

Propositional Logic

Bang Liu, Jian-Yun Nie

IFT3335: Introduction to Artificial Intelligence

Readings: AIMA 7.1~7.5

(Slides are adapted from Tian-Li Yu, National Taiwan University, Artificial Intelligence - Search & Logic)

Outline

- 1 Logical Agents
- 2 Propositional Logic
- Inference
- 4 Resolution and CNF
- 5 Forward Chaining
- 6 Backward Chaining

Generic Knowledge-Based Agent

- Knowledge base is a set of sentences in a formal language.
- Declarative approach to develop an agent: Tell it what it needs to know.

KB-AGENT(percept)

- 1 TELL(*KB*, MAKE-PERCEPT-SENTENCE(*percept*, *t*))
- 2 action = Ask(KB, MAKE-ACTION-QUERY(t))
- 3 Tell(*KB*, Make-Action-Sentence(*action*, *t*))
- $4 \quad t = t+1$
- 5 return action

4	stench		breeze	pit
3		breeze stench gold	pit	breeze
2	stench		breeze	
1	A	breeze	pit	breeze
	1	2	3	4

Wumpus World (PEAS)

- Performance measure: gold +1000, death -1000, -1 per move, and -10 for using the arrow.
- Environment: 4×4 grid. Agent starts at [1, 1], facing right. One gold and one wumpus are uniformly randomly located. Any square can be a pit with probability of 0.2.
 - Actuators: FORWARD, TURNLEFT, TURNRIGHT, GRAB, SHOOT (only one arrow, going straight until it kills the wumpus or hits the wall), CLIMB (only works at [1, 1]).
 - Sensors: STENCH when adjacent to the wumpus. BREEZE when adjacent to a pit. GLITTER when reaching the gold. BUMP when walking into a wall. SCREAM when the wumpus dies.

- The agent sometimes needs to decide to go home empty-handed or risk for the gold.
 - This environment does not guarantee the agent can always get the gold.
 - If at [1,1] the agent receives BREEZE, the agent does not know which direction to FORWARD is fatal and which is safe (can be both fatal).
 - With a probability of about 21%, the gold is in a pit, or surrounded by pits.
- The agent's initial KB contains the rules.
- It also knows it's in [1, 1], and it's a safe square (marked OK).

(a)

(b)

1^{st} step

- Percept: NONE.
- \rightarrow [1,2] and [2,1] are OK.
- Action: FORWARD.

2nd step

- Percept: BREEZE.
- \rightarrow [2, 2] or [3, 1] are pits.
- \rightarrow go back to [1,1] then [1,2].
- Action: TURNLEFT, TURNLEFT, FORWARD, TURNRIGHT, FORWARD.

3rd step

- Percept: STENCH.
- \rightarrow [2,2]: OK; [1,3]: wumpus.
- \rightarrow Kill wumpus; go to [2,2].
- Action: SHOOT, TURNRIGHT, FORWARD.

5th step

- Percept: STENCH, GLITTER, BREEZE.
- $\bullet \rightarrow [2,4]$ or [3,3]: pits; [2,3]: gold.
- $\bullet \ \rightarrow \mbox{ Get gold and go back}.$
- Action: GRAB,

Logical Agents	
Logics	A formal language consists of words whose letters are taken from an alphabet and are well-formed according to a specific set of rules. A formal language is often
	defined by means of a formal grammar, which consists of its formation rules. Formal languages are languages
• Logics are formal languages.	that are designed by people for specific applications. Tend to have strict syntax and not ambiguous.

- Syntax defines the sentence structures in the language.
- Semantics defines the meanings of sentences.
 - Semantics defines the truth of each sentence w.r.t. each possible world.
 - x + y = 4 is true in a world where x = 1 and y = 3.
- We use the term model in place of possible world.

Models

If a sentence α is true in model m,

- *m* satisfies α .
- m is a model of α .
- $m \in M(\alpha)$, where $M(\alpha)$ is the set of all models of α .

