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1. Represent the Meaning of a Word: Word Embedding 
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3. Transformer 
4. BERT 
5. AI: Research Frontiers



Represent the 
Meaning of a Word: 
Word Embedding



Meaning Representations

๏ Definition of “Meaning” 
• the idea that is represented by a word, phrase, etc. 
• the idea that a person wants to express by using words, signs, etc. 
• the idea that is expressed in a work of writing, art, etc.
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Corpus-Based Representations

๏ Atomic symbols: one-hot representation
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Idea: words with 
similar meanings 
often have similar 
neighbors

Issues: difficult to 
compute the similarity 
(i.e. comparing “car” 
and “motorcycle”)

motorcycle   [0 0 1 0 0 0 0 0 0 … 0]

 car   [0 0 0 0 0 0 1 0 0 … 0]



Low-Dimensional Dense Word Vector

๏ Method 1: dimension reduction on the matrix 

๏ Singular Value Decomposition (SVD) of co-occurrence matrix X
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Low-Dimensional Dense Word Vector

๏ Method 1: dimension reduction on the matrix 

๏ Singular Value Decomposition (SVD) of co-occurrence matrix X
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 Issues: 
 ▪  computationally expensive: 
  when n<m for  matrix 
 ▪  difficult to add new words

O(mn2) n × m

Idea: directly learn low-dimensional word 
vectors

 semantic relations syntactic relations



Low-Dimensional Dense Word Vector

๏ Method 2: directly learn low-dimensional word vectors 
• Learning representations by back-propagation. (Rumelhart et al., 1986) 
• A neural probabilistic language model (Bengio et al., 2003) 
• NLP (almost) from Scratch (Collobert & Weston, 2008) 
• Most popular models: word2vec (Mikolov et al. 2013) and Glove (Pennington et al., 2014) 

(as known as “Word Embeddings ”)
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What are you like?
Personality Embedding



Big Five Personality Trait Test

๏ On a scale of 0 to 100, how introverted/extraverted are you (where 0 is the most introverted, 
and 100 is the most extraverted)?
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Example of the result of a Big Five Personality Trait test. It can really tell you a lot about yourself 
and is shown to have predictive ability in academic, personal, and professional success.

http://psychology.okstate.edu/faculty/jgrice/psyc4333/FiveFactor_GPAPaper.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1744-6570.1999.tb00174.x
https://www.massgeneral.org/psychiatry/assets/published_papers/soldz-1999.pdf


Central Idea: Represent Things by Vectors11

http://jalammar.github.io/illustrated-word2vec/



Words can also be 
Represented by Vectors:

Word Embedding



Word Embedding13

http://jalammar.github.io/illustrated-word2vec/

[ 0.50451 , 0.68607 , -0.59517 , -0.022801, 0.60046 ,
  -0.13498 , -0.08813 , 0.47377 , -0.61798 , -0.31012 , 
  -0.076666, 1.493 , -0.034189, -0.98173 , 0.68229 ,
  0.81722 , -0.51874 , -0.31503 , -0.55809 , 0.66421 ,
  0.1961 , -0.13495 , -0.11476 , -0.30344 , 0.41177 ,
  -2.223 , -1.0756 , -1.0783 , -0.34354 , 0.33505 ,
  1.9927 , -0.04234 , -0.64319 , 0.71125 , 0.49159 ,
  0.16754 , 0.34344 , -0.25663 , -0.8523 , 0.1661 ,
  0.40102 , 1.1685 , -1.0137 , -0.21585 , -0.15155 ,
  0.78321 , -0.91241 , -1.6106 , -0.64426 , -0.51042 ]

This is a word embedding for the word “king” (GloVe vector trained on Wikipedia).

