Probabilistic Reasoning

Bang Liu, Jian-Yun Nie
IFT3335: Introduction to Artificial Intelligence

Outline

- Uncertainty
- Probability
- Inference
- Independence and Bayes' Rule

uncertainty

Agents in the real world need to handle uncertainty, whether due to partial observability, nondeterminism, or adversaries. An agent may never know for sure what state it is in now or where it will end up after a sequence of actions.

Uncertainty

- Let action $A_{t}=$ leave for airport t minutes before flight Will A_{t} get me there on time?
- Problems
- partial observability (road state, other drivers' plans, etc.)

- noisy sensors
- uncertainty in action outcomes (flat tire, etc.)
- immense complexity of modelling and predicting trafficl
- Hence a purely logical approach either

1. risks falsehood: " A_{25} will get me there on time"
2. leads to conclusions that are too weak for decision making:
" A_{25} will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact etc etc."

Methods for Handling Uncertainty

- Default or nonmonotonic logic:

Assume my car does not have a flat tire Assume A_{25} works unless contradicted by evidence
Issues: What assumptions are reasonable? How to handle contradiction?

- Rules with fudge factors:
$A_{25} \mapsto_{0.3}$ AtAirportOnTime
Sprinkler $\mapsto_{0.99}$ WetGrass
WetGrass $\mapsto_{0.7}$ Rain
Issues: Problems with combination, e.g., Sprinkler causes Rain?
- Probability

Given the available evidence,
A_{25} will get me there on time with probability 0.04 Mahaviracarya (9th C.), Cardamo (1565) theory of gambling

- (Fuzzy logic handles degree of truth NOT uncertainty e.g.,

WetGrass is true to degree 0.2)

probability

Whereas logical assertions say which possible worlds are strictly ruled out (all those in which the assertion is false), probabilistic assertions talk about how probable the various worlds are.

Probability

- Probabilistic assertions summarize effects of laziness: failure to enumerate exceptions, qualifications, etc. ignorance: lack of relevant facts, initial conditions, etc.
- Subjective or Bayesian probability:

Probabilities relate propositions to one's own state of knowledge e.g., $P\left(A_{25} \mid\right.$ no reported accidents $)=0.06$

- Might be learned from past experience of similar situations
- Probabilities of propositions change with new evidence:

$$
\text { e.g., } P\left(A_{25} \mid \text { no reported accidents, } 5 \text { a.m. }\right)=0.15
$$

- Analogous to logical entailment status $K B \vDash \alpha$, not truth.

Making Decisions under Uncertainty

- Suppose I believe the following:

$$
\begin{aligned}
P\left(A_{25} \text { gets me there on time } \mid \ldots\right) & =0.04 \\
P\left(A_{90} \text { gets me there on time } \mid \ldots\right) & =0.70 \\
P\left(A_{120} \text { gets me there on time } \ldots\right) & =0.95 \\
P\left(A_{1440} \text { gets me there on time } \mid \ldots\right) & =0.9999
\end{aligned}
$$

- Which action to choose?
- Depends on my preferences for missing flight vs. airport cuisine, etc.
- Utility theory is used to represent and infer preferences
- Decision theory $=$ utility theory + probability theory

Probability Basics

- Begin with a set Ω-the sample space
e.g., 6 possible rolls of a die.
$\omega \in \Omega$ is a sample point/possible world/atomic event
- A probability space or probability model is a sample space with an assignment $P(\omega)$ for every $\omega \in \Omega$ s.t.

```
    \(0 \leq P(\omega) \leq 1\)
    \(\sum_{\omega} P(\omega)=1\)
e.g., \(P(1)=P(2)=P(3)=P(4)=P(5)=P(6)=1 / 6\).
```

- An event A is any subset of Ω

$$
P(A)=\sum_{\{\omega \in A\}} P(\omega)
$$

- E.g., $P($ die roll $\leq 3)=P(1)+P(2)+P(3)=1 / 6+1 / 6+1 / 6=1 / 2$

Random Variables

- A random variable is a function from sample points to some range, e.g., the reals or Booleans

$$
\text { e.g., } O d d(1)=\text { true. }
$$

- P induces a probability distribution for any r.v. X :

$$
P\left(X=x_{i}\right)=\sum_{\left\{\omega: X(\omega)=x_{i}\right\}} P(\omega)
$$