Entailment and Models

Entailment

Knowledge base *KB* entails sentence α if and only if α is true in all worlds where *KB* is true, denoted as:

 $KB \models \alpha$

•
$$(x + y = 4) \models (4 = x + y).$$

• $x = 0 \models xy = 0.$

Theorem: $\alpha \models \beta$ iff $M(\alpha) \subseteq M(\beta)$.

only if: $\forall m \in M(\alpha)$, β is true in $m \Leftrightarrow \forall m \in M(\alpha)$, $m \in M(\beta) \Leftrightarrow M(\alpha) \subseteq M(\beta)$ **if:** $\forall m \in M(\alpha)$, $m \in M(\beta) \Leftrightarrow \forall m$ where α is true, β is true $\Leftrightarrow \alpha \models \beta$.

Back to Wumpus World

- [1,1] percepts NONE.
- [2,1] percepts BREEZE.
- The agent wants to know unexplored adjacent squares [1,2], [2,2], [3,1] contains pits or not.

- The agent wants to know unexplored adjacent squares [1,2], [2,2], [3,1] contains pits or not.
- $2^3 = 8$ possible models.
- Consider two sentences: α_1 : no pit in [1,2]; α_2 : no pit in [2,2].

• $KB \models \alpha_1$; $KB \not\models \alpha_2$.

Propositional Logic

- Proposition: a declarative sentence that is either true or false.
 - $\mathcal{P} = \mathcal{NP}$ is a proposition.
 - "How are you?" is not.
- Propositional logic usually does not consider time.
- If the truth of a proposition varies over time, we call it fluent.
 - "Today is Monday" is a fluent.
- Atomic propositions are minimum propositions.
- Literals are atomic propositions or their negations $(p \text{ or } \neg p)$.

Propositional Logic

- The following grammar in Backus-Naur form (BNF) for syntax.
- Truth tables for semantics.

Р	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Figure 7.8 Truth tables for the five logical connectives. To use the table to compute, for example, the value of $P \lor Q$ when P is true and Q is false, first look on the left for the row where P is true and Q is false (the third row). Then look in that row under the $P \lor Q$ column to see the result: true.

Operator Precedence

Sentence \rightarrow AtomicSentence ComplexSentence

- AtomicSentence \rightarrow True|False|P|Q|R|...
- *ComplexSentence* \rightarrow (*Sentence*) () can change operator precedence
 - ¬Sentence
 - Sentence \land Sentence

Sentence V Sentence

Sentence \Rightarrow Sentence

Sentence \Leftrightarrow Sentence

 $: \neg, \land, \lor, \Rightarrow, \Leftrightarrow$

not, and, or, implies, if and only if

Inference by Enumeration

TT-ENTAILS(KB, α)

- 1 symbols = a list of the proposition symbols in KB and α
- 2 return TT-CHECK-ALL($KB, \alpha, symbols, \{\}$)

TT-CHECK-ALL(*KB*, α , *symbols*, *model*)

```
if EMPTY(symbols)
1
        if PL-TRUE(KB, model)
2
                                              PL-TRUE returns true if
3
             return PL-TRUE(\alpha, model)
                                               a sentence holds within a model
4
        else return TRUE
5
   else
6
        P = FIRST(symbols)
                                            Check different models/worlds with different
7
        rest = REST(symbols)
                                           values assigned to symbols
8
        return TT-CHECK-ALL(KB, \alpha, rest, model \cup {P = TRUE})
             and TT-CHECK-ALL(KB, \alpha, rest, model \cup {P = FALSE})
```