“King”



Visualize Word Embedding

๏ Let’s color code the cells based on their values (red if they’re close to 2, white if they’re close 
to 0, blue if they’re close to -2)
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http://jalammar.github.io/illustrated-word2vec/

[ 0.50451 , 0.68607 , -0.59517 , -0.022801, 0.60046 ,
  -0.13498 , -0.08813 , 0.47377 , -0.61798 , -0.31012 , 
  -0.076666, 1.493 , -0.034189, -0.98173 , 0.68229 ,
  0.81722 , -0.51874 , -0.31503 , -0.55809 , 0.66421 ,
  0.1961 , -0.13495 , -0.11476 , -0.30344 , 0.41177 ,
  -2.223 , -1.0756 , -1.0783 , -0.34354 , 0.33505 ,
  1.9927 , -0.04234 , -0.64319 , 0.71125 , 0.49159 ,
  0.16754 , 0.34344 , -0.25663 , -0.8523 , 0.1661 ,
  0.40102 , 1.1685 , -1.0137 , -0.21585 , -0.15155 ,
  0.78321 , -0.91241 , -1.6106 , -0.64426 , -0.51042 ]

“King”



Compare Word Embeddings

๏ A list of examples (compare by vertically scanning the columns looking for columns with 
similar colors).
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http://jalammar.github.io/illustrated-word2vec/



Compare Word Embeddings16

http://jalammar.github.io/illustrated-word2vec/

These words are similar along 
this dimension (and we don’t 
know what each dimensions 
codes for).



Compare Word Embeddings17

http://jalammar.github.io/illustrated-word2vec/

“woman” and 
“girl” are similar to 
each other in a lot 
of places. The 
same with “man” 
and “boy”.



Compare Word Embeddings18

http://jalammar.github.io/illustrated-word2vec/

“boy” and “girl” 
also have places 
where they are 
similar to each 
other, but different 
from “woman” or 
“man”. Could 
these be coding for 
a vague 
conception of 
youth? possible.



Compare Word Embeddings19

http://jalammar.github.io/illustrated-word2vec/

This column goes all the way 
down and stops before the 
embedding for “water”.

Different category!



Compare Word Embeddings20

There are clear 
places where 
“king” and 
“queen” are similar 
to each other and 
distinct from all the 
others. Could 
these be coding for 
a vague concept of 
royalty?

http://jalammar.github.io/illustrated-word2vec/



Compare Word Embeddings21

http://jalammar.github.io/illustrated-word2vec/

The resulting vector from "king-man+woman" doesn't exactly equal "queen", but 
"queen" is the closest word to it from the 400,000 word embeddings we have in 
this collection.



Compare Word Embeddings22

http://jalammar.github.io/illustrated-word2vec/

Using the Gensim library in python, we can add and subtract word vectors, and it 
would find the most similar words to the resulting vector. The image shows a list 
of the most similar words with “king+woman-man”, each with its cosine similarity.



How to Train Word Embeddings?
Recall Language Modeling



Recall Language Modeling

๏ A language model can take a list of words (let’s say two words), and attempt to predict the 
word that follows them.
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http://jalammar.github.io/illustrated-word2vec/



Recall Language Modeling

๏ A language model actually outputs a probability score for all the words it knows (the model’s 
“vocabulary”）
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http://jalammar.github.io/illustrated-word2vec/



Recall Language Modeling

๏ After being trained, early neural language models (Bengio 2003) would calculate a prediction 
in three steps:
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http://jalammar.github.io/illustrated-word2vec/



Recall Language Modeling

๏ In the first step, we get a matrix that contains an embedding for each word in our 
vocabulary.
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http://jalammar.github.io/illustrated-word2vec/



Language Model Training

๏ Words get their embeddings by looking at which other words they tend to appear next to. 
1. We get a lot of text data (say, all Wikipedia articles, for example). 
2. We have a window (say, of three words) that we slide against all of that text. 
3. The sliding window generates training samples for our model

28

http://jalammar.github.io/illustrated-word2vec/



29
http://jalammar.github.io/illustrated-word2vec/

We take the first two words to be features, and 
the third word to be a label:

We then slide our window to the next position 
and create a second sample:

And pretty soon we have a larger dataset of 
which words tend to appear after different 
pairs of words:



From Language Modeling to 
Word Embedding:
Look Both Ways



Language Model Training31

“bus”

http://jalammar.github.io/illustrated-word2vec/



Look Both Ways32

“bus”

?



