
IFT3335 Lecture: Natural Language Processing -
part 2

Introduction to Artificial Intelligence

Bang Liu, Jian-Yun Nie

Lecture outline2

1. Represent the Meaning of a Word: Word Embedding
2. Machine Translation: Sequence to Sequence and Attention
3. Transformer
4. BERT
5. AI: Research Frontiers

Represent the
Meaning of a Word:
Word Embedding

Meaning Representations

๏ Definition of “Meaning”
• the idea that is represented by a word, phrase, etc.
• the idea that a person wants to express by using words, signs, etc.
• the idea that is expressed in a work of writing, art, etc.

4

Corpus-Based Representations

๏ Atomic symbols: one-hot representation

5

Idea: words with
similar meanings
often have similar
neighbors

Issues: difficult to
compute the similarity
(i.e. comparing “car”
and “motorcycle”)

motorcycle [0 0 1 0 0 0 0 0 0 … 0]

 car [0 0 0 0 0 0 1 0 0 … 0]

Low-Dimensional Dense Word Vector

๏ Method 1: dimension reduction on the matrix

๏ Singular Value Decomposition (SVD) of co-occurrence matrix X

6

Low-Dimensional Dense Word Vector

๏ Method 1: dimension reduction on the matrix

๏ Singular Value Decomposition (SVD) of co-occurrence matrix X

7

 Issues:
 ▪ computationally expensive:
 when n<m for matrix
 ▪ difficult to add new words

O(mn2) n × m

Idea: directly learn low-dimensional word
vectors

 semantic relations syntactic relations

Low-Dimensional Dense Word Vector

๏ Method 2: directly learn low-dimensional word vectors
• Learning representations by back-propagation. (Rumelhart et al., 1986)
• A neural probabilistic language model (Bengio et al., 2003)
• NLP (almost) from Scratch (Collobert & Weston, 2008)
• Most popular models: word2vec (Mikolov et al. 2013) and Glove (Pennington et al., 2014)

(as known as “Word Embeddings ”)

8

What are you like?
Personality Embedding

Big Five Personality Trait Test

๏ On a scale of 0 to 100, how introverted/extraverted are you (where 0 is the most introverted,
and 100 is the most extraverted)?

10

Example of the result of a Big Five Personality Trait test. It can really tell you a lot about yourself
and is shown to have predictive ability in academic, personal, and professional success.

http://psychology.okstate.edu/faculty/jgrice/psyc4333/FiveFactor_GPAPaper.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1744-6570.1999.tb00174.x
https://www.massgeneral.org/psychiatry/assets/published_papers/soldz-1999.pdf

Central Idea: Represent Things by Vectors11

http://jalammar.github.io/illustrated-word2vec/

Words can also be
Represented by Vectors:

Word Embedding

Word Embedding13

http://jalammar.github.io/illustrated-word2vec/

[0.50451 , 0.68607 , -0.59517 , -0.022801, 0.60046 ,
 -0.13498 , -0.08813 , 0.47377 , -0.61798 , -0.31012 ,
 -0.076666, 1.493 , -0.034189, -0.98173 , 0.68229 ,
 0.81722 , -0.51874 , -0.31503 , -0.55809 , 0.66421 ,
 0.1961 , -0.13495 , -0.11476 , -0.30344 , 0.41177 ,
 -2.223 , -1.0756 , -1.0783 , -0.34354 , 0.33505 ,
 1.9927 , -0.04234 , -0.64319 , 0.71125 , 0.49159 ,
 0.16754 , 0.34344 , -0.25663 , -0.8523 , 0.1661 ,
 0.40102 , 1.1685 , -1.0137 , -0.21585 , -0.15155 ,
 0.78321 , -0.91241 , -1.6106 , -0.64426 , -0.51042]

This is a word embedding for the word “king” (GloVe vector trained on Wikipedia).