Inference

Standard Logical Equivalences

•
$$\alpha \equiv \beta$$
 iff $\alpha \models \beta$ and $\beta \models \alpha$.
($\alpha \land \beta$) $\equiv (\beta \land \alpha)$
($\alpha \lor \beta$) $\equiv (\beta \lor \alpha)$
($(\alpha \land \beta) \land \gamma$) $\equiv (\alpha \land (\beta \land \gamma))$
($(\alpha \lor \beta) \lor \gamma$) $\equiv (\alpha \lor (\beta \lor \gamma))$
 $\neg (\neg \alpha) \equiv \alpha$
($\alpha \Rightarrow \beta$) $\equiv (\neg \beta \Rightarrow \neg \alpha)$
($\alpha \Rightarrow \beta$) $\equiv (\neg \alpha \lor \beta)$
($\alpha \Rightarrow \beta$) $\equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$
 $\neg (\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$
 $\neg (\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)$
($\alpha \land (\beta \lor \gamma)$) $\equiv ((\alpha \land \beta) \lor (\alpha \land \gamma))$
($\alpha \lor (\beta \land \gamma)$) $\equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma))$

Note that = is used to make claims bout sentences, while ⇔ is used as a art of a sentence commutativity of \wedge commutativity of \lor associativity of \wedge associativity of \vee double-negation elimination contraposition implication elimination biconditional elimination $\alpha))$ De Morgan De Morgan distributivity of \land over \lor distributivity of \lor over \land

Validity and Satisfiability

- A sentence is valid if it is true in all models. TRUE, $A \lor \neg A$
- Validity is connected to inference via the Deduction Theorem: $KB \models \alpha$ iff $(KB \Rightarrow \alpha)$ is valid.
- A sentence is satisfiable if it is true in some model. $A \wedge B$, A
- A sentence is unsatisfiable if it is true in no model. $A \land \neg A$
- Satisfiability is connected to inference via Reductio ad Absurdum (proof by contradiction):

 $KB \models \alpha$ iff $(KB \land \neg \alpha)$ is unsatisfiable.

Inference

Inference: the way we derive conclusions with inference rules.

- Inference *i* can derive α from *KB*, denoted as *KB* $\vdash_i \alpha$
- Soundness: *i* is sound if

 $(KB \vdash_i \alpha) \Rightarrow (KB \models \alpha)$

i.e., any conclusion I can drive from KB is true

• Completeness: *i* is complete if

 $(KB \models \alpha) \Rightarrow (KB \vdash_i \alpha)$ i.e., If any sentence is entailed by KB, I can derive it.

- For *KB* consisting of only propositional logic or first-order logic (FOL), there exists a sound and complete inference procedure.
- FOL is expressive enough to express many things in the real world.

Inference

Simple Knowledge Base Using Propositional Logic

- $P_{x,y}$ is true there is a pit in [x, y].
- $W_{x,y}$ is true there is a wumpus in [x, y].
- $B_{x,y}$ is true if the agent perceives BREEZE in [x, y].
- $S_{x,y}$ is true if the agent perceives STENCH in [x, y].

4				
3				
2	SAFE	? Pit ?		
1	SAFE	No.	? ^{pit} ?	
	1	2	3	4

KΒ

- $R_1 : \neg P_{1,1}$.
- $R_2: B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1}).$
- $R_3: B_{2,1} \Leftrightarrow (P_{1,1} \lor P_{2,2} \lor P_{3,1}).$
- $R_4 : \neg B_{1,1}$.
- $R_5 : B_{2,1}$.

Inference of the Wumpus World

Biconditional elimination from R_2 .

• $R_6: (B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1}).$

And-elimination from R_6 .

• $R_7: (P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1}.$

Contrapositive from R_7 .

• $R_8: \neg B_{1,1} \Rightarrow \neg (P_{1,2} \lor P_{2,1}).$

Modus Ponens from R_8 .

$$\frac{\alpha \Rightarrow \beta, \quad \alpha}{\beta}$$

• $R_9: \neg (P_{1,2} \lor P_{2,1}).$

De Morgan's rule from R_9 .

• $R_{10}: \neg P_{1,2} \land \neg P_{2,1}.$

Proof by Resolution

• Convert a sentence into conjunctive normal form (CNF).

Conjunction of disjunctions of literals • $(A \lor \neg B) \land (B \lor \neg C \lor D)$

Resolution Inference Rule

$$\ell_1 \vee \cdots \vee \ell_k, \quad m_1 \vee \cdots \vee m_n$$

 $\ell_1 \vee \cdots \ell_{i-1} \vee \ell_{i+1} \vee \cdots \vee \ell_k \vee m_1 \vee \cdots m_{j-1} \vee m_{j+1} \vee \cdots \vee m_n$

where ℓ_i and m_i are complementary literals.