Word2Vec: CBOW and Skip-gram  33

(Mikolov et.al 2013) Efficient Estimation of Word Representations in Vector Space



CBOW: Continuous Bag of Words

๏ Instead of only looking at words before the target word, we can also look at words after it.
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http://jalammar.github.io/illustrated-word2vec/

“You shall know a word by the company it keeps” — J.R. Firth

Build training dataset



Skip-gram

๏ Instead of guessing a word based on its context (the words before and after it), this other 
architecture tries to guess neighboring words using the current word.
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http://jalammar.github.io/illustrated-word2vec/

The word in the green slot would be the input word, each pink box would be a 
possible output. The pink boxes are in different shades because this sliding 
window actually creates four separate samples in our training dataset.



Skip-gram36

http://jalammar.github.io/illustrated-word2vec/

By sliding our window to the next positions, a couple of positions later, we will 
have a lot more training examples.



37
http://jalammar.github.io/illustrated-word2vec/

Step 1: grab a example from the 
dataset. Feed it into an untrained 
model asking it to predict an 
appropriate neighbour word.

Step 2: The model conducts the 
three steps and outputs a 
prediction vector (with a 
probability assigned to each word 
in its vocabulary)

Step 3: This error vector can now be used to 
update the model so the next time, it’s a little more 
likely to guess thou when it gets not as input.

Step 4: We proceed to do the same process with the 
next sample in our dataset, and then the next, until 
we’ve covered all the samples in the dataset.



Negative Sampling

๏ The third step is very expensive from a computational point of view. How to improve the 
performance?

38

http://jalammar.github.io/illustrated-word2vec/



Negative Sampling

๏ One way is to split our target into two steps: 
1. Generate high-quality word embeddings (Don’t worry about next-word prediction); 
2. Use these high-quality embeddings to train a language model (to do next-word prediction).

39

http://jalammar.github.io/illustrated-word2vec/

To generate high-quality 
embeddings using a high-
performance model, we can 
switch the model’s task from 
predicting a neighboring word 
to takes the input and output 
word, and outputs a score 
indicating if they’re neighbors 
or not (0 for “not neighbors”, 1 for 
“neighbors”).

much simpler 
and much faster 
to calculate



Negative Sampling

๏ Switch the structure of our dataset

40

http://jalammar.github.io/illustrated-word2vec/



Negative Sampling41

http://jalammar.github.io/illustrated-word2vec/

No negative 
sample

So a smartass model that 
always returns 1 – achieving 
100% accuracy, but learning 
nothing and generating 
garbage embeddings.



Skip-gram with Negative Sampling

๏ Randomly selected words that are not neighbors from the vocabulary to get negative examples.

42

http://jalammar.github.io/illustrated-word2vec/



Word2Vec Training Process



Model initialization 

๏ At the start of the training phase, we create two matrices – an Embedding matrix and 
a Context matrix. These two matrices have an embedding for each word in our vocabulary.  We 
initialize these matrices with random values. (Why two vectors? Easier optimization.)

44

http://jalammar.github.io/illustrated-word2vec/



Feed Data

๏ For the input word, we look in the Embedding matrix. For the context words, we look in the 
Context matrix

45

http://jalammar.github.io/illustrated-word2vec/



Forward Propagation
๏ Take the dot product of the input embedding with each of the context embeddings. 
๏ Calculate probability by Sigmoid(). 
๏ Calculate error.

46

error = target - sigmoid_scores



Back-propagation47

๏ We can now use this error score to adjust the embeddings of not, thou, aaron, and taco so that 
the next time we make this calculation, the result would be closer to the target scores.

http://jalammar.github.io/illustrated-word2vec/

error = target - sigmoid_scores



Proceed to Next Batch

๏ Then we proceed to our next step (the next positive sample and its associated negative samples) 
and do the same process again.

