## Propositional Logic

Bang Liu, Jian-Yun Nie

IFT3335: Introduction to Artificial Intelligence
Readings: AIMA 7.1~7.5

(Slides are adapted from Tian-Li Yu, National Taiwan University, Artificial Intelligence - Search \& Logic)

## Outline

(1) Logical Agents
(2) Propositional Logic
(3) Inference
(4) Resolution and CNF
(5) Forward Chaining
(6) Backward Chaining

## Generic Knowledge-Based Agent

- Knowledge base is a set of sentences in a formal language.
- Declarative approach to develop an agent: Tell it what it needs to know.

```
KB-AgENT(percept)
1 Tell(KB,Make-Percept-Sentence(percept,t))
2 \mp@code { a c t i o n ~ = ~ A s k ( K B , M a k e - A c t i o n - Q u e r y ( t ) ) }
3 Tell(KB,Make-Action-Sentence(action, t))
4 t=t+1
r return action
```


## Wumpus World

| 4 | $\text { \{ }\} \leqslant \xi\}\}$ |  | breeze | pit |
| :---: | :---: | :---: | :---: | :---: |
| 3 |  |  | pit | breeze |
| 2 | $\left\{\begin{array}{l} \text { stench } \end{array}\right\}$ |  | breeze |  |
| 1 |  | breeze | pit | breeze |
|  | 1 | 2 | 3 | 4 |

## Wumpus World (PEAS)

Performance measure: gold +1000 , death $-1000,-1$ per move, and -10 for using the arrow.
Environment: $4 \times 4$ grid. Agent starts at $[1,1]$, facing right. One gold and one wumpus are uniformly randomly located. Any square can be a pit with probability of 0.2 .
Actuators: Forward, TurnLeft, TurnRight, Grab, Shoot (only one arrow, going straight until it kills the wumpus or hits the wall), Climb (only works at $[1,1]$ ).
Sensors: Stench when adjacent to the wumpus. Breeze when adjacent to a pit. Glitter when reaching the gold. Bump when walking into a wall. Scream when the wumpus dies.

## Wumpus World

- The agent sometimes needs to decide to go home empty-handed or risk for the gold.
- This environment does not guarantee the agent can always get the gold.
- If at $[1,1]$ the agent receives Breeze, the agent does not know which direction to Forward is fatal and which is safe (can be both fatal).
- With a probability of about $21 \%$, the gold is in a pit, or surrounded by pits.
- The agent's initial $K B$ contains the rules.
- It also knows it's in $[1,1]$, and it's a safe square (marked OK).


## Wumpus World

| 4 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 3 |  |  |  |  |
| 2 | SAFE |  |  |  |
| 1 | i, | SAFE |  |  |
|  | 1 | 2 | 3 | 4 |

(a)

(b)
$1^{\text {st }}$ step

- Percept: none.
- $\rightarrow[1,2]$ and $[2,1]$ are OK.
- Action: Forward.
- Percept: Breeze.
- $\rightarrow[2,2]$ or $[3,1]$ are pits.
- $\rightarrow$ go back to $[1,1]$ then $[1,2]$.
- Action: TurnLeft, TurnLeft, Forward, TurnRight, Forward.


## Wumpus World

| 4 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 3 |  |  |  |  |
| 2 |  | SAFE |  |  |
| 1 |  | bereze |  |  |
|  | 1 | 2 | 3 | 4 |

(a)

| 4 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 3 | L |  | $?$ |  |
| 2 | $\begin{aligned} & \text { SAFE } \\ & \text { }\{\xi \xi \xi\} \end{aligned}$ | SAFE |  |  |
| 1 |  | vereze |  |  |
|  | 1 | 2 | 3 | 4 |

(b)

## $3^{\text {rd }}$ step

- Percept: Stench.
- $\rightarrow$ [2, 2]: OK; [1, 3]: wumpus.
- $\rightarrow$ Kill wumpus; go to $[2,2]$.
- Action: Shoot, TurnRight, Forward.


## $5^{\text {th }}$ step

- Percept: Stench, Glitter, Breeze.
- $\rightarrow[2,4]$ or $[3,3]$ : pits; [2, 3]: gold.
- $\rightarrow$ Get gold and go back.
- Action: Grab, ....


## Logics

A formal language consists of words whose letters are taken from an alphabet and are well-formed according to a specific set of rules. A formal language is often defined by means of a formal grammar, which consists of its formation rules. Formal languages are languages that are designed by people for specific applications. Tend to have strict syntax and not ambiguous.