“King”

Visualize Word Embedding

๏ Let’s color code the cells based on their values (red if they’re close to 2, white if they’re close
to 0, blue if they’re close to -2)

14

http://jalammar.github.io/illustrated-word2vec/

[0.50451 , 0.68607 , -0.59517 , -0.022801, 0.60046 ,
 -0.13498 , -0.08813 , 0.47377 , -0.61798 , -0.31012 ,
 -0.076666, 1.493 , -0.034189, -0.98173 , 0.68229 ,
 0.81722 , -0.51874 , -0.31503 , -0.55809 , 0.66421 ,
 0.1961 , -0.13495 , -0.11476 , -0.30344 , 0.41177 ,
 -2.223 , -1.0756 , -1.0783 , -0.34354 , 0.33505 ,
 1.9927 , -0.04234 , -0.64319 , 0.71125 , 0.49159 ,
 0.16754 , 0.34344 , -0.25663 , -0.8523 , 0.1661 ,
 0.40102 , 1.1685 , -1.0137 , -0.21585 , -0.15155 ,
 0.78321 , -0.91241 , -1.6106 , -0.64426 , -0.51042]

“King”

Compare Word Embeddings

๏ A list of examples (compare by vertically scanning the columns looking for columns with
similar colors).

15

http://jalammar.github.io/illustrated-word2vec/

Compare Word Embeddings16

http://jalammar.github.io/illustrated-word2vec/

These words are similar along
this dimension (and we don’t
know what each dimensions
codes for).

Compare Word Embeddings17

http://jalammar.github.io/illustrated-word2vec/

“woman” and
“girl” are similar to
each other in a lot
of places. The
same with “man”
and “boy”.

Compare Word Embeddings18

http://jalammar.github.io/illustrated-word2vec/

“boy” and “girl”
also have places
where they are
similar to each
other, but different
from “woman” or
“man”. Could
these be coding for
a vague
conception of
youth? possible.

Compare Word Embeddings19

http://jalammar.github.io/illustrated-word2vec/

This column goes all the way
down and stops before the
embedding for “water”.

Different category!

Compare Word Embeddings20

There are clear
places where
“king” and
“queen” are similar
to each other and
distinct from all the
others. Could
these be coding for
a vague concept of
royalty?

http://jalammar.github.io/illustrated-word2vec/

Compare Word Embeddings21

http://jalammar.github.io/illustrated-word2vec/

The resulting vector from "king-man+woman" doesn't exactly equal "queen", but
"queen" is the closest word to it from the 400,000 word embeddings we have in
this collection.

Compare Word Embeddings22

http://jalammar.github.io/illustrated-word2vec/

Using the Gensim library in python, we can add and subtract word vectors, and it
would find the most similar words to the resulting vector. The image shows a list
of the most similar words with “king+woman-man”, each with its cosine similarity.

How to Train Word Embeddings?
Recall Language Modeling

Recall Language Modeling

๏ A language model can take a list of words (let’s say two words), and attempt to predict the
word that follows them.

24

http://jalammar.github.io/illustrated-word2vec/

Recall Language Modeling

๏ A language model actually outputs a probability score for all the words it knows (the model’s
“vocabulary”）

25

http://jalammar.github.io/illustrated-word2vec/

Recall Language Modeling

๏ After being trained, early neural language models (Bengio 2003) would calculate a prediction
in three steps:

26

http://jalammar.github.io/illustrated-word2vec/

Recall Language Modeling

๏ In the first step, we get a matrix that contains an embedding for each word in our
vocabulary.

27

http://jalammar.github.io/illustrated-word2vec/

Language Model Training

๏ Words get their embeddings by looking at which other words they tend to appear next to.
1. We get a lot of text data (say, all Wikipedia articles, for example).
2. We have a window (say, of three words) that we slide against all of that text.
3. The sliding window generates training samples for our model

28

http://jalammar.github.io/illustrated-word2vec/

29
http://jalammar.github.io/illustrated-word2vec/

We take the first two words to be features, and
the third word to be a label:

We then slide our window to the next position
and create a second sample:

And pretty soon we have a larger dataset of
which words tend to appear after different
pairs of words:

From Language Modeling to
Word Embedding:
Look Both Ways

Language Model Training31

“bus”

http://jalammar.github.io/illustrated-word2vec/

Look Both Ways32

“bus”

?

