

Natural Language Processing with Deep Learning IFT6289, Winter 2022

Université m

de Montréal

and the second s

and the second of the second of the second second of the second s

Lecture 2: Neural Networks and Backpropagation Bang Liu

the Real Property is not seen in the local division of the local d

Statement of the second statement of the second of the second statement of the

and the second s

- 1. Machine Learning and Deep Learning
- 2.
- 3. Computing Gradients by Backpropagation

Training Deep Neural Networks by Gradient Descent

3 Certain Slides Adapted From or Referred To...

- Slides from NTU S-108, <u>Yun-Nung (Vivian) Chen</u>
 - syllabus, lecture 2

• Applied Deep Learning, Spring 2020: <u>https://www.csie.ntu.edu.tw/~miulab/s108-adl/</u>

Machine Learning and Deep Learning

]

-

What is Machine Learning

• Programs can do the things you ask them to do.

Program for Solving Tasks 7

• **Task:** predicting positive or negative given a product review

program.py +

if input contains "love", "like", etc. if input contains "too much", "bad", etc. output = positive output = negative

Some tasks are complex, and we don't know how to write a program to solve them.

"I love this product!" "It claims too much." "It's a little expensive." program.py program.py

• **Task:** predicting positive or negative given a product review

Given a large amount of data, the machine learns what the function f should be

"It claims too much." "It's a little expensive."

if input contains "too much", "bad", etc. output = negative

Negative

Learning ~ Looking for a Function

Speech Recognition

Handwritten Recognition

• Weather Forecast

Play video games

f(

f(

J

"move left"

Machine Learning Framework 10

Testing is to predict the label using the learned function

What is Deep Learning

• Production line

"I love this product!"

End-to-end training: what each function should do is learned automatically **Deep learning usually refers to neural network based model**

Stacked Functions Learned by Machine 13

vector x

"I love this product"

Representation Learning attempts to learn good features/representations **Deep Learning attempts to learn (multiple levels of) representations and an output**

Features / Representations

• Shallow model

:learned from data

• Deep model

Reference: Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In *Computer Vision – ECCV 2014* (pp. 818-833)

Features / Representations

16 Machine Learning v.s. Deep Learning

describing your data with features a computer can understand

> hand-crafted domainspecific knowledge

optimizing the weights on features

Machine Learning v.s. Deep Learning 17

representations learned by machine

automatically learned internal knowledge

Deep learning usually refers to neural network based model

on features

18 Inspired by Human Brain

Each neuron is a very simple function

• Cascading the neurons to form a neural network

Each layer is a simple function in the production line

21 Why Deep Learning Works

Big Data

GPU

Deeper \rightarrow More parameters

Shallow

Deep

• Any continuous function f

$$f: R^N \to R^M$$

• can be realized by a network with one hidden layer

http://neuralnetworksanddeeplearning.com/chap4.html

Why "deep" not "fat" ?

24 Fat Shallow v.s. Thin Deep

- Two networks with the same number of parameters
- same number of parameters, deep can model more complex function
 - Left is like "plus", right is like "multiply"

• E.g., Hand-Written Digit Classification

The deeper model uses less parameters to achieve the same performance

• The learning algorithm f is to map the input domain X to output domain Y

$$f: X$$
 -

- Input domain: word, word sequence, image, audio, video, click logs, brain signal ...
- Output domain: single label, tag sequence, tree structure, probabilistic distribution ...

$\rightarrow Y$

Training Deep Neural Networks by Gradient Descent

Training is to pick the best function given the observed data Testing is to predict the label using the learned function

"Best" Function f^*

- Q1: What is the **model**? (function hypothesis set)
- Q2: What does a **good function** mean?
- Q3: How do we **pick** the "best" function?

What is the model? Neural Networks

• Many problems can be formulated as a classification problem

Classification Task f(x) = y

x: input object to be classified
y: class/label

Assume both x and y can be represented as fixed-size vectors

 \rightarrow a *N*-dim vector \rightarrow a *M*-dim vector

Handwriting Digit Classification

x: image

10 dimensions for digit recognition Each pixel corresponds to an element in the vector

1: for ink 0: otherwise

16 x 16 = 256 dimensions

$$f: R^N \to R^M$$

y: class/label

Sentiment Analysis x: word

٠

٠

Each element in the "love" vector corresponds to a word in the vocabulary

> 1: indicates the word 0: otherwise

dimensions = size of vocab

$f: \mathbb{R}^N \to \mathbb{R}^M$

y: class/label

3 dimensions (positive, negative, neutral)

