
First-Order Logic

Readings:

AIMA

8.2⇠8.3;

9.1⇠9.5.

, National Taiwan University, Artificial Intelligence - Search & Logic)Tian-Li Yu(Slides are adapted from

Bang Liu, Jian-Yun Nie
 Introduction to Artificial IntelligenceIFT3335:

Outline

1 First-Order Logic
Syntax and semantics
Using FOL

2 Inference
Instantiation
Propositionalization
Unification
Forward chaining
Backward chaining
Resolution

First-Order Logic

First-Order Logic (FOL)

Objects: People, houses, numbers, theories, Ronald McDonald, colors,
baseball games, wars, wumpus . . .

Relations: red, round, bogus, prime . . ., brother of, bigger than, inside,
part of, has color, occurred after, owns, comes between . . .

Functions: father of, best friend, one more than, end of . . .

“One plus one equals two”

Objects: one, one plus one, two; Relation: equals; Function: plus.

“Squares neighboring the wumpus are smelly”

Objects: wumpus, squares; Relation: smelly; Functions: neighbor of.

One may, of course, use relations to express functions.

 First-Order Logic (FOL)

First-Order	Logic	(FOL)

	 First-Order	Logic

	 Objects:	e.g.,	in	natural	language,	nouns	and	noun	phrases	
	 Relations:	relations	among	objects.	They	can	be	unary	relations	or	
																												properties,	or	general	n-ary	relations	
	 Functions:	relations	in	which	there	is	only	one	“value”	for	a	given	“input”

 First-Order Logic (FOL)

Model	for	First-Order	Logic	(FOL)

	 First-Order	Logic

Model	in	FOL:		

1.	They	have	objects	in	them	

2.	The	domain	of	a	model	is	the	set	of	objects	or	domain	elements	it	

contains.		

3.	The	domain	is	required	to	be	nonempty—every	possible	world	

must	contain	at	least	one	object.		

4.	The	objects	in	the	model	may	be	related	in	various	ways.		

 First-Order Logic (FOL)

Model	for	First-Order	Logic	(FOL)

	 First-Order	Logic

Bang Liu
Recap: in propositional logic, a model contains facts and the true/false assertions.
In FOL, we have objects, relations/predicates, functions.

 First-Order Logic (FOL)

Symbols	and	interpretations	

	 First-Order	Logic

The	basic	syntactic	elements	of	first-order	logic	are	the	symbols	that	stand	
for	objects,	relations,	and	functions.		

Constant	symbols:	stands	for	objects	
Predicate	symbols:	stands	for	relations	
Function	symbols:	stands	for	functions

Each	model	includes	an	interpretation	that	specifies	exactly	which	objects,	
relations	and	functions	are	referred	to	by	the	constant,	predicate,	and	
function	symbols.		

 First-Order Logic (FOL)

Symbols	and	interpretations	

	 First-Order	Logic

In	summary,	a	model	in	first-order	logic	consists	of	a	set	of	objects	and	an	
interpretation	that	maps	constant	symbols	to	objects,	function	symbols	to	
functions	on	those	objects,	and	predicate	symbols	to	relations.		

First-Order Logic Syntax and semantics

Syntax of FOL

Constants A, 2, NTU, John, . . .

Variables a, b, x , y , . . .

Functions Mother , LeftLeg , . . .

Predicates After , Loves, . . .

Connectives ^, _, ¬,), (, ,.

Equality = , (6= for ¬ =).

Quantifiers 8, 9.

Check Figure 8.3 in AIMA for more details.

Bang Liu
stands for objects

Bang Liu
stands for ungrounded objects, can be the argument of a function

Bang Liu
stands for relations

Bang Liu
The basic syntactic elements of first-order logic are the symbols that stand for objects, relations, and functions.

 First-Order Logic (FOL)

Syntax	of	FOL

	 First-Order	Logic

An atomic sentence (or atom for short) is formed
from a predicate symbol optionally followed by a
parenthesized list of terms

Once we have a logic that allows objects, it is
only natural to want to express properties of
entire collections of objects, instead of
enumerating the objects by name. Quantifiers let
us do this.

First-Order Logic Syntax and semantics

Quantifiers

Typically,) is the main connective with 8.
Typically, ^ is the main connective with 9.