- E.g., $P(O d d=$ true $)=P(1)+P(3)+P(5)=1 / 6+1 / 6+1 / 6=1 / 2$

Propositions

- Think of a proposition as the event (set of sample points) where the proposition is true
- Given Boolean random variables A and B : event $a=$ set of sample points where $A(\omega)=$ true event $\neg a=$ set of sample points where $A(\omega)=$ false event $a \wedge b=$ points where $A(\omega)=$ true and $B(\omega)=$ truell
- Often in AI applications, the sample points are defined by the values of a set of random variables, i.e., the sample space is the Cartesian product of the ranges of the variables.
- With Boolean variables, sample point = propositional logic model

$$
\text { e.g., } A=\text { true, } B=\text { false, or } a \wedge \neg b
$$

Proposition $=$ disjunction of atomic events in which it is true

$$
\begin{aligned}
& \text { e.g., }(a \vee b) \equiv(\neg a \wedge b) \vee(a \wedge \neg b) \vee(a \wedge b) \\
& \Longrightarrow P(a \vee b)=P(\neg a \wedge b)+P(a \wedge \neg b)+P(a \wedge b)
\end{aligned}
$$

Why use Probability?

- The definitions imply that certain logically related events must have related probabilities
- E.g., $P(a \vee b)=P(a)+P(b)-P(a \wedge b)$

True

Syntax for Propositions

- Propositional or Boolean random variables
e.g., Cavity (do I have a cavity?)

Cavity $=$ true is a proposition, also written cavity

- Discrete random variables (finite or infinite)
e.g., Weather is one of \langle sunny, rain, cloudy, snow \rangle

Weather = rain is a proposition
Values must be exhaustive and mutually exclusive

- Continuous random variables (bounded or unbounded)
e.g., Temp = 21.6; also allow, e.g., Temp < 22.0.
- Arbitrary Boolean combinations of basic propositions

Prior Probability

- Prior or unconditional probabilities of propositions

$$
\text { e.g., } P(\text { Cavity }=\text { true })=0.1 \text { and } P(\text { Weather }=\text { sunny })=0.72
$$

correspond to belief prior to arrival of any (new) evidence

- Probability distribution gives values for all possible assignments:

$$
\mathbf{P}(\text { Weather })=\langle 0.72,0.1,0.08,0.1\rangle \text { (normalized, i.e., sums to } 1)
$$

- Joint probability distribution for a set of r.v.s gives the probability of every atomic event on those r.v.s (i.e., every sample point)
$\mathbf{P}($ Weather, Cavity $)=\mathbf{a} 4 \times 2$ matrix of values:

Weather $=$	sunny	rain	cloudy	snow
Cavity $=$ true	0.144	0.02	0.016	0.02
Cavity $=$ false	0.576	0.08	0.064	0.08

- Every question about a domain can be answered by the joint distribution because every event is a sum of sample points

Probability for Continuous Variables

- Express distribution as a parameterized function of value: $P(X=x)=U[18,26](x)=$ uniform density between 18 and 26

- Here P is a density; integrates to 1 .
$P(X=20.5)=0.125$ really means

$$
\lim _{d x \rightarrow 0} P(20.5 \leq X \leq 20.5+d x) / d x=0.125
$$

Gaussian Density

$$
P(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} / 2 \sigma^{2}}
$$

Gaussian distribution is the most important probability distribution in statistics because it fits many natural phenomena like age, height, testscores, IQ scores, sum of the rolls of two dices and so on.

inference

The computation of posterior probabilities for query propositions given observed evidence.