48

http://jalammar.github.io/illustrated-word2vec/



Machine Translation: 
Sequence to 

Sequence and 
Attention



What is Machine Translation50



Commercial Machine Translation Systems51

๏ Google Translate
๏ Yandex Translate
๏ Bing Microsoft Translator
๏ Baidu Fanyi
๏ DeepL Translator
๏ Wechat Translate
๏ ……



History of Machine Translation52



2016: The Neural MT (NMT) Revolution53

In November 2016, Google made a game-changing 
announcement announcing the launch of the Google 
Neural Machine Translation System (GNMT). The idea was 
similar to transferring style between photos such as 
programs like Prisma that can turn a photo into a painting 
imitating famous artists’ style. If we can transfer the style 
to a photo, how about imposing a language to a source 
text?  

The idea was to be able to translate while keeping the 
essence of the source text (just like the artist’s style). The 
source text is encoded into a set of specific features by 
one neural network and then decoded back into text in 
the target language by another network. Both networks 
speak a different language and don’t know about each 
other but they both can understand the set of features 
extracted from the source text. This is quite similar to the 
idea of Interlingua Machine Translation. In a few years, 
NMT surpassed every system that developed previously 
and with the implementation of deep learning, it was able 
to implement improvements without being taught to do so.



Sequence to Sequence54

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html



Sequence to Sequence55

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html



Sequence to Sequence56

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html



Encoder-Decoder Framework57

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html



Conditional Language Models58

Note that Conditional Language Modeling is something more than just a way to solve sequence-to-sequence tasks. In 
the most general sense, x can be something other than a sequence of tokens. For example, in the Image 
Captioning task, x is an image and y is a description of this image.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html



Conditional Language Models59

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html



Conditional Language Models60

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html



61 https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html



Simple Model: Two RNNs for Encoder & Decoder62

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html



Simple Model: Two RNNs for Encoder & Decoder63

The examples are from the paper Sequence to Sequence Learning with Neural Networks

This model can have different modifications: for example, the encoder and decoder can have several 
layers. Such a model with several layers was used, for example, in the paper  Sequence to Sequence 
Learning with Neural Networks - one of the first attempts to solve sequence-to-sequence tasks using neural 
networks. 
In the same paper, the authors looked at the last encoder state and visualized several examples - look below. 
Interestingly, representations of sentences with similar meaning but different structure are close!

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

https://arxiv.org/pdf/1409.3215.pdf
https://arxiv.org/pdf/1409.3215.pdf
https://arxiv.org/pdf/1409.3215.pdf


Training Trick: Reverse Order of Source Tokens64

The paper Sequence to Sequence Learning with Neural Networks introduced an elegant trick to make 
simple LSTM seq2seq models work better: reverse the order of the source tokens (but not the target). After 
that, a model will have many short-term connections: the latest source tokens it sees are the most relevant 
for the beginning of the target.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

https://arxiv.org/pdf/1409.3215.pdf


Training: The Cross-Entropy Loss65

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html



Training: The Cross-Entropy Loss66

At each step, we maximize the probability a model assigns to the correct token. Look at the illustration 
for a single timestep.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html



Training: The Cross-Entropy Loss67

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html



Inference68

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html



Inference: Greedy Decoding69

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html



Inference: Beam Search70

Instead, let's keep several hypotheses. At each step, we will be continuing each of the current 
hypotheses and pick top-N of them. This is called beam search.

Usually, the beam size is 4-10. Increasing beam size is computationally inefficient and, what is 
more important, leads to worse quality.

• Beam Search: Keep track of several most probably hypotheses 

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html



The Problem of Fixed Encoder Representation71

Problem: Fixed source representation is suboptimal: (i) for the encoder, it is hard to compress 
the sentence; (ii) for the decoder, different information may be relevant at different steps.

In the models we looked at so far, 
the encoder compressed the whole 
source sentence into a single 
vector. This can very hard - the 
number of possible meanings of 
source is infinite. When the 
encoder is forced to put all 
information into a single vector, it is 
likely to forget something.

Not only it is hard for the encoder to put all information into a single vector - this is also hard for the 
decoder. The decoder sees only one representation of source. However, at each generation step, 
different parts of source can be more useful than others. But in the current setting, the decoder has to 
extract relevant information from the same fixed representation - hardly an easy thing to do.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html



Attention: A High-Level View72

Attention was introduced in the paper Neural Machine Translation by Jointly Learning to Align and 
Translate to address the fixed representation problem.