Be careful
8x In(x ,NTU)) Smart(x) : Everyone in NTU is smart.
8x In(x ,NTU)^ Smart(x) : Everyone is in NTU and everyone is smart.
9x In(x ,NTU)) Smart(x) : This is true when no one is in NTU!
9x In(x ,NTU) ^ Smart(x) : Someone in NTU is smart.

Bang Liu

Bang Liu

Bang Liu

Bang Liu

Bang Liu

Bang Liu

Bang Liu
UdeM

Bang Liu
UdeM

Bang Liu
UdeM

Bang Liu
UdeM

Bang Liu
UdeM

Bang Liu
UdeM

Bang Liu
UdeM

Bang Liu
UdeM

First-Order Logic Syntax and semantics

Properties of Quantifiers

8x8y is equivalent to 8y8x .
9x9y is equivalent to 9y9x .
9x8y is NOT equivalent to 8y9x .

9x8y Loves(x , y)
There exists someone who loves everyone.
8y9x Loves(x , y)
Everyone is loved by at least one person.

Quantifier duality
8x Likes(x , IceCream) is equivalent to ¬9x ¬Likes(x , IceCream).
9x Likes(x , Studying) is equivalent to ¬8x ¬Likes(x , Studying).

	First-Order	Logic	 Using	FOL

	Expressing	with	FOL	
 John	has	two	brothers,	Mark	and	David.	
 How to express the above meaning with FOL?

First-Order Logic Using FOL

Expressing with FOL

John has two brothers, Mark and David.

Brother(John,Mark) ^ Brother(John,David)?

It only says Mark and David are John’s brothers. We need to make
sure John has no other brothers.

Brother(John,Mark) ^ Brother(John,David) ^
(8x Brother(John, x)) (x = Mark _ x = Davide))?

John might have only one brother with two names....orz

Brother(John,Mark) ^ Brother(John,David) ^
(8x Brother(John, x)) (x = Mark _x = Davide))^ (Mark 6= David)

 First-Order Logic (FOL)

Database	Semantics

	 First-Order	Logic

One	proposal	that	is	very	popular	in	database	systems	works	as	follows:	
1.	Unique-names	assumption	—	every	constant	symbol	refer	to	a	
distinct	object.		
2.	Closed-world	assumption	—	atomic	sentences	not	known	to	be	true	
are	in	fact	false.		
3.	Domain	closure	—	each	model	contains	no	more	domain	elements	
than	those	named	by	the	constant	symbols.		

Logical Agents

Wumpus World

First-Order Logic Using FOL

Back to the Wumpus World, Again

Percept([Stench, Breeze, Glitter, None, None], 5), where
5 is the step number.

Actions: Turn(Right), Turn(Left), Forward, Shoot,

Grab, Climb.

Interaction with KB : AskVars(9a BestAction(a, 5))

Returns a substitution (binding list) {a/Grab}.
Define raw percept data:

8t, s, g ,m, c Percept([s,Breeze, g ,m, c], t)) Breeze(t).

8t, s, b,m, c Percept([s, b,Glitter,m, c], t)) Glitter(t).

Simple reflex best action:

8t Glitter(t)) BestAction(Grab, t).

Bang Liu
Bump (Walks into a wall)

Bang Liu
Scream (wumps is killed)

First-Order Logic Using FOL

Back to the Wumpus World, Again

Define adjacency:

8x , y , a, b Adjacent([x , y], [a, b]) ,
(x = a^ (y = b� 1_ y = b+1))_ (y = b^ (x = a� 1_ x = a+1)).

Location predicator, x is at square s at time t:

8t At(Wumpus, [2, 2], t).

8x , s1, s2, t At(x , s1, t) ^ At(x , s2, t)) s1 = s2.

Define property for squares:

8s, t At(Agent, s, t) ^ Breeze(t)) Breezy(s).

8s, t At(Pit, s, t)) Pit(s).

8s, t At(Wumpus, s, t)) Wumpus(s).

Rules of the wumpus world can be defined.

8s Breezy(s) , 9r Adjacent(r , s) ^ Pit(r).

8t HaveArrow(t + 1) , (HaveArrow(t) ^ ¬Action(Shoot, t)).

Bang Liu
Fix Wumpus at a specific location

Bang Liu
can be at one location at a time

Inference Instantiation

Instantiation

Subst(✓,↵): apply the substitution ✓ to the sentence ↵.

Universal Instantiation(UI)

8v ↵
Subst({v/g},↵) ,

where g is a ground term.