- Logics are formal languages.
- Syntax defines the sentence structures in the language.
- Semantics defines the meanings of sentences.
- Semantics defines the truth of each sentence w.r.t. each possible world.
- $x+y=4$ is true in a world where $x=1$ and $y=3$.
- We use the term model in place of possible world.


## Models

If a sentence $\alpha$ is true in model $m$,

- $m$ satisfies $\alpha$.
- $m$ is a model of $\alpha$.
- $m \in M(\alpha)$, where $M(\alpha)$ is the set of all models of $\alpha$.


## Entailment and Models

## Entailment

Knowledge base $K B$ entails sentence $\alpha$ if and only if $\alpha$ is true in all worlds where $K B$ is true, denoted as:

$$
K B \models \alpha
$$

- $(x+y=4) \models(4=x+y)$.
- $x=0 \vDash x y=0$.

Theorem: $\alpha=\beta$ iff $M(\alpha) \subseteq M(\beta)$.
only if: $\forall m \in M(\alpha), \beta$ is true in $m \Leftrightarrow \forall m \in M(\alpha), m \in M(\beta) \Leftrightarrow M(\alpha) \subseteq M(\beta)$ if: $\forall m \in M(\alpha), m \in M(\beta) \Leftrightarrow \forall m$ where $\alpha$ is true, $\beta$ is true $\Leftrightarrow \alpha \models \beta$.

## Back to Wumpus World

| 4 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 3 |  |  |  |  |
| 2 | SAFE |  |  |  |
| 1 | SAFE |  | ? |  |
|  | 1 | 2 | 3 | 4 |

- $[1,1]$ percepts None.
- $[2,1]$ percepts Breeze.
- The agent wants to know unexplored adjacent squares [1, 2], [2, 2], [3, 1] contains pits or not.
- The agent wants to know unexplored adjacent squares [1, 2], [2, 2], [3, 1] contains pits or not.
- $2^{3}=8$ possible models.
- Consider two sentences: $\alpha_{1}$ : no pit in [1, 2]; $\alpha_{2}$ : no pit in [2, 2].

- $K B \neq \alpha_{1} ; K B \not \vDash \alpha_{2}$.


## Propositional Logic

- Proposition: a declarative sentence that is either true or false.
- $\mathcal{P}=\mathcal{N P}$ is a proposition.
- "How are you?" is not.
- Propositional logic usually does not consider time.
- If the truth of a proposition varies over time, we call it fluent.
- "Today is Monday" is a fluent.
- Atomic propositions are minimum propositions.
- Literals are atomic propositions or their negations ( $p$ or $\neg p$ ).


## Propositional Logic

- The following grammar in Backus-Naur form (BNF) for syntax.
- Truth tables for semantics.

$$
\begin{aligned}
\text { Sentence } & \rightarrow \text { AtomicSentence } \mid \text { ComplexSentence } \\
\text { AtomicSentence } & \rightarrow \text { True } \mid \text { False }|P| Q|R| \ldots \\
\text { ComplexSentence } & \rightarrow \text { (Sentence) } \quad \text { () can change operator precedence } \\
& \mid \text { ปSentence }
\end{aligned}
$$

| $P$ | $Q$ | $\neg P$ | $P \wedge Q$ | $P \vee Q$ | $P \Rightarrow Q$ | $P \Leftrightarrow Q$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| false | false | true | false | false | true | true |
| false | true | true | false | true | true | false |
| true | false | false | false | true | false | false |
| true | true | false | true | true | true | true |

Figure 7.8 Truth tables for the five logical connectives. To use the table to compute, for example, the value of $P \vee Q$ when $P$ is true and $Q$ is false, first look on the left for the row where $P$ is true and $Q$ is false (the third row). Then look in that row under the $P \vee Q$ column to see the result: true.

