://www.aclweb.org/anthology/2020.acl-main.135/
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://www.persagen.com/files/misc/radford2019language.pdf
http://www.persagen.com/files/misc/radford2019language.pdf
https://doi.org/10.18653/v1/d16-1264
https://doi.org/10.18653/v1/d16-1264
https://doi.org/10.18653/v1/P16-1043
https://doi.org/10.18653/v1/P16-1043
https://doi.org/10.18653/v1/P16-1043
http://arxiv.org/abs/1910.01108/
http://arxiv.org/abs/1910.01108/
https://doi.org/10.18653/v1/n18-1081
https://doi.org/10.18653/v1/n18-1081
https://doi.org/10.18653/v1/n18-1059
https://doi.org/10.18653/v1/n18-1059
https://arxiv.org/pdf/2004.14652.pdf
https://arxiv.org/pdf/2004.14652.pdf
https://doi.org/10.1109/CVPR.2015.7299087
https://doi.org/10.1109/CVPR.2015.7299087
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
https://doi.org/10.18653/v1/d18-1259
https://doi.org/10.18653/v1/d18-1259
https://doi.org/10.18653/v1/d18-1259
https://doi.org/10.1145/3366423.3380114
https://doi.org/10.1145/3366423.3380114
https://openreview.net/forum?id=rJg76kStwH
https://openreview.net/forum?id=rJg76kStwH
https://openreview.net/forum?id=rJg76kStwH
https://doi.org/10.1007/978-3-319-73618-1_56
https://doi.org/10.1007/978-3-319-73618-1_56
https://doi.org/10.1007/978-3-030-29563-9_30


for transfer learning in question generation. In Pro-
ceedings of the 12th International Conference of
Knowledge Science, Engineering and Management,
volume 11776 of Lecture Notes in Computer Sci-
ence, pages 339–352. Springer.

https://doi.org/10.1007/978-3-030-29563-9_30