Existence Instantiation(EI)

9v ↵
Subst({v/k},↵) ,

where k was not in the KB .

8King(x) ^ Greedy(x)) Evil(x) yields

King(John) ^ Greedy(John)) Evil(John)

King(Father(Tom)) ^ Greedy(Father(Tom))) Evil(Father(Tom))

9x Crown(x) ^ OnHead(x , John) yields

Crown(C1) ^ OnHead(C1, John), where C1 is a Skolem constant.

Bang Liu
Applying the EI rule just gives a name to some object, which can’t already belong to another object. So it cannot in the KB.

Inference Instantiation

Instantiation

UI can be applied several times to add new sentences; the new KB is
logically equivalent to the old.

EI can be applied only once to replace the existential sentence.

No longer need 9x Kill(x ,Victim) once we have
Kill(Murderer ,Victim).

Strictly speaking, the new KB is not logically equivalent to the old.

However, the new KB is satisfiable i↵ the old was satisfiable.

We call them inferentially equivalent.

Inference Propositionalization

Reduction to Propositional Inference

Suppose the KB contains only the following:

8x King(x) ^ Greedy(x)) Evil(x)

King(John)

Greedy(John)

Brother(Richard , John)

Instantiating the universal sentence in all possible ways, we have

King(John) ^ Greedy(John)) Evil(John)

King(Richard) ^ Greedy(Richard)) Evil(Richard)

King(John)

Greedy(John)

Brother(Richard , John)

The new KB is propositionalized.

Inference Propositionalization

Reduction to Propositional Inference

A ground sentence is entailed by new KB i↵ entailed by original KB.

Every FOL KB can be propositionalized so as to preserve entailment.

Propositionalize KB and query, apply resolution, return result.

Problem: with function symbols, there are infinitely many ground
terms, e.g., Father(Father(Father(John)))

Theorem: Herbrand (1930). If a sentence is entailed by an FOL KB,
it is entailed by a finite subset of the propositional KB.

Idea: For d = 0 to 1 do

create a propositional KB by instantiating with depth-d terms

see if ↵ is entailed by this KB.

Problem: works if ↵ is entailed, loops if ↵ is not entailed.

Theorem: Turing (1936), Church (1936), entailment in FOL is
semidecidable.

Bang Liu
Think about Iterative deepening search

Bang Liu
semidecidable—that is, algorithms exist that say yes to every entailed sentence, but no algorithm exists that also says no to every nonentailed sentence.

Inference Propositionalization

Problems with Propositionalization

Propositionalization generates lots of irrelevant sentences and can be
ine�cient.
E.g., from the KB,

8x King(x) ^ Greedy(x)) Evil(x)
King(John)
8y Greedy(y)
Brother(Richard , John)

It seems obvious that query Evil(x) yields x = John, but
propositionalization produces lots of irrelevant facts such as
Greedy(Richard).

With p k-ary predicates and n constants, there are p ·nk instantiations

With function symbols, it gets much worse!

Inference Unification

Generalized Modus Ponens (GMP)

GMP

p10, p20, . . . , pn0, (p1 ^ p2 ^ . . . ^ pn) q)

Subst(✓, q)
,

where 8i Subst(✓, p0i) = Subst(✓, pi)

p10 is King(John) p1 is King(x)
p20 is Greedy(y) p2 is Greedy(x)
✓ is {x/John, y/John} q is Evil(x)
Subst(✓, q) is Evil(John)

GMP used with KB of definite clauses (exactly one positive literal).

All variables assumed universally quantified.

Inference Unification

Soundness of GMP

Need to show that

p1
0, . . . , pn

0, (p1 ^ . . . ^ pn) q) |= Subst(✓, q)

provided that 8i Subst(✓, p0i) = Subst(✓, pi)

Lemma: For any definite clause p, we have p |= Subst(✓, p) by UI.

Proof.

1 (p1 ^ . . . ^ pn) q) |= Subst(✓, p1 ^ . . . ^ pn) q) =
Subst(✓, p1) ^ . . . ^ Subst(✓, pn)) Subst(✓, q)

2 p10, . . . , pn0 |= p10 ^ . . . ^ pn0 |= Subst(✓, p10) ^ . . . ^ Subst(✓, pn0)

3 From 1 and 2, Subst(✓, q) follows by ordinary Modus Ponens.

Inference Unification

Unification

We can get the inference immediately if we can find a substitution ✓
such that King(x) and Greedy(x) match King(John) and Greedy(y)

✓ = {x/John, y/John} works

Unify takes two sentences and returns a unifier for them:

Unify(p, q) = ✓ where Subst(✓, p) = Subst(✓, q).

p q ✓
Knows(John, x) Knows(John, Jane) {x/Jane}
Knows(John, x) Knows(y ,Bill) {x/Bill , y/John}
Knows(John, x) Knows(y ,Mother(y)) {y/John, x/Mother(John)}
Knows(John, x) Knows(x ,Eliza) fail (why?)