Word2Vec: CBOW and Skip-gram 33

(Mikolov et.al 2013) Efficient Estimation of Word Representations in Vector Space

CBOW: Continuous Bag of Words

๏ Instead of only looking at words before the target word, we can also look at words after it.

34

http://jalammar.github.io/illustrated-word2vec/

“You shall know a word by the company it keeps” — J.R. Firth

Build training dataset

Skip-gram

๏ Instead of guessing a word based on its context (the words before and after it), this other
architecture tries to guess neighboring words using the current word.

35

http://jalammar.github.io/illustrated-word2vec/

The word in the green slot would be the input word, each pink box would be a
possible output. The pink boxes are in different shades because this sliding
window actually creates four separate samples in our training dataset.

Skip-gram36

http://jalammar.github.io/illustrated-word2vec/

By sliding our window to the next positions, a couple of positions later, we will
have a lot more training examples.

37
http://jalammar.github.io/illustrated-word2vec/

Step 1: grab a example from the
dataset. Feed it into an untrained
model asking it to predict an
appropriate neighbour word.

Step 2: The model conducts the
three steps and outputs a
prediction vector (with a
probability assigned to each word
in its vocabulary)

Step 3: This error vector can now be used to
update the model so the next time, it’s a little more
likely to guess thou when it gets not as input.

Step 4: We proceed to do the same process with the
next sample in our dataset, and then the next, until
we’ve covered all the samples in the dataset.

Negative Sampling

๏ The third step is very expensive from a computational point of view. How to improve the
performance?

38

http://jalammar.github.io/illustrated-word2vec/

Negative Sampling

๏ One way is to split our target into two steps:
1. Generate high-quality word embeddings (Don’t worry about next-word prediction);
2. Use these high-quality embeddings to train a language model (to do next-word prediction).

39

http://jalammar.github.io/illustrated-word2vec/

To generate high-quality
embeddings using a high-
performance model, we can
switch the model’s task from
predicting a neighboring word
to takes the input and output
word, and outputs a score
indicating if they’re neighbors
or not (0 for “not neighbors”, 1 for
“neighbors”).

much simpler
and much faster
to calculate

Negative Sampling

๏ Switch the structure of our dataset

40

http://jalammar.github.io/illustrated-word2vec/

Negative Sampling41

http://jalammar.github.io/illustrated-word2vec/

No negative
sample

So a smartass model that
always returns 1 – achieving
100% accuracy, but learning
nothing and generating
garbage embeddings.

Skip-gram with Negative Sampling

๏ Randomly selected words that are not neighbors from the vocabulary to get negative examples.

42

http://jalammar.github.io/illustrated-word2vec/

Word2Vec Training Process

Model initialization

๏ At the start of the training phase, we create two matrices – an Embedding matrix and
a Context matrix. These two matrices have an embedding for each word in our vocabulary. We
initialize these matrices with random values. (Why two vectors? Easier optimization.)

44

http://jalammar.github.io/illustrated-word2vec/

Feed Data

๏ For the input word, we look in the Embedding matrix. For the context words, we look in the
Context matrix

45

http://jalammar.github.io/illustrated-word2vec/

Forward Propagation
๏ Take the dot product of the input embedding with each of the context embeddings.
๏ Calculate probability by Sigmoid().
๏ Calculate error.

46

error = target - sigmoid_scores

Back-propagation47

๏ We can now use this error score to adjust the embeddings of not, thou, aaron, and taco so that
the next time we make this calculation, the result would be closer to the target scores.

http://jalammar.github.io/illustrated-word2vec/

error = target - sigmoid_scores

Proceed to Next Batch

๏ Then we proceed to our next step (the next positive sample and its associated negative samples)
and do the same process again.