## Operator Precedence

Sentence $\wedge$ Sentence
Sentence $\vee$ Sentence
Sentence $\Rightarrow$ Sentence
Sentence $\Leftrightarrow$ Sentence
$\neg, \wedge, \vee, \Rightarrow, \Leftrightarrow$
not, and, or, implies, if and only if

## Inference by Enumeration

## TT-Entails $(K B, \alpha)$

1 symbols $=$ a list of the proposition symbols in $K B$ and $\alpha$
2 return TT-Check-AlL(KB, $\alpha$, symbols, $\}$ )

## TT-CHECK-AlL(KB, $\alpha$, symbols, model)

1 if Empty(symbols)

2
3
4
5 else
$P=\operatorname{FiRsT}($ symbols)
rest $=$ Rest(symbols)
Check different models/worlds with different
return TT-Check-All ( $K B, \alpha$, rest, model $\cup\{P=$ TRUE $\}$ ) and TT-Check-AlL $(K B, \alpha$, rest, model $\cup\{P=$ FALSE $\})$

## Standard Logical Equivalences

- $\alpha \equiv \beta$ iff $\alpha \models \beta$ and $\beta \models \alpha$.
$(\alpha \wedge \beta) \equiv(\beta \wedge \alpha)$
$(\alpha \vee \beta) \equiv(\beta \vee \alpha)$
$((\alpha \wedge \beta) \wedge \gamma) \equiv(\alpha \wedge(\beta \wedge \gamma))$
$((\alpha \vee \beta) \vee \gamma) \equiv(\alpha \vee(\beta \vee \gamma))$
$\neg(\neg \alpha) \equiv \alpha$
$(\alpha \Rightarrow \beta) \equiv(\neg \beta \Rightarrow \neg \alpha)$
$(\alpha \Rightarrow \beta) \equiv(\neg \alpha \vee \beta)$
$(\alpha \Leftrightarrow \beta) \equiv((\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha))$
$\neg(\alpha \wedge \beta) \equiv(\neg \alpha \vee \neg \beta)$
$\neg(\alpha \vee \beta) \equiv(\neg \alpha \wedge \neg \beta)$
$(\alpha \wedge(\beta \vee \gamma)) \equiv((\alpha \wedge \beta) \vee(\alpha \wedge \gamma))$
$(\alpha \vee(\beta \wedge \gamma)) \equiv((\alpha \vee \beta) \wedge(\alpha \vee \gamma))$

Note that $\equiv$ is used to make claims
about sentences, while $\Leftrightarrow$ is used as a
part of a sentence
commutativity of $\wedge$ commutativity of $\vee$ associativity of $\wedge$ associativity of $\vee$ double-negation elimination contraposition implication elimination biconditional elimination

De Morgan
De Morgan
distributivity of $\wedge$ over $\vee$ distributivity of $\vee$ over $\wedge$

## Validity and Satisfiability

- A sentence is valid if it is true in all models.

True, $A \vee \neg A$

- Validity is connected to inference via the Deduction Theorem: $K B \models \alpha$ iff $(K B \Rightarrow \alpha)$ is valid.
- A sentence is satisfiable if it is true in some model.
$A \wedge B, A$
- A sentence is unsatisfiable if it is true in no model.
$A \wedge \neg A$
- Satisfiability is connected to inference via Reductio ad Absurdum (proof by contradiction): $K B \models \alpha$ iff $(K B \wedge \neg \alpha)$ is unsatisfiable.


## Inference

Inference: the way we derive conclusions with inference rules.

- Inference $i$ can derive $\alpha$ from $K B$, denoted as

$$
K B \vdash_{i} \alpha
$$

- Soundness: $i$ is sound if

$$
\left(K B \vdash_{i} \alpha\right) \Rightarrow(K B \models \alpha) \quad \text { i.e., any conclusion I can drive from } \mathrm{KB} \text { is true }
$$

- Completeness: $i$ is complete if

$$
(K B \models \alpha) \Rightarrow\left(K B \vdash_{i} \alpha\right) \quad \text { i.e., If any sentence is entailed by } \mathrm{KB}, \mathrm{I} \text { can derive it. }
$$

- For $K B$ consisting of only propositional logic or first-order logic (FOL), there exists a sound and complete inference procedure.
- FOL is expressive enough to express many things in the real world.


## Simple Knowledge Base Using Propositional Logic

- $P_{x, y}$ is true there is a pit in $[x, y]$.
- $W_{x, y}$ is true there is a wumpus in $[x, y]$.
- $B_{x, y}$ is true if the agent perceives Breeze in $[x, y]$.
- $S_{x, y}$ is true if the agent perceives Stench in $[x, y]$.

| 4 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 3 |  |  |  |  |
| 2 | SAFE | $? ?$ |  |  |
| 1 | SAFE | Ote? <br> ? | $? ? ?$ |  |
|  | 1 | 2 | 3 | 4 |

## $K B$

- $R_{1}: \neg P_{1,1}$.
- $R_{2}: B_{1,1} \Leftrightarrow\left(P_{1,2} \vee P_{2,1}\right)$.
- $R_{3}: B_{2,1} \Leftrightarrow\left(P_{1,1} \vee P_{2,2} \vee P_{3,1}\right)$.
- $R_{4}: \neg B_{1,1}$.
- $R_{5}: B_{2,1}$.