Inference Unification

Unification

Standardizing apart eliminates overlap of variables

Unify(Knows(John, x),Knows(x17,Eliza)) = {x/Eliza, x17/John}

Unify returns the most general unifier (MGU) if there are several.

E.g., Unify(Knows(John, x),Knows(y , z))=
{y/John, x/z} (MGU)
{y/John, x/John, z/John}

To retrieve MGU, the algorithm recursively explore the expressions
simultaneously.

Need to perform occur check so that S(x) doesn’t unify with S(S(x)).

Bang Liu
See Fig. 9.1 in AIMA

Bang Liu
Occur check: when matching a variable against a complex term, one must check whether the variable itself occurs inside the term; if it does, the match fails because no consistent unifier can be constructed.

Inference Forward chaining

First-Order Definite Clauses

The law says that it is a crime for an American to sell weapons to
hostile nations. The country Nono, an enemy of America, has some
missiles, and all of its missiles were sold to it by Colonel West, who is
American.

Prove that Colonel West is a criminal.

For e�cient inference, we use first-order definite clauses:
Exactly one positive literal.
May include variables (universally quantified).

Inference Forward chaining

Knowledge Base Using First-Order Definite Clauses

“. . . it is a crime for an American to sell weapons to hostile nations”:
American(x) ^Weapon(y) ^ Sells(x , y , z) ^ Hostile(z)) Criminal(x)

“Nono . . . has some missiles”, i.e., 9 x Owns(Nono, x) ^Missile(x):
Owns(Nono,M1) and Missile(M1)

“. . . all of its missiles were sold to it by Colonel West”:
8x Missile(x) ^ Owns(Nono, x)) Sells(West, x ,Nono)

Missiles are weapons:
Missile(x)) Weapon(x)

An enemy of America counts as “hostile”:
Enemy(x ,America)) Hostile(x)

“West, who is American . . .”:
American(West)

“The country Nono, an enemy of America . . .”:
Enemy(Nono,America)

Inference Forward chaining

Forward Chaining Algorithm

FOL-FC-Ask(KB ,↵)

1 repeat until new is empty
2 new = {}
3 for each rule in KB
4 (p1 ^ . . . ^ pn) q) = Standardize-Variables(rule)
5 for each ✓ such that Subst(✓, p1 ^ . . . ^ pn) ==

Subst(✓, p10 ^ . . . ^ pn0) for some p10, . . . , pn0 in KB
6 q0 = Subst(✓, q)
7 if q0 does not unify with some sentence already in KB or new
8 add q0 to new
9 � = Unify(q0,↵)

10 if � is not fail
11 return �
12 add new to KB
13 return false

Inference Forward chaining

Forward Chaining Proof

Facts

1 Owns(Nono,M1)

2 Missile(M1)

3 American(West)

4 Enemy(Nono,America)

Implications

5 American(x) ^Weapon(y) ^ Sells(x , y , z) ^
Hostile(z)) Criminal(x)

6 8x Missile(x) ^ Owns(Nono, x))
Sells(West, x ,Nono)

7 Missile(x)) Weapon(x)

8 Enemy(x ,America)) Hostile(x)

1st iteration, R5 has unsatisfied premises.
R6 is satisfied with {x/M1}, Sells(West,M1,Nono) is added.
R7 is satisfied with {x/M1}, Weapon(M1) is added.
R8 is satisfied with {x/Nono}, Hostile(Nono) is added.
2nd iteration, R5 is satisfied with {x/West, y/M1, z/Nono},
Criminal(West) is added.

Inference Forward chaining

Forward Chaining Proof

Inference Forward chaining

Properties of Forward Chaining

Sound and complete for first-order definite clauses.
Sound because of generalized Modus Ponens.
Complete proof similar to propositional proof by introducing the
concept of fixed point.