48

http://jalammar.github.io/illustrated-word2vec/

Machine Translation:
Sequence to

Sequence and
Attention

What is Machine Translation50

Commercial Machine Translation Systems51

๏ Google Translate
๏ Yandex Translate
๏ Bing Microsoft Translator
๏ Baidu Fanyi
๏ DeepL Translator
๏ Wechat Translate
๏ ……

History of Machine Translation52

2016: The Neural MT (NMT) Revolution53

In November 2016, Google made a game-changing
announcement announcing the launch of the Google
Neural Machine Translation System (GNMT). The idea was
similar to transferring style between photos such as
programs like Prisma that can turn a photo into a painting
imitating famous artists’ style. If we can transfer the style
to a photo, how about imposing a language to a source
text?

The idea was to be able to translate while keeping the
essence of the source text (just like the artist’s style). The
source text is encoded into a set of specific features by
one neural network and then decoded back into text in
the target language by another network. Both networks
speak a different language and don’t know about each
other but they both can understand the set of features
extracted from the source text. This is quite similar to the
idea of Interlingua Machine Translation. In a few years,
NMT surpassed every system that developed previously
and with the implementation of deep learning, it was able
to implement improvements without being taught to do so.

Sequence to Sequence54

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Sequence to Sequence55

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Sequence to Sequence56

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Encoder-Decoder Framework57

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Conditional Language Models58

Note that Conditional Language Modeling is something more than just a way to solve sequence-to-sequence tasks. In
the most general sense, x can be something other than a sequence of tokens. For example, in the Image
Captioning task, x is an image and y is a description of this image.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Conditional Language Models59

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Conditional Language Models60

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

61 https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Simple Model: Two RNNs for Encoder & Decoder62

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Simple Model: Two RNNs for Encoder & Decoder63

The examples are from the paper Sequence to Sequence Learning with Neural Networks

This model can have different modifications: for example, the encoder and decoder can have several
layers. Such a model with several layers was used, for example, in the paper Sequence to Sequence
Learning with Neural Networks - one of the first attempts to solve sequence-to-sequence tasks using neural
networks.
In the same paper, the authors looked at the last encoder state and visualized several examples - look below.
Interestingly, representations of sentences with similar meaning but different structure are close!

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

https://arxiv.org/pdf/1409.3215.pdf
https://arxiv.org/pdf/1409.3215.pdf
https://arxiv.org/pdf/1409.3215.pdf

Training Trick: Reverse Order of Source Tokens64

The paper Sequence to Sequence Learning with Neural Networks introduced an elegant trick to make
simple LSTM seq2seq models work better: reverse the order of the source tokens (but not the target). After
that, a model will have many short-term connections: the latest source tokens it sees are the most relevant
for the beginning of the target.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

https://arxiv.org/pdf/1409.3215.pdf

Training: The Cross-Entropy Loss65

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Training: The Cross-Entropy Loss66

At each step, we maximize the probability a model assigns to the correct token. Look at the illustration
for a single timestep.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Training: The Cross-Entropy Loss67

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Inference68

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Inference: Greedy Decoding69

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Inference: Beam Search70

Instead, let's keep several hypotheses. At each step, we will be continuing each of the current
hypotheses and pick top-N of them. This is called beam search.

Usually, the beam size is 4-10. Increasing beam size is computationally inefficient and, what is
more important, leads to worse quality.

• Beam Search: Keep track of several most probably hypotheses

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

The Problem of Fixed Encoder Representation71

Problem: Fixed source representation is suboptimal: (i) for the encoder, it is hard to compress
the sentence; (ii) for the decoder, different information may be relevant at different steps.

In the models we looked at so far,
the encoder compressed the whole
source sentence into a single
vector. This can very hard - the
number of possible meanings of
source is infinite. When the
encoder is forced to put all
information into a single vector, it is
likely to forget something.

Not only it is hard for the encoder to put all information into a single vector - this is also hard for the
decoder. The decoder sees only one representation of source. However, at each generation step,
different parts of source can be more useful than others. But in the current setting, the decoder has to
extract relevant information from the same fixed representation - hardly an easy thing to do.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Attention: A High-Level View72

Attention was introduced in the paper Neural Machine Translation by Jointly Learning to Align and
Translate to address the fixed representation problem.

Attention: At different steps, let a model
"focus" on different parts of the input.