•
$$\frac{P_{1,1} \lor P_{3,1}, \neg P_{1,1} \lor \neg P_{2,2}}{P_{3,1} \lor \neg P_{2,2}}$$

Quiz: If you have $A \lor B \lor \neg C$ and $A \lor \neg B \lor C$, can you derive A?

Conjunctive Normal Form (CNF) Conversion

 $B_{1,1} \Leftrightarrow P_{1,2} \lor P_{2,1}$

 $I Eliminate \Leftrightarrow by bidirectional elimination:$

 $(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$

 ② Eliminate ⇒ by (α ⇒ β) ≡ (¬α ∨ β): (¬B_{1,1} ∨ (P_{1,2} ∨ P_{2,1})) ∧ (¬(P_{1,2} ∨ P_{2,1}) ∨ B_{1,1})
 ③ "Move ¬ inwards" by double-negation elimination and De Morgan: (¬B_{1,1} ∨ (P_{1,2} ∨ P_{2,1})) ∧ ((¬P_{1,2} ∧ ¬P_{2,1}) ∨ B_{1,1})

④ Distribute ∨ over ∧ and "flatten":

 $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$

Resolution Algorithm

• Proof by contradiction — showing $KB \land \neg \alpha$ is unsatisfiable.

PL-RESOLUTION(KB, α)

1 clauses = the set of clauses in the CNF representation of $\mathit{KB} \land \neg lpha$

```
2 new = \phi
```

```
3
     repeat
 4
          for each pair of clauses C_i, C_i in clauses do
 5
               resolvents = PL-RESOLVE(C_i, C_i)
 6
               if resolvents contains the empty clause AA¬A leads to empty clause
 7
                    return TRUE
 8
               new = new \cup resolvents
 9
          if new \subset clauses
10
               return FALSE
11
          clauses = clauses \cup new
```

Resolution Example

- $KB: B_{1,1} \Leftrightarrow P_{1,2} \lor P_{2,1}.$
- KB(CNF): $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1}).$
- After we know (add into KB) $\neg B_{1,1}$, we'd like to assert $\alpha = \neg P_{1,2}$.
- PL-RESOLUTION resolves $KB \land \neg \alpha$ to the empty clause.

Resolution is Sound and Complete

- Soundness is not surprising since inference rules are sound (check the truth table).
- Resolution is also complete.
 - Resolution closure *RC*(*S*) of a set of clauses *S*: the set of all clauses derivable by resolution.
 - Final value of *clauses* in PL-RESOLUTION is *RC(S)*.
 - *RC(S)* is finite, and hence PL-RESOLUTION always terminates.

Ground Resolution Theorem

S is unsatisfiable $\Rightarrow RS(S)$ contains the empty clause.

Ground Resolution Theorem

Proof by Contrapositive.

RC(S) does not contains the empty set $\Rightarrow S$ is satisfiable.

If $\phi \notin RC(S)$, construct a model for S with suitable values for literals P_1, \ldots, P_k : For i from 1 to k,

- If a clause in *RC(S)* contains ¬*P_i* and all its other literals are FALSE, assign FALSE to *P_i*.
- Otherwise, assign TRUE to P_i .

For a clause in *S* to be close to FALSE, it must be either (FALSE $\lor \cdots$ FALSE $\lor P_i$) or (FALSE $\lor \cdots$ FALSE $\lor \neg P_i$).

However, our assignment will make the clause to be true. Therefore, such assignment is a model of S.

Horn and Definite Clauses

- The completeness of resolution is good.
- For many real-world applications, if we add some restrictions, more efficient inference can be achieved.
- Definite clause: a disjunction of literals where exactly one is positive.
- Horn clause: a disjunction of literals where at most one is positive.
- Horn clauses are closed under resolution:

Resolving two Horn clauses yields a Horn clause.