Datalog = first-order definite clauses + no functions (e.g., crime KB)
FC terminates for Datalog in poly iterations: at most p · nk distinct
ground facts.

May not terminate in general if ↵ is not entailed.

This is unavoidable: entailment with definite clauses is semi-decidable.

Inference Forward chaining

E�ciency of Forward Chaining

Simple observation: no need to match a rule on iteration k if a
premise wasn’t added on iteration k � 1.
) match each rule whose premise contains a newly added literal.

Matching itself can be expensive.

Database indexing allows O(1) retrieval of known facts
e.g., query Missile(x) retrieves Missile(M1)

Matching conjunctive premises against known facts is NP-hard.
e.g., Missile(x) ^ Owns(Nono, x)) Sells(West, x ,Nono)
Conjunction ordering problem: find an ordering to minimize the cost.
Nevertheless, good heuristics are available.

Forward chaining is widely used in deductive databases

Bang Liu
NP-hard: at least as hard as the hardest problems in NP

Bang Liu
A deductive database is a database system that can make deductions based on rules and facts stored

Inference Backward chaining

Backward Chaining Example

Inference Backward chaining

Backward Chaining Example

Inference Backward chaining

Backward Chaining Example

Inference Backward chaining

Properties of Backward Chaining

Depth-first recursive proof search: space is linear in size of proof.

AND-OR search: AND for all premises; OR since the goal query
can be proved by any rules.

Incomplete due to infinite loops
) fix by checking current goal against every goal on stack

Ine�cient due to repeated subgoals (both success and failure)
) fix using caching of previous results (extra space!)

Widely used (without improvements!) for logic programming

Inference Backward chaining

Logic Programming

Algorithm = Logic + Control

Logic Programming Ordinary Programming
1. Identify problem Identify problem
2. Assemble information Assemble information
3. Tea break Figure out solution
4. Encode information in KB Program solution
5. Encode problem as facts Encode problem as data
6. Ask queries Apply program to data
7. Find false facts Debug procedural errors

Bang Liu
Logic programming is a technology that comes close to embodying the declarative ideal: that systems should be constructed by expressing knowledge in a formal language and that problems should be solved by running inference processes on that knowledge.
The ideal is summed up in Robert Kowalski’s equation:

Bang Liu
See AIMA 8.4

Inference Backward chaining

Prolog Systems

Lowercases for constants; uppercases for variables (opposite of the
textbook).

Program = set of definite clauses.
A ^ B) C in Prolog is C :- A, B.

criminal(X) :- american(X), weapon(Y), sells(X,Y,Z),

hostile(Z).

[E|L] is a list whose first element is E and rest is L.

Bang Liu
Prolog is the most widely used logic programming language.
Many expert systems have been written in Prolog for legal, medical, financial, and other domains.
Prolog programs are sets of definite clauses written in a notation somewhat different from standard first-order logic:

Inference Backward chaining

Prolog Examples

Depth-first search from a start state X:
dfs(X) :- goal(X).

dfs(X) :- successor(X,S),dfs(S).

Appending two lists (X and Y) to produce a third (Z):
append([],Y,Y).

append([A|X],Y,[A|Z]) :- append(X,Y,Z).

query: append(X,Y,[1,2]) ?

answers: X=[] Y=[1,2];

X=[1] Y=[2];

X=[1,2] Y=[]

Bang Liu
A Prolog program for append(X,Y,Z), which succeeds if list Z is the result of appending lists X and Y

Inference Backward chaining

Prolog Systems

Unification without the occur check, may results in unsound
inferences. But almost never a problem in practice.

Depth-first, left-to-right backward chaining search with no checks for
infinite recursion.

Built-in predicates for arithmetic etc., e.g., X is Y*Z+3; no arbitrary
equation solving, e.g., 5 is X+Y fails.

Database semantics instead of first-order semantics.

Bang Liu

Bang Liu
When matching a variable against a complex term, one must check whether the variable itself occurs inside the term. This so-called occur check makes the complexity of the entire algorithm quadratic in the size of the expressions being unified. Some systems, including many logic programming systems, simply omit the occur check and put the onus on the user to avoid making unsound inferences as a result

Inference Backward chaining

Redundant Inference and Infinite Loops in Prolog

path(X,Z) :- link(X,Z).
path(X,Z) :- path(X,Y), link(Y,Z).

Query: path(a,c) ?

Inference Backward chaining

Redundant Inference and Infinite Loops in Prolog

Backward chaining (Prolog) takes 877 inferences.