Conditional Probability

- Conditional or posterior probabilities
e.g., $P($ cavity \mid toothache $)=0.8$
i.e., given that toothache is all I know

NOT "if toothache then 80% chance of cavity"

- If we know more, e.g., cavity is also given, then we have
$P($ cavity \mid toothache, cavity $)=1$
Note: the less specific belief remains valid after more evidence arrives, but is not always useful
- New evidence may be irrelevant, allowing simplification, e.g.,

$$
P(\text { cavity } \mid \text { toothache }, \text { RavensWin })=P(\text { cavity } \mid \text { toothache })=0.8
$$

This kind of inference, sanctioned by domain knowledge, is crucial

Conditional Probability

- Definition of conditional probability:

$$
P(a \mid b)=\frac{P(a \wedge b)}{P(b)} \text { if } P(b) \neq 0
$$

- Product rule gives an alternative formulation:

$$
P(a \wedge b)=P(a \mid b) P(b)=P(b \mid a) P(a)
$$

- A general version holds for whole distributions, e.g., $\mathbf{P}($ Weather, Cavity $)=\mathbf{P}($ Weather \mid Cavity $) \mathbf{P}($ Cavity $)$ (View as a 4×2 set of equations, not matrix multiplication)】
- Chain rule is derived by successive application of product rule:

$$
\begin{aligned}
& \mathbf{P}\left(X_{1}, \ldots, X_{n}\right)=\mathbf{P}\left(X_{1}, \ldots, X_{n-1}\right) \mathbf{P}\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) \\
& \quad=\mathbf{P}\left(X_{1}, \ldots, X_{n-2}\right) \mathbf{P}\left(X_{n-1} \mid X_{1}, \ldots, X_{n-2}\right) \mathbf{P}\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) \\
& \quad=\ldots \\
& \quad=\prod_{i=1}^{n} \mathbf{P}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
\end{aligned}
$$

Inference by Enumeration

- Start with the joint distribution:

	toothache		ᄀtoothache	
	catch	ᄀcatch	catch	ᄀ catch
cavity	.108	.012	.072	.008
ᄀ cavity	.016	.064	.144	.576

(catch $=$ dentist's steel probe gets caught in cavity)

- For any proposition ϕ, sum the atomic events where it is true:
$P(\phi)=\sum_{\omega: \omega \vDash \phi} P(\omega)$

Inference by Enumeration

- Start with the joint distribution:

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

- For any proposition ϕ, sum the atomic events where it is true
$P(\phi)=\sum_{\omega: \omega \models \phi} P(\omega)$
$P($ toothache $)=0.108+0.012+0.016+0.064=0.2$

Inference by Enumeration

- Start with the joint distribution:

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

- For any proposition ϕ, sum the atomic events where it is true:

$$
\begin{aligned}
& P(\phi)=\sum_{\omega: \omega \equiv \phi} P(\omega) \\
& P(\text { cavity } \vee \text { toothache })=0.108+0.012+0.072+0.008+0.016+0.064=0.28
\end{aligned}
$$

Inference by Enumeration

- Start with the joint distribution:

	toothache		ᄀ toothache	
	catch	ᄀ catch	catch	ᄀ catch
cavity	.108	.012	.072	.008
ᄀ cavity	.016	.064	.144	.576

- Can also compute conditional probabilities:

$$
\begin{aligned}
P(\neg \text { cavity } \mid \text { toothache }) & =\frac{P(\neg \text { cavity } \wedge \text { toothache })}{P(\text { toothache })} \\
& =\frac{0.016+0.064}{0.108+0.012+0.016+0.064}=0.4
\end{aligned}
$$

Normalization

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

- Denominator can be viewed as a normalization constant α

$$
\begin{aligned}
& \mathbf{P}(\text { Cavity } \mid \text { toothache })=\alpha \mathbf{P}(\text { Cavity, toothache }) \\
& =\alpha[\mathbf{P}(\text { Cavity }, \text { toothache }, \text { catch })+\mathbf{P}(\text { Cavity, toothache }, \neg \text { catch })] \\
& =\alpha[\langle 0.108,0.016\rangle+\langle 0.012,0.064\rangle] \quad \text { We can calculate } \mathrm{P} \text { (Cavity } \mid \text { toothache) } \\
& =\alpha\langle 0.12,0.08\rangle=\langle 0.6,0.4\rangle \\
& \text { even if we don't know the value of } \\
& \mathrm{P} \text { (toothache)! }
\end{aligned}
$$

- General idea: compute distribution on query variable by fixing evidence variables and summing over hidden variables

Inference by Enumeration

- Let X be all the variables.