## Inference of the Wumpus World

Biconditional elimination from $R_{2}$.

- $R_{6}:\left(B_{1,1} \Rightarrow\left(P_{1,2} \vee P_{2,1}\right)\right) \wedge\left(\left(P_{1,2} \vee P_{2,1}\right) \Rightarrow B_{1,1}\right)$.

And-elimination from $R_{6}$.

- $R_{7}:\left(P_{1,2} \vee P_{2,1}\right) \Rightarrow B_{1,1}$.

Contrapositive from $R_{7}$.

- $R_{8}: \neg B_{1,1} \Rightarrow \neg\left(P_{1,2} \vee P_{2,1}\right)$.

Modus Ponens from $R_{8} . \quad \frac{\alpha \Rightarrow \beta, \alpha}{\beta}$

- $R_{9}: \neg\left(P_{1,2} \vee P_{2,1}\right)$.

De Morgan's rule from $R_{9}$.

- $R_{10}: \neg P_{1,2} \wedge \neg P_{2,1}$.


## Proof by Resolution

- Convert a sentence into conjunctive normal form (CNF).

Conjunction of $\underbrace{\text { disjunctions of literals }}$
clauses

- $(A \vee \neg B) \wedge(B \vee \neg C \vee D)$


## Resolution Inference Rule

$$
\begin{gathered}
\frac{\ell_{1} \vee \cdots \vee \ell_{k}, \quad m_{1} \vee \cdots \vee m_{n}}{\ell_{1} \vee \cdots \ell_{i-1} \vee \ell_{i+1} \vee \cdots \vee \ell_{k} \vee m_{1} \vee \cdots m_{j-1} \vee m_{j+1} \vee \cdots \vee m_{n}}, \\
\text { where } \ell_{i} \text { and } m_{j} \text { are complementary literals. }
\end{gathered}
$$

$$
\frac{P_{1,1} \vee P_{3,1}, \neg P_{1,1} \vee \neg P_{2,2}}{P_{3,1} \vee \neg P_{2,2}}
$$

## Conjunctive Normal Form (CNF) Conversion

$$
B_{1,1} \Leftrightarrow P_{1,2} \vee P_{2,1}
$$

(1) Eliminate $\Leftrightarrow$ by bidirectional elimination:

$$
\left(B_{1,1} \Rightarrow\left(P_{1,2} \vee P_{2,1}\right)\right) \wedge\left(\left(P_{1,2} \vee P_{2,1}\right) \Rightarrow B_{1,1}\right)
$$

(2) Eliminate $\Rightarrow$ by $(\alpha \Rightarrow \beta) \equiv(\neg \alpha \vee \beta)$ :

$$
\left(\neg B_{1,1} \vee\left(P_{1,2} \vee P_{2,1}\right)\right) \wedge\left(\neg\left(P_{1,2} \vee P_{2,1}\right) \vee B_{1,1}\right)
$$

(3) "Move $\neg$ inwards" by double-negation elimination and De Morgan:

$$
\left(\neg B_{1,1} \vee\left(P_{1,2} \vee P_{2,1}\right)\right) \wedge\left(\left(\neg P_{1,2} \wedge \neg P_{2,1}\right) \vee B_{1,1}\right)
$$

(4) Distribute $\vee$ over $\wedge$ and "flatten":

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg P_{1,2} \vee B_{1,1}\right) \wedge\left(\neg P_{2,1} \vee B_{1,1}\right)
$$

## Resolution Algorithm

- Proof by contradiction - showing $K B \wedge \neg \alpha$ is unsatisfiable.