An attention mechanism is a part of a neural network. At each decoder step, it decides which source
parts are more important. In this setting, the encoder does not have to compress the whole source into
a single vector - it gives representations for all source tokens (for example, all RNN states instead of
the last one).

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/pdf/1409.0473.pdf

73https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

How Attention Works74

The most popular ways to compute attention scores are:
• dot-product - the simplest method;
• bilinear function (aka "Luong attention") - used in the paper Effective Approaches to Attention-based

Neural Machine Translation;
• multi-layer perceptron (aka "Bahdanau attention") - the method proposed in the original paper.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

https://arxiv.org/abs/1508.04025
https://arxiv.org/abs/1508.04025
https://arxiv.org/pdf/1409.0473.pdf

How Attention Works75

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

How Attention Works76

The general computation scheme is shown below.

Note: Everything is
differentiable - learned
end-to-end!

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Attention Learns (Nearly) Alignments77

Remember the motivation for attention? At different steps, the decoder may need to focus
different source tokens, the ones which are more relevant at this step. Let's look at attention
weights - which source words does the decoder use?

The examples are from the paper Neural Machine Translation by Jointly Learning to Align and Translate.
https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

https://arxiv.org/pdf/1409.0473.pdf

Transformer

What is Transformer79

๏ A model introduced in the paper “Attention is All You Need” in 2017.
๏ Based solely on attention mechanisms (i.e., no recurrence or convolutions).
๏ Higher translation quality, faster to train.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

80 https://ai.googleblog.com/2017/08/transformer-novel-neural-network.htmlThe animation is from the Google AI blog post.

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

What We Just Saw81

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Why Such Design82

๏ RNN won’t understand what “bank” means until they read the whole sentence.
๏ Transformer’s encoder tokens interact with each other all at once.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

How to Implement

Self-Attention: the "Look at Each Other" Part84

๏ Self-attention is one of the key components of the model.
๏ The difference between attention and self-attention is that self-attention operates between

representations of the same nature: e.g., all encoder states in some layer.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Self-Attention: the "Look at Each Other" Part85

๏ Self-attention is the part of the model where tokens interact with each other.
๏ Each token "looks" at other tokens in the sentence with an attention mechanism, gathers context,

and updates the previous representation of “self".
๏ Note that in practice, this happens in parallel.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Query, Key, and Value in Self-Attention86

๏ Each input token in self-attention receives three representations corresponding to the roles it can
play:

• query - asking for information;

• key - saying that it has some information;

• value - giving the information.

๏ The query is used when a token looks at others - it's seeking the information to understand itself
better.

๏ The key is responding to a query's request: it is used to compute attention weights.
๏ The value is used to compute attention output: it gives information to the tokens which "say" they

need it (i.e. assigned large weights to this token).

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

87 https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Masked Self-Attention
"Don't Look Ahead" for the Decoder

88

๏ In the decoder, there's also a self-attention
mechanism: it is the one performing the "look at the
previous tokens" function.

๏ In the decoder, self-attention is a bit different from
the one in the encoder. While the encoder
receives all tokens at once and the tokens can look
at all tokens in the input sentence, in the decoder,
we generate one token at a time: during
generation, we don't know which tokens we'll
generate in future.

๏ To forbid the decoder to look ahead, the model uses
masked self-attention: future tokens are masked
out. Look at the illustration.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

But How Can The Decoder Look Ahead?89

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

๏ During generation, it can't - we don't know what comes next.

๏ But in training, we use reference translations (which we know). Therefore, in training, we feed the
whole target sentence to the decoder - without masks, the tokens would "see future", and this is not
what we want.

๏ This is done for computational efficiency: the Transformer does not have a recurrence, so all
tokens can be processed at once. This is one of the reasons it has become so popular for machine
translation - it's much faster to train than the once dominant recurrent models. For recurrent models,
one training step requires O(len(source) + len(target)) steps, but for Transformer, it's O(1), i.e.
constant.

Multi-Head Attention
Independently Focus on Different Things

90

๏ Usually, understanding the role of a word in a
sentence requires understanding how it is related to
different parts of the sentence.