Attention: At different steps, let a model 
"focus" on different parts of the input.

An attention mechanism is a part of a neural network. At each decoder step, it decides which source 
parts are more important. In this setting, the encoder does not have to compress the whole source into 
a single vector - it gives representations for all source tokens (for example, all RNN states instead of 
the last one).

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/pdf/1409.0473.pdf


73https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html



How Attention Works74

The most popular ways to compute attention scores are: 
• dot-product - the simplest method; 
• bilinear function  (aka "Luong attention") - used in the paper Effective Approaches to Attention-based 

Neural Machine Translation; 
• multi-layer perceptron (aka "Bahdanau attention") - the method proposed in the original paper.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

https://arxiv.org/abs/1508.04025
https://arxiv.org/abs/1508.04025
https://arxiv.org/pdf/1409.0473.pdf


How Attention Works75

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html



How Attention Works76

The general computation scheme is shown below.

Note: Everything is 
differentiable - learned 
end-to-end!

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html



Attention Learns (Nearly) Alignments77

Remember the motivation for attention? At different steps, the decoder may need to focus 
different source tokens, the ones which are more relevant at this step. Let's look at attention 
weights - which source words does the decoder use?

The examples are from the paper Neural Machine Translation by Jointly Learning to Align and Translate.
https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

https://arxiv.org/pdf/1409.0473.pdf


Transformer



What is Transformer79

๏ A model introduced in the paper “Attention is All You Need” in 2017. 
๏ Based solely on attention mechanisms (i.e., no recurrence or convolutions). 
๏ Higher translation quality, faster to train.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html



80 https://ai.googleblog.com/2017/08/transformer-novel-neural-network.htmlThe animation is from the Google AI blog post.

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html


What We Just Saw81

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html



Why Such Design82

๏ RNN won’t understand what “bank” means until they read the whole sentence. 
๏ Transformer’s encoder tokens interact with each other all at once.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html



How to Implement



Self-Attention: the "Look at Each Other" Part84

๏ Self-attention is one of the key components of the model. 
๏ The difference between attention and self-attention is that self-attention operates between 

representations of the same nature: e.g., all encoder states in some layer.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html



Self-Attention: the "Look at Each Other" Part85

๏ Self-attention is the part of the model where tokens interact with each other.  
๏ Each token "looks" at other tokens in the sentence with an attention mechanism, gathers context, 

and updates the previous representation of “self". 
๏ Note that in practice, this happens in parallel.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html



Query, Key, and Value in Self-Attention86

๏ Each input token in self-attention receives three representations corresponding to the roles it can 
play: 

• query - asking for information; 

• key - saying that it has some information; 

• value - giving the information. 

๏ The query is used when a token looks at others - it's seeking the information to understand itself 
better.  

๏ The key is responding to a query's request: it is used to compute attention weights.  
๏ The value is used to compute attention output: it gives information to the tokens which "say" they 

need it (i.e. assigned large weights to this token).

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html



87 https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html



Masked Self-Attention 
"Don't Look Ahead" for the Decoder

88

๏ In the decoder, there's also a self-attention 
mechanism: it is the one performing the "look at the 
previous tokens" function. 

๏ In the decoder, self-attention is a bit different from 
the one in the encoder. While the encoder 
receives all tokens at once and the tokens can look 
at all tokens in the input sentence, in the decoder, 
we generate one token at a time: during 
generation, we don't know which tokens we'll 
generate in future. 

๏ To forbid the decoder to look ahead, the model uses 
masked self-attention: future tokens are masked 
out. Look at the illustration.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html



But How Can The Decoder Look Ahead?89

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

๏ During generation, it can't - we don't know what comes next.  

๏ But in training, we use reference translations (which we know). Therefore, in training, we feed the 
whole target sentence to the decoder - without masks, the tokens would "see future", and this is not 
what we want. 

๏ This is done for computational efficiency: the Transformer does not have a recurrence, so all 
tokens can be processed at once. This is one of the reasons it has become so popular for machine 
translation - it's much faster to train than the once dominant recurrent models. For recurrent models, 
one training step requires O(len(source) + len(target)) steps, but for Transformer, it's O(1), i.e. 
constant.