Typically, we want the posterior joint distribution of the query variables Y given specific values e for the evidence variables El

- Let the hidden variables be $\mathbf{H}=\mathbf{X}-\mathbf{Y}-\mathbf{E}$
- Then the required summation of joint entries is done by summing out the hidden variables:

$$
\mathbf{P}(\mathbf{Y} \mid \mathbf{E}=\mathbf{e})=\alpha \mathbf{P}(\mathbf{Y}, \mathbf{E}=\mathbf{e})=\alpha \sum_{\mathbf{h}} \mathbf{P}(\mathbf{Y}, \mathbf{E}=\mathbf{e}, \mathbf{H}=\mathbf{h})
$$

- The terms in the summation are joint entries because Y, E, and H together exhaust the set of random variables
- Obvious problems
- Worst-case time complexity $O\left(d^{n}\right)$ where d is the largest arity
- Space complexity $O\left(d^{n}\right)$ to store the joint distribution
- How to find the numbers for $O\left(d^{n}\right)$ entries???

independence

Independence assertions can help in reducing the size of the domain representation and the complexity of the inference problem.

Independence

- A and B are independent iff

$$
\mathbf{P}(A \mid B)=\mathbf{P}(A) \quad \text { or } \quad \mathbf{P}(B \mid A)=\mathbf{P}(B) \quad \text { or } \quad \mathbf{P}(A, B)=\mathbf{P}(A) \mathbf{P}(B)
$$

- $\mathbf{P}($ Toothache, Catch, Cavity, Weather $)$ $=\mathbf{P}($ Toothache, Catch, Cavity $) \mathbf{P}($ Weather $)$
- 32 entries reduced to 12 ; for n independent biased coins, $2^{n} \rightarrow n$
- Absolute independence powerful but rare
- Dentistry is a large field with hundreds of variables, none of which are independent. What to do?

Conditional Independence

- $\mathbf{P}($ Toothache, Cavity, Catch $)$ has $2^{3}-1=7$ independent entries
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
(1) $P($ catch \mid toothache, cavity $)=P($ catch \mid cavity $)$
- The same independence holds if I haven't got a cavity:
(2) $P($ catch \mid toothache,\neg cavity $)=P($ catch $\mid \neg$ cavity $)$
- Catch is conditionally independent of Toothache given Cavity:
$\mathbf{P}($ Catch \mid Toothache, Cavity $)=\mathbf{P}($ Catch \mid Cavity $)$
- Equivalent statements:

$$
\begin{aligned}
& \mathbf{P}(\text { Toothache } \mid \text { Catch }, \text { Cavity })=\mathbf{P}(\text { Toothache } \mid \text { Cavity }) \\
& \mathbf{P}(\text { Toothache }, \text { Catch } \mid \text { Cavity })=\mathbf{P}(\text { Toothache } \mid \text { Cavity }) \mathbf{P}(\text { Catch } \mid \text { Cavity })
\end{aligned}
$$

Conditional Independence

$$
2 \text { parameters }
$$

- Write out full joint distribution using chain rule:

$$
\begin{aligned}
& \mathbf{P}(\text { Toothache, Catch, Cavity }) \\
& =\mathbf{P}(\text { Toothache } \mid \text { Catch, Cavity }) \mathbf{P}(\text { Catch, Cavity }) \\
& =\mathbf{P}(\text { Toothache } \mid \text { Catch, Cavity }) \mathbf{P}(\text { Catch } \mid \text { Cavity }) \mathbf{P}(\text { Cavity }) \\
& =\mathbf{P}(\text { Toothache } \mid \text { Cavity }) \mathbf{P}(\text { Catch } \mid \text { Cavity }) \mathbf{P}(\text { Cavity })
\end{aligned}
$$

- I.e., $2+2+1=5$ independent numbers (equations 1 and 2 remove 2)
- In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in n to linear in n.
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.

bayes rule

In a task such as medical diagnosis, we often have conditional probabilities on causal relationships. The doctor
knows P (symptoms \mid disease)) and want to derive a
diagnosis, P (disease | symptoms).
Also, diagnostic knowledge is often more fragile than causal knowledge.