๏ This is important not only in processing source
sentence but also in generating target. For example,
in some languages, subjects define verb inflection
(e.g., gender agreement), verbs define the case of
their objects, and many more. What I'm trying to say
is: each word is part of many relations.

๏ Therefore, we have to let the model focus on
different things: this is the motivation behind Multi-
Head Attention. Instead of having one attention
mechanism, multi-head attention has several
"heads" which work independently.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Multi-Head Attention
Independently Focus on Different Things

91

๏ Formally, this is implemented as several attention mechanisms whose results are combined:

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Transformer: Model Architecture92

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

BERT

BERT:
Bidirectional Encoder
Representations from

Transformers

BERT Overview95

http://jalammar.github.io/illustrated-bert/

The two steps of how BERT is developed. You can download the model pre-trained in step 1
(trained on un-annotated data), and only worry about fine-tuning it for step 2. [Source for book icon].

https://commons.wikimedia.org/wiki/File:Documents_icon_-_noun_project_5020.svg

Problem with Previous Methods96

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

๏ Problem: Language models only use left context or right context, but
language understanding is bidirectional.

๏ Why are LMs unidirectional?
• Reason 1: Directionality is needed to generate a well-formed probability

distribution.
• Reason 2: Words can “see themselves” in a bidirectional encoder.

Unidirectional vs. Bidirectional Models97

Unidirectional context
 Build representation incrementally

Bidirectional context
 Words can “see themselves”

 open

 Layer 2

 Layer 2

 <s>

 a

 Layer 2

 Layer 2

 open

 bank

 Layer 2

 Layer 2

 a

 open

 Layer 2

 Layer 2

 <s>

 a

 Layer 2

 Layer 2

 open

 bank

 Layer 2

 Layer 2

 a

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

Masked LM98

 store gallon

 the man went to the [MASK] to buy a [MASK] of milk

๏Solution: Mask out k% of the input words, and then predict the masked words
(use 15%)

๏Too little masking: Too expensive to train
๏Too much masking: Not enough context

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

Masked LM99

http://jalammar.github.io/illustrated-bert/

BERT's clever language modeling task masks 15% of words in the input and asks the model to predict the missing word.

Masked LM100

๏Problem: Mask token never seen at fine-tuning
๏Solution: 15% of the words to predict, but don’t replace with [MASK] 100% of

the time. Instead:
๏80% of the time, replace with [MASK]
went to the store → went to the [MASK]

๏10% of the time, replace random word
went to the store → went to the running

๏10% of the time, keep same
went to the store → went to the store

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

Next Sentence Prediction101

๏To learn relationships between sentences, predict whether Sentence B is actual
sentence that proceeds Sentence A, or a random sentence

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

Next Sentence Prediction102

http://jalammar.github.io/illustrated-bert/

The second task BERT is pre-trained on is a two-sentence classification task. The tokenization is oversimplified in this graphic as BERT
actually uses WordPieces as tokens rather than words --- so some words are broken down into smaller chunks.

Input Representation103

๏Use 30,000 WordPiece vocabulary on input.
๏Each token is sum of three embeddings.

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

More Details104

๏Data: Wikipedia (2.5B words) + BookCorpus (800M words)
๏Batch Size: 131,072 words (1024 sequences * 128 length or 256 sequences *

512 length)
๏Training Time: 1M steps (~40 epochs)
๏Optimizer: AdamW, 1e-4 learning rate, linear decay
๏BERT-Base: 12-layer, 768-hidden, 12-head
๏BERT-Large: 24-layer, 1024-hidden, 16-head
๏Trained on 4x4 or 8x8 TPU slice for 4 days