## PL-Resolution $(K B, \alpha)$

```
clauses = the set of clauses in the CNF representation of KB ^\neg\alpha
new = 
repeat
for each pair of clauses C},\mp@subsup{C}{j}{}\mathrm{ in clauses do
resolvents = PL-RESOLVE(Ci,C C}
        if resolvents contains the empty clause A^\negA leads to empty clause
                return TRUE
        new = new \cup resolvents
    if new \subseteqclauses
        return FALSE
    clauses = clauses \cup new
```


## Resolution Example

- $K B: B_{1,1} \Leftrightarrow P_{1,2} \vee P_{2,1}$.
- KB(CNF) : $\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg P_{1,2} \vee B_{1,1}\right) \wedge\left(\neg P_{2,1} \vee B_{1,1}\right)$.
- After we know (add into $K B) \neg B_{1,1}$, we'd like to assert $\alpha=\neg P_{1,2}$.
- PL-Resolution resolves $K B \wedge \neg \alpha$ to the empty clause.



## Resolution is Sound and Complete

- Soundness is not surprising since inference rules are sound (check the truth table).
- Resolution is also complete.
- Resolution closure $R C(S)$ of a set of clauses $S$ : the set of all clauses derivable by resolution.
- Final value of clauses in PL-Resolution is $R C(S)$.
- $R C(S)$ is finite, and hence PL-Resolution always terminates.


## Ground Resolution Theorem

$S$ is unsatisfiable $\Rightarrow R S(S)$ contains the empty clause.

## Ground Resolution Theorem

## Proof by Contrapositive.

$R C(S)$ does not contains the empty set $\Rightarrow S$ is satisfiable.
If $\phi \notin R C(S)$, construct a model for $S$ with suitable values for literals $P_{1}, \ldots, P_{k}$ :
For $i$ from 1 to $k$,

- If a clause in $R C(S)$ contains $\neg P_{i}$ and all its other literals are FALSE, assign false to $P_{i}$.
- Otherwise, assign true to $P_{i}$.

For a clause in $S$ to be close to false, it must be either (FALSE $\vee \cdots$ FALSE $\vee P_{i}$ ) or (FALSE $\vee \cdots$ FALSE $\vee \neg P_{i}$ ). However, our assignment will make the clause to be true. Therefore, such assignment is a model of $S$.

## Horn and Definite Clauses

- The completeness of resolution is good.
- For many real-world applications, if we add some restrictions, more efficient inference can be achieved.
- Definite clause: a disjunction of literals where exactly one is positive.
- Horn clause: a disjunction of literals where at most one is positive.
- Horn clauses are closed under resolution:

Resolving two Horn clauses yields a Horn clause.

- Another way to view Horn clauses:
- True $\Rightarrow$ symbol.
- (Conjunction of symbols) $\Rightarrow$ symbol.

```
Horn clauses means entailment:
\negA\vee\negB\veeC
#\neg(A\wedgeB)\veeC
#(A\wedgeB)=>C
```

- Deciding entailment with Horn clauses can be done in linear time! Forward and backward chaining.


## Forward Chaining

- Resolution for Horn clauses (Modus Ponens):

$$
\frac{\alpha_{1}, \cdots, \alpha_{n}, \quad\left(\alpha_{1} \wedge \cdots \wedge \alpha_{n}\right) \Rightarrow \beta}{\beta}
$$

- Main idea:
- Counts the unknown premises in all clauses.
- Decreases the count if a premise is known.
- When a count becomes zero, the conclusion is added as a known fact.
- Record the inferred symbols to avoid redundant work $(P \Rightarrow Q, Q \Rightarrow P)$.


## Forward Chaining

## PL-FC-Entails $(K B, q)$

count: number of symbols in c's premise.
agenda: a queue of symbols, initially known facts in KB.
1 while agenda is not empty do

```
\(2 \quad p=\operatorname{Pop}(\) agenda \()\)
if \(p==q\)
return TRUE
    if inferred \([p]==\) FALSE
    inferred \([p]=\) TRUE
    for each clause \(c\) in \(K B\) where \(p\) is in \(c . p r e m i s e\)
        decrement count[ \(c\) ]
        if \(\operatorname{count}[c]==0\)
        add c.conclusion to agenda
    11 return FALSE
```


## Forward Chaining Example

- Fire any rule whose premises are satisfied in the KB, add its conclusion to the KB, until query is found.
$K B$
$P \Rightarrow Q$
$L \wedge M \Rightarrow P$
$B \wedge L \Rightarrow M$
$A \wedge P \Rightarrow L$
$A \wedge B \Rightarrow L$
$A$
$B$


## Step 1

| $P \Rightarrow Q$ | 1 |
| :--- | ---: |
| $L \wedge M \Rightarrow P$ | 2 |
| $B \wedge L \Rightarrow M$ | 2 |
| $A \wedge P \Rightarrow L$ | 2 |
| $A \wedge B \Rightarrow L$ | 2 |
| agenda $:[A, B]$ |  |