- Another way to view Horn clauses:
 - TRUE \Rightarrow symbol.
 - (Conjunction of symbols) \Rightarrow symbol.

• Deciding entailment with Horn clauses can be done in linear time! Forward and backward chaining.

Horn clauses means entailment: $\neg A \lor \neg B \lor C$ $\equiv \neg (A \land B) \lor C$ $\equiv (A \land B) \Rightarrow C$

Forward Chaining

• Resolution for Horn clauses (Modus Ponens):

$$\frac{\alpha_1, \cdots, \alpha_n, \quad (\alpha_1 \wedge \cdots \wedge \alpha_n) \Rightarrow \beta}{\beta}$$

- Main idea:
 - Counts the unknown premises in all clauses.
 - Decreases the count if a premise is known.
 - When a count becomes zero, the conclusion is added as a known fact.
 - Record the inferred symbols to avoid redundant work $(P \Rightarrow Q, Q \Rightarrow P)$.

Forward Chaining

PL-FC-ENTAILS(KB, q)

count: number of symbols in *c*'s premise. agenda: a queue of symbols, initially known facts in KB. while agenda is not empty do 1 2 p = POP(agenda)3 if p == q4 return TRUE 5 **if** *inferred*[*p*] == FALSE 6 *inferred*[*p*] = TRUE 7 for each clause c in KB where p is in c.premise 8 decrement *count*[*c*] 9 if count[c] == 0add c.conclusion to agenda 10 11 return FALSE

Forward Chaining Example

• Fire any rule whose premises are satisfied in the KB, add its conclusion to the KB, until query is found.

Forward Chaining Example

• Fire any rule whose premises are satisfied in the *KB*, add its conclusion to the *KB*, until query is found.

Completeness of Forward Chaining

- FC reaches a fixed point where no new inferences are possible.
- Consider a model *m* which assigns TRUE to every symbol inferred and FALSE to others.
- Every clause in *KB* is TRUE in *m*:

- $m \in M(KB)$ (*m* is a model of *KB*)
- If $KB \models q$, q is TRUE in m.
- Therefore, FC derives every atomic sentence that is entailed by KB.

- Work backward from Q.
- If Q is known, done.
- Otherwise, check it's premise *P*.
- Next step checks *L* and *M*.
- Identical to the AND-OR-GRAPH-SEARCH in the textbook.

Backward Chaining Example

Blue ring: Checking. Blue circle: Checked. Red circle: Facts.

Backward Chaining Example

Backward Chaining Example

Backward Chaining Example

Forward vs. Backward Chaining

- Both time complexities are linear to the size of KB.
- Forward chaining is data-driven.
- Backward chaining is goal-driven.
- In general, backward chaining is more appropriate for problem solving
 - Where's my key?
 - How to pass this course?
- Forward chaining may generate many conclusions irrelevant to the goal.
- In general, time complexity of backward chaining is much less than linear of the size of *KB*.

Pros and Cons of Propositional Logic

Pro

- Propositional logic is declarative: pieces of syntax correspond to facts.
- Propositional logic allows partial/disjunctive/negated information (unlike most data structures and databases).
- Propositional logic is compositional:
 - Meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$.
- Meaning in propositional logic is context-independent (unlike natural language, where meaning depends on context)
- Con
 - Propositional logic has very limited expressive power. Cannot say "pits cause breezes in adjacent squares" except by writing one sentence for each square.

Summary

- Knowledge base contains sentences in a knowledge representation language.
- A representation language is defined by its syntax and semantics, which defines the truth of each sentence in each model.
- α entails β if β is true in all models where α is true. Equivalent definitions: validity of α ⇒ β; unsatisfiability of α ∧ ¬β.
- Sound inferences derive only sentences that are entailed; complete inferences derive all sentences that are entailed.
- Resolution is sound and complete inference for propositional logics, where KB can be expressed by CNF.
- Forward and backward chaining are sound and complete for KB in Horn form (more restrict than propositional logics).