Bayes' Rule

- Product rule $P(a \wedge b)=P(a \mid b) P(b)=P(b \mid a) P(a)$ \Longrightarrow Bayes' rule $P(a \mid b)=\frac{P(b \mid a) P(a)}{P(b)}$
- Or in distribution form

$$
\mathbf{P}(Y \mid X)=\frac{\mathbf{P}(X \mid Y) \mathbf{P}(Y)}{\mathbf{P}(X)}=\alpha \mathbf{P}(X \mid Y) \mathbf{P}(Y)
$$

Bayes' Rule

- Useful for assessing diagnostic probability from causal probability

$$
P(\text { Cause } \mid \text { Effect })=\frac{P(\text { Effect } \mid \text { Cause }) P(\text { Cause })}{P(\text { Effect })}
$$

- E.g., let M be meningitis, S be stiff neck:

$$
P(m \mid s)=\frac{P(s \mid m) P(m)}{P(s)}=\frac{0.8 \times 0.0001}{0.1}=0.0008
$$

- Note: posterior probability of meningitis still very small! (Because the prior probability of stiff necks (from any cause) is much higher than the prior for meningitis.)

Bayes' Rule and Conditional Independence

- Example of a naive Bayes model

```
\(\mathbf{P}\) (Cavity|toothache \(\wedge\) catch \()\)
    \(=\alpha \mathbf{P}(\) toothache \(\wedge\) catch \(\mid\) Cavity \() \mathbf{P}(\) Cavity \()\)
    \(=\alpha \mathbf{P}(\) toothache \(\mid\) Cavity \() \mathbf{P}(\) catch \(\mid\) Cavity \() \mathbf{P}(\) Cavity \()\)
```

- Generally:

$$
\mathbf{P}\left(\text { Cause } \text { Effect }_{1}, \ldots, \text { Effect }_{n}\right)=\mathbf{P}(\text { Cause }) \prod_{i} \mathbf{P}\left(\text { Effect }_{i} \mid \text { Cause }\right)
$$

- Total number of parameters is linear in n

wampus world

> We can combine the ideas in this chapter to solve probabilistic reasoning problems in the wumpus world.
> Uncertainty arises in the wumpus world because the agent's sensors give only partial information about the world.

Wumpus World

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
B $\mathbf{O K}$	2,2	3,2	4,2
$\mathbf{O K}$	OK OK	3,1	4,1

- $P_{i j}=$ true iff $[i, j]$ contains a pit
- $B_{i j}=$ true iff $[i, j]$ is breezy

Include only $B_{1,1}, B_{1,2}, B_{2,1}$ in the probability model

Specifying the Probability Model

- The full joint distribution is $\mathbf{P}\left(P_{1,1}, \ldots, P_{4,4}, B_{1,1}, B_{1,2}, B_{2,1}\right)$
- Apply product rule: $\mathbf{P}\left(B_{1,1}, B_{1,2}, B_{2,1} \mid P_{1,1}, \ldots, P_{4,4}\right) \mathbf{P}\left(P_{1,1}, \ldots, P_{4,4}\right)$

This gives us: $P($ Effect \mid Cause $)$

- First term: 1 if pits are adjacent to breezes, 0 otherwisel
- Second term: pits are placed randomly, probability 0.2 per square:

$$
\mathbf{P}\left(P_{1,1}, \ldots, P_{4,4}\right)=\prod_{i, j=1,1}^{4,4} \mathbf{P}\left(P_{i, j}\right)=0.2^{n} \times 0.8^{16-n}
$$

for n pits.