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

Fine-Tuning Procedure105

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

Fine-Tuning Procedure106

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

BERT for Feature Extraction107

http://jalammar.github.io/illustrated-bert/

BERT for Feature Extraction108

http://jalammar.github.io/illustrated-bert/

Performance: GLUE109

GLUE: https://gluebenchmark.com/

Performance: GLUE110

GLUE: https://gluebenchmark.com/

Performance: GLUE111

 GLUE Results

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

Effect of Model Size112

๏Big models help a lot
๏Going from 110M -> 340M params helps even on datasets with 3,600 labeled

examples
๏ Improvements have not asymptoted

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

A Few Post-BERT
Pre-training Advancements

RoBERTA114

๏RoBERTa: A Robustly Optimized BERT Pretraining Approach (Liu et al, University of
Washington and Facebook, 2019)

๏Trained BERT for more epochs and/or on more data
•Showed that more epochs alone helps, even on same data
• More data also helps

๏ Improved masking and pre-training data slightly

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

ALBERT115

 1024
 x
 100k

 vs.
 128
 x
 100k

 ⨉
 1024
 x
 128

๏ALBERT: A Lite BERT for Self-supervised Learning of Language Representations
(Lan et al, Google and TTI Chicago, 2019)

๏ Innovation #1: Factorized embedding parameterization
•Use small embedding size (e.g., 128) and then project it to Transformer hidden

size (e.g., 1024) with parameter matrix
๏ Innovation #2: Cross-layer parameter sharing

•Share all parameters between Transformer layers

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

ALBERT116

๏Results:

๏ ALBERT is light in terms of parameters, not speed

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

T5117

๏Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
(Raffel et al, Google, 2019)

๏Ablated many aspects of pre-training:
•Model size
•Amount of training data
•Domain/cleanness of training data
•Pre-training objective details (e.g., span length of masked text)
•Ensembling
•Finetuning recipe (e.g., only allowing certain layers to finetune)
•Multi-task training

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

T5118

๏Conclusions:
•Scaling up model size and amount of training data helps a lot
•Best model is 11B parameters (BERT-Large is 330M), trained on 120B words of

cleaned common crawl text
•Exact masking/corruptions strategy doesn’t matter that much
•Mostly negative results for better finetuning and multi-task strategies

๏T5 results on SuperGLUE: https://super.gluebenchmark.com/leaderboard/

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

https://super.gluebenchmark.com/leaderboard/

Pre-trained language models119

BERT

The Pre-trained language model family
Image credit: https://www.researchgate.net/figure/The-Pre-trained-language-model-family_fig4_342684048

AI
Research Frontiers

AlphaCode121

AlphaCode uses transformer-based language models to
generate code at an unprecedented scale, and then smartly
filters to a small set of promising programs.

AlphaCode achieved an estimated rank within the top 54% of
participants in programming competitions.

https://www.deepmind.com/blog/competitive-programming-with-alphacode

https://www.deepmind.com/blog/competitive-programming-with-alphacode

DALL·E 2122

https://openai.com/dall-e-2/

DALL·E 2 is a new AI system that can
create realistic images and art from a
description in natural language.

https://openai.com/dall-e-2/

DALL·E 2123

https://cdn.openai.com/papers/dall-e-2.pdf

A two-stage model: a
prior that generates a
CLIP image embedding
given a text caption, and
a decoder that generates
an image conditioned on
the image embedding.

https://cdn.openai.com/papers/dall-e-2.pdf

Pathways Language Model (PaLM)124

Pathways: a single model that
could generalize across
domains and tasks while being
highly efficient.

PaLM: a 540-billion parameter,
dense decoder-only
Transformer model trained with
the Pathways system, which
enabled us to efficiently train a
single model across multiple
TPU v4 Pods. SOTA
performance across on
hundreds of language
understanding and generation
tasks.

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html

PaLM explains an original joke with two-shot prompts.

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html

Pathways Language Model (PaLM)125

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html

Examples of a fine-tuned PaLM 540B model on text-to-code tasks

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html

Use AI to control plasmas for nuclear fusion126

Develop the first deep reinforcement learning
(RL) system to autonomously discover how to

control these coils and successfully contain the
plasma in a tokamak, opening new avenues to

advance nuclear fusion research.

https://www.deepmind.com/blog/accelerating-fusion-science-through-learned-plasma-control

https://www.deepmind.com/blog/accelerating-fusion-science-through-learned-plasma-control

Thanks! Q&A

127