Multi-Head Attention 
Independently Focus on Different Things

90

๏ Usually, understanding the role of a word in a 
sentence requires understanding how it is related to 
different parts of the sentence. 

๏ This is important not only in processing source 
sentence but also in generating target. For example, 
in some languages, subjects define verb inflection 
(e.g., gender agreement), verbs define the case of 
their objects, and many more. What I'm trying to say 
is: each word is part of many relations. 

๏ Therefore, we have to let the model focus on 
different things: this is the motivation behind Multi-
Head Attention. Instead of having one attention 
mechanism, multi-head attention has several 
"heads" which work independently.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html



Multi-Head Attention 
Independently Focus on Different Things

91

๏ Formally, this is implemented as several attention mechanisms whose results are combined:

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html



Transformer: Model Architecture92

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html



BERT



BERT:
Bidirectional Encoder 
Representations from

Transformers



BERT Overview95

http://jalammar.github.io/illustrated-bert/

The two steps of how BERT is developed. You can download the model pre-trained in step 1 
(trained on un-annotated data), and only worry about fine-tuning it for step 2. [Source for book icon].

https://commons.wikimedia.org/wiki/File:Documents_icon_-_noun_project_5020.svg


Problem with Previous Methods96

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

๏ Problem: Language models only use left context or right context, but 
language understanding is bidirectional. 

๏ Why are LMs unidirectional? 
• Reason 1: Directionality is needed to generate a well-formed probability 

distribution. 
• Reason 2: Words can “see themselves” in a bidirectional encoder.



Unidirectional vs. Bidirectional Models97

Unidirectional context
 Build representation incrementally

Bidirectional context
 Words can “see themselves”

 open
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Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models



Masked LM98

 store gallon

 the man went to the [MASK] to buy a [MASK] of milk

๏Solution: Mask out k% of the input words, and then predict the masked words 
(use 15%) 

๏Too little masking: Too expensive to train 
๏Too much masking: Not enough context
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Masked LM99

http://jalammar.github.io/illustrated-bert/

BERT's clever language modeling task masks 15% of words in the input and asks the model to predict the missing word.



Masked LM100

๏Problem: Mask token never seen at fine-tuning 
๏Solution: 15% of the words to predict, but don’t replace with [MASK] 100% of 

the time. Instead: 
๏80% of the time, replace with [MASK] 
went to the store → went to the [MASK] 

๏10% of the time, replace random word 
went to the store → went to the running 

๏10% of the time, keep same 
went to the store → went to the store

Jacob Devlin,
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Next Sentence Prediction101

๏To learn relationships between sentences, predict whether Sentence B is actual 
sentence that proceeds Sentence A, or a random sentence

Jacob Devlin,
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Next Sentence Prediction102

http://jalammar.github.io/illustrated-bert/

The second task BERT is pre-trained on is a two-sentence classification task. The tokenization is oversimplified in this graphic as BERT 
actually uses WordPieces as tokens rather than words --- so some words are broken down into smaller chunks.



Input Representation103

๏Use 30,000 WordPiece vocabulary on input. 
๏Each token is sum of three embeddings.
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More Details104

๏Data: Wikipedia (2.5B words) + BookCorpus (800M words) 
๏Batch Size: 131,072 words (1024 sequences * 128 length or 256 sequences * 

512 length) 
๏Training Time: 1M steps (~40 epochs) 
๏Optimizer: AdamW, 1e-4 learning rate, linear decay 
๏BERT-Base: 12-layer, 768-hidden, 12-head 
๏BERT-Large: 24-layer, 1024-hidden, 16-head 
๏Trained on 4x4 or 8x8 TPU slice for 4 days
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Fine-Tuning Procedure105
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Fine-Tuning Procedure106
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BERT for Feature Extraction107

http://jalammar.github.io/illustrated-bert/



BERT for Feature Extraction108

http://jalammar.github.io/illustrated-bert/



Performance: GLUE109

GLUE: https://gluebenchmark.com/



Performance: GLUE110

GLUE: https://gluebenchmark.com/



Performance: GLUE111

 GLUE Results
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Effect of Model Size112