Forward chaining (similar to dynamic programming) takes only 62
inferences.

To make backward chaining more e�cient, memoization can be
adopted, but extra memory is needed.

Inference Backward chaining

Database Semantics of Prolog

Closed-world assumption — anything not known to be true is false.

Unique-names assumption — di↵erent names refer to distinct objects.

Domain closure — only those mentioned exist in the domain.

Prolog assertions:
Course(CS,101), Course(CS,102), Course(CS,106), Course(EE,101).

FOL:
at most 4 courses:

Course(d , n) , (d = CS ^ n = 101) _ (d = CS ^ n = 102)

_(d = CS ^ n = 106) _ (d = EE ^ n = 101).

at least 4 courses:
x = y , (x = CS ^ y = CS) _ (x = EE ^ y = EE)

_(x = 101 ^ y = 101) _ (x = 102 ^ y = 102) _ (x = 106 ^ n = 106).

Inference Resolution

Resolution

Full first-order version:
`1 _ · · · _ `k , m1 _ · · · _mn

Subst(✓, `1 _ · · · _ `i�1 _ `i+1 _ · · · _ `k _m1 _ · · · _mj�1 _mj+1 _ · · · _mn)
,

where Unify(`i ,¬mj) = ✓.

For example,

¬Rich(x) _ Unhappy(x)
Rich(Ken)

Unhappy(Ken)

with ✓ = {x/Ken}

Apply resolution steps to CNF (KB ^ ¬↵); complete for FOL

Inference Resolution

Conversion to CNF

Everyone who loves all animals is loved by someone:

8x [8y Animal(y)) Loves(x , y)]) [9y Loves(y , x)]

1 Eliminate biconditionals and implications:

8x [¬8y ¬Animal(y) _ Loves(x , y)] _ [9y Loves(y , x)]

2 Move ¬ inwards: ¬8x p ⌘ 9x ¬p, ¬9x p ⌘ 8x ¬p:

8x [9y ¬(¬Animal(y) _ Loves(x , y))] _ [9y Loves(y , x)]

8x [9y ¬¬Animal(y) ^ ¬Loves(x , y)] _ [9y Loves(y , x)]

8x [9y Animal(y) ^ ¬Loves(x , y)] _ [9y Loves(y , x)]

Inference Resolution

Conversion to CNF

3 Standardize variables: each quantifier should use a di↵erent one

8x [9y Animal(y) ^ ¬Loves(x , y)] _ [9z Loves(z , x)]

4 Skolemize: a more general form of existential instantiation.
Each existential variable is replaced by a Skolem function
of the enclosing universally quantified variables:

8x [Animal(F (x)) ^ ¬Loves(x ,F (x))] _ Loves(G (x), x)

5 Drop universal quantifiers:

[Animal(F (x)) ^ ¬Loves(x ,F (x))] _ Loves(G (x), x)

6 Distribute ^ over _:

[Animal(F (x)) _ Loves(G (x), x)]^ [¬Loves(x ,F (x))_ Loves(G (x), x)]

李松錡
哪一個不是在CNF中

Inference Resolution

Resolution Proof: Definite Clauses

Inference Resolution

Completeness of Resolution

Resolution is refutation-complete. If a set of sentences is unsatisfiable,
resolution always derives a contradiction.

It cannot generate all logical consequences.

It can find all answers of a given question, Q(x), by proving that
KB ^ ¬Q(x) is unsatisfiable.

Check out AIMA for the (brief) proof:

if S is an unsatisfiable set of clauses, then the appli-
cation of a finite number of resolution steps to S will
yield a contradiction.

Summary

Summary

For small domains, we can use UI and EI to propositionalize the
problem.

Unification identifies proper substitutions, more e�cient than
instantiation.

Forward- and backward-chaining uses the generalized Modus Ponens
on a sets of definite clauses.

GMP is complete for definite clauses, where the entailment is
semi-decidable; for Datalog KB (function-less definite clauses),
entailment can be decided in P-time (with forward-chaining).

Backward chaining is used in logic programming systems; inferences
are fast but may be unsound or incomplete.

Resolution is sound and (refutation-)complete for FOL, using CNF
KB.

	First-Order Logic
	Syntax and semantics
	Using FOL

	Inference
	Instantiation
	Propositionalization
	Unification
	Forward chaining
	Backward chaining
	Resolution