## Step 2

$$
\begin{array}{ll}
P \Rightarrow Q & 1 \\
L \wedge M \Rightarrow P & 2 \\
B \wedge L \Rightarrow M & 2 \\
A \wedge P \Rightarrow L & 1 \\
A \wedge B \Rightarrow L & 1 \\
\quad \text { agenda : }[B]
\end{array}
$$

## Step 3

$$
\begin{array}{ll}
P \Rightarrow Q & 1 \\
L \wedge M \Rightarrow P & 2 \\
B \wedge L \Rightarrow M & 1 \\
A \wedge P \Rightarrow L & 1 \\
A \wedge B \Rightarrow L & 0 \\
\quad \text { agenda : [L] }
\end{array}
$$

## Forward Chaining Example

- Fire any rule whose premises are satisfied in the $K B$, add its conclusion to the $K B$, until query is found.


## Step 4

$$
\begin{array}{ll}
P \Rightarrow Q & 1 \\
L \wedge M \Rightarrow P & 1 \\
B \wedge L \Rightarrow M & 0 \\
A \wedge P \Rightarrow L & 1 \\
A \wedge B \Rightarrow L & 0 \\
\quad \text { agenda : }[M]
\end{array}
$$

Step 6

$$
\begin{array}{ll}
P \Rightarrow Q & 0 \\
L \wedge M \Rightarrow P & 0 \\
B \wedge L \Rightarrow M & 0 \\
A \wedge P \Rightarrow L & 0 \\
A \wedge B \Rightarrow L & 0 \\
\text { agenda: }[Q, L]
\end{array}
$$

## Completeness of Forward Chaining

- FC reaches a fixed point where no new inferences are possible.
- Consider a model $m$ which assigns TRUE to every symbol inferred and FALSE to others.
- Every clause in $K B$ is true in $m$ :

Proof.

- Suppose $\alpha_{1} \wedge \cdots \wedge \alpha_{k} \Rightarrow \beta$ is FALSE in $m$.
- $\alpha_{1} \wedge \cdots \wedge \alpha_{k}$ is TRUE and $\beta$ is FALSE.
- FC has not reached a fixed point. $\square$
- $m \in M(K B)$ ( $m$ is a model of $K B)$
- If $K B \models q, q$ is TRUE in $m$.
- Therefore, FC derives every atomic sentence that is entailed by $K B$.


## Backward Chaining

- Work backward from $Q$.
- If $Q$ is known, done.
- Otherwise, check it's premise $P$.
- Next step checks $L$ and $M$.
- Identical to the And-Or-Graph-Search in the textbook.



## Backward Chaining Example

Blue ring: Checking. Blue circle: Checked. Red circle: Facts.


Backward Chaining Example


## Backward Chaining Example



## Backward Chaining Example



## Forward vs. Backward Chaining

- Both time complexities are linear to the size of $K B$.
- Forward chaining is data-driven.
- Backward chaining is goal-driven.
- In general, backward chaining is more appropriate for problem solving
- Where's my key?
- How to pass this course?
- Forward chaining may generate many conclusions irrelevant to the goal.
- In general, time complexity of backward chaining is much less than linear of the size of $K B$.


## Pros and Cons of Propositional Logic

- Pro
- Propositional logic is declarative: pieces of syntax correspond to facts.
- Propositional logic allows partial/disjunctive/negated information (unlike most data structures and databases).
- Propositional logic is compositional:

Meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$.

- Meaning in propositional logic is context-independent (unlike natural language, where meaning depends on context)
- Con
- Propositional logic has very limited expressive power. Cannot say "pits cause breezes in adjacent squares" except by writing one sentence for each square.


## Summary

- Knowledge base contains sentences in a knowledge representation language.
- A representation language is defined by its syntax and semantics, which defines the truth of each sentence in each model.
- $\alpha$ entails $\beta$ if $\beta$ is true in all models where $\alpha$ is true. Equivalent definitions: validity of $\alpha \Rightarrow \beta$; unsatisfiability of $\alpha \wedge \neg \beta$.
- Sound inferences derive only sentences that are entailed; complete inferences derive all sentences that are entailed.
- Resolution is sound and complete inference for propositional logics, where KB can be expressed by CNF.
- Forward and backward chaining are sound and complete for KB in Horn form (more restrict than propositional logics).