๏Big models help a lot 
๏Going from 110M -> 340M params helps even on datasets with 3,600 labeled 

examples 
๏ Improvements have not asymptoted
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A Few Post-BERT
Pre-training Advancements



RoBERTA114

๏RoBERTa: A Robustly Optimized BERT Pretraining Approach (Liu et al, University of 
Washington and Facebook, 2019) 

๏Trained BERT for more epochs and/or on more data 
•Showed that more epochs alone helps, even on same data 
• More data also helps

๏ Improved masking and pre-training data slightly
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ALBERT115

 1024
    x
 100k

 vs.
 128
   x
 100k

 ⨉
 1024
   x
 128

๏ALBERT: A Lite BERT for Self-supervised Learning of Language Representations 
(Lan et al, Google and TTI Chicago, 2019) 

๏ Innovation #1: Factorized embedding parameterization
•Use small embedding size (e.g., 128) and then project it to Transformer hidden 

size (e.g., 1024) with parameter matrix 
๏ Innovation #2: Cross-layer parameter sharing

•Share all parameters between Transformer layers
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ALBERT116

๏Results: 

๏ ALBERT is light in terms of parameters, not speed
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T5117

๏Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer 
(Raffel et al, Google, 2019) 

๏Ablated many aspects of pre-training:
•Model size 
•Amount of training data 
•Domain/cleanness of training data 
•Pre-training objective details (e.g., span length of masked text) 
•Ensembling 
•Finetuning recipe (e.g., only allowing certain layers to finetune) 
•Multi-task training
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T5118

๏Conclusions: 
•Scaling up model size and amount of training data helps a lot 
•Best model is 11B parameters (BERT-Large is 330M), trained on 120B words of 

cleaned common crawl text 
•Exact masking/corruptions strategy doesn’t matter that much 
•Mostly negative results for better finetuning and multi-task strategies 

๏T5 results on SuperGLUE: https://super.gluebenchmark.com/leaderboard/
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Pre-trained language models119

BERT

The Pre-trained language model family
Image credit: https://www.researchgate.net/figure/The-Pre-trained-language-model-family_fig4_342684048
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AlphaCode121

AlphaCode uses transformer-based language models to 
generate code at an unprecedented scale, and then smartly 
filters to a small set of promising programs. 

AlphaCode achieved an estimated rank within the top 54% of 
participants in programming competitions.

https://www.deepmind.com/blog/competitive-programming-with-alphacode

https://www.deepmind.com/blog/competitive-programming-with-alphacode


DALL·E 2122

https://openai.com/dall-e-2/

DALL·E 2 is a new AI system that can 
create realistic images and art from a 
description in natural language.          

https://openai.com/dall-e-2/


DALL·E 2123

https://cdn.openai.com/papers/dall-e-2.pdf

A two-stage model: a 
prior that generates a 
CLIP image embedding 
given a text caption, and 
a decoder that generates 
an image conditioned on 
the image embedding.

https://cdn.openai.com/papers/dall-e-2.pdf


Pathways Language Model (PaLM)124

Pathways: a single model that 
could generalize across 
domains and tasks while being 
highly efficient. 

PaLM: a 540-billion parameter, 
dense decoder-only 
Transformer model trained with 
the Pathways system, which 
enabled us to efficiently train a 
single model across multiple 
TPU v4 Pods. SOTA 
performance across on 
hundreds of language 
understanding and generation 
tasks.

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html

PaLM explains an original joke with two-shot prompts.

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html


Pathways Language Model (PaLM)125

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html

Examples of a fine-tuned PaLM 540B model on text-to-code tasks

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html


Use AI to control plasmas for nuclear fusion126

Develop the first deep reinforcement learning 
(RL) system to autonomously discover how to 

control these coils and successfully contain the 
plasma in a tokamak, opening new avenues to 

advance nuclear fusion research. 

https://www.deepmind.com/blog/accelerating-fusion-science-through-learned-plasma-control

https://www.deepmind.com/blog/accelerating-fusion-science-through-learned-plasma-control


Thanks! Q&A
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