Observations and Query

- We know the following facts:

$$
\begin{aligned}
& b=\neg b_{1,1} \wedge b_{1,2} \wedge b_{2,1} \\
& \text { known }=\neg p_{1,1} \wedge \neg p_{1,2} \wedge \neg p_{2,1}
\end{aligned}
$$

- Query is $\mathbf{P}\left(P_{1,3} \mid\right.$ known, $)$
- Define $U n k$ nown $=P_{i j}$ s other than $P_{1,3}$ and Known
- For inference by enumeration, we have

$$
\mathbf{P}\left(P_{1,3} \mid k n o w n, b\right)=\alpha \sum_{\text {unknown }} \mathbf{P}\left(P_{1,3}, \text { unknown, known, } b\right)
$$

- Grows exponentially with number of squares!

Using Conditional Independence

- Basic insight: observations are conditionally independent of other hidden squares given neighbouring hidden squares

- Define Unknown $=$ Fringe \cup Other
$\mathbf{P}\left(b \mid P_{1,3}\right.$, Known, Unknown $)=\mathbf{P}\left(b \mid P_{1,3}\right.$, Known, Fringe $)$
- Manipulate query into a form where we can use this!

Using Conditional Independence

$$
\begin{aligned}
& \mathbf{P}\left(P_{1,3} \mid \text { known }, b\right)=\alpha \sum_{\text {unknown }} \mathbf{P}\left(P_{1,3}, \text { unknown, known, } b \text { (use product rule) }\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\alpha \sum_{\text {fringe other }} \sum_{\text {(b is independent of other given known })} \mathbf{P}\left(b \mid \text { nnown } P_{1,3}, \text { fringe, other }\right) \mathbf{P}\left(P_{1,3}, \text { known, fringe, other }\right) \\
& =\alpha \sum_{\text {fringe other }} \sum_{\text {(move the summation inward) }} \mathbf{P}\left(b \mid \text { known, } P_{1,3}, \text { fringe }\right) \mathbf{P}\left(P_{1,3}, \text { known, fringe, other }\right) \\
& =\alpha \sum_{\text {fringe }} \mathbf{P}\left(b \mid \text { known, } P_{1,3}, \text { fringe }\right) \sum_{\text {other }} \mathbf{P}\left(P_{1,3}, \text { known, fringe, other }\right) \\
& =\alpha \sum_{\text {fringe }} \mathbf{P}\left(b \mid \text { known, } P_{1,3}, \text { fringe }\right) \sum_{\text {other }} \mathbf{P}\left(P_{1,3}\right) P(\text { known }) P(\text { fringe }) P(\text { other }) \| \\
& =\underset{(\text { folds } \mathrm{P}(\text { known }) \text { into a') }}{\alpha} \mathbf{P}\left(P_{1,3}\right) \sum_{\text {fringe }} \mathbf{P}\left(b \mid \text { known }, P_{1,3}, \text { fringe }\right) P(\text { fringe }) \sum_{\text {other }} P(\text { other }) \boldsymbol{I} \\
& =\alpha^{\prime} \mathbf{P}\left(P_{1,3}\right) \sum_{\text {fringe }} \mathbf{P}\left(b \mid \text { known, } P_{1,3}, \text { fringe }\right) P(\text { fringe }) \\
& (\Sigma \mathrm{P}(\text { other })=1)
\end{aligned}
$$

Using Conditional Independence

$$
\begin{aligned}
\mathbf{P}\left(P_{1,3} \mid \text { known }, b\right) & =\alpha^{\prime}\langle 0.2(0.04+0.16+0.16), 0.8(0.04+0.16)\rangle \\
& \approx\langle 0.31,0.69\rangle
\end{aligned}
$$

$\mathbf{P}\left(P_{2,2} \mid\right.$ known,$\left.b\right) \approx\langle 0.86,0.14\rangle$

Summary

- Probability is a rigorous formalism for uncertain knowledge
- Joint probability distribution specifies probability of every atomic event
- Queries can be answered by summing over atomic events
- For nontrivial domains, we must find a way to reduce the joint size
- Independence and conditional independence provide the tools