Each neuron is a very simple function

The bias term is an "always on" feature

The bias term gives a class prior

38 Model Parameters of a Single Neuron

w, b are the parameters of this neuron

 $y = h_{w,b}(x) = \sigma(w^T x + b)$

A single neuron can only handle binary classification

Handwriting digit classification $f: \mathbb{R}^N \to \mathbb{R}^M$

A layer of neurons can handle multiple possible output, and the result depends on the max one

Fully connected feedforward network $f: \mathbb{R}^N \to \mathbb{R}^M$

Deep NN: multiple hidden layers

output of one layer \rightarrow a vector

weights between two layers \rightarrow a matrix

b_i^l : bias for neuron *i* at layer *l*

$b^{l} = \begin{bmatrix} \vdots \\ b_{i}^{l} \\ \vdots \end{bmatrix}$

bias of all neurons at each layer \rightarrow a vector

: input of the activation function for neuron *i* at layer *l*

$$\begin{aligned} & _{1}a_{1}^{l-1} + w_{i2}^{l}a_{2}^{l-1} + \ldots + b_{i}^{l} \\ & _{N_{l-1}}^{N_{l-1}} \\ & z_{i}^{l} = \sum_{j=1}^{N_{l-1}} w_{ij}^{l}a_{j}^{l-1} + b_{i}^{l} \end{aligned}$$

 z_i^ι

Γ. Τ

activation function input at each layer \rightarrow a vector

- a_i^l : output of a neuron a^l : output vector of a layer
- Z_i^l : input of activation function
- z^{l} : input vector of activation function for a layer

$$w_{ij}^l$$
 : a weight W^l : a weight matrix

on b_i^l : a bias n function b_i^l : a bias vector

48 Layer Output Relation: from *a* to *z*

 $a_i^l = \sigma(z_i^l)$ $\sigma(z_1')$ a_1^{i} $\sigma(z_2')$ a_2^{\prime} ٠ : = $\sigma(z_i^l)$ a_i' $a' = \sigma(z')$

Fully connected feedforward network $f: \mathbb{R}^N \to \mathbb{R}^M$

Fully connected feedforward network $f: \mathbb{R}^N \to \mathbb{R}^M$

53 Activation Function $\sigma(\cdot)$

Activation function	Equation	
Unit step (Heaviside)	$\phi(z) = \begin{cases} 0, & z < 0, \\ 0.5, & z = 0, \\ 1, & z > 0, \end{cases}$	
Sign (Signum)	$\phi(z) = \begin{cases} -1, & z < 0, \\ 0, & z = 0, \\ 1, & z > 0, \end{cases}$	
Linear	$\phi(z) = z$	

Piece-wise linear	$\phi(z) = \begin{cases} 1, & z \ge \frac{1}{2}, \\ z + \frac{1}{2}, & -\frac{1}{2} < z < \\ 0, & z \le -\frac{1}{2}, \end{cases}$
Logistic (sigmoid)	$\phi(z) = \frac{1}{1 + e^{-z}}$
Hyperbolic tangent	$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$

bounded function

54 Activation Function $\sigma(\cdot)$

Activation function	Equation	Example	1D Graph
Unit step (Heaviside)	$\phi(z) = \begin{cases} 0, & z < 0, \\ 0.5, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Sign (Signum)	$\phi(z) = \begin{cases} -1, & z < 0, \\ 0, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Linear	$\phi(z) = z$	Adaline, linear regression	
Piece-wise linear	$\phi(z) = \begin{cases} 1, & z \ge \frac{1}{2}, \\ z + \frac{1}{2}, & -\frac{1}{2} < z < \frac{1}{2}, \\ 0, & z \le -\frac{1}{2}, \end{cases}$	Support vector machine	
Logistic (sigmoid)	$\phi(z) = \frac{1}{1 + e^{-z}}$	Logistic regression, Multi-layer NN	
Hyperbolic tangent	$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$	Multi-layer NN	

boolean

linear

non - linear

Sigmoid sigmoid(x) =
$$\frac{1}{1 + e^{-1}}$$

Tanh $\tanh(x) = \frac{\sinh(x)}{\cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$

Rectified Linear Unit (ReLU)

 $\operatorname{ReLU}(x) = \max(x, 0)$

Non-linear functions are frequently used in neural networks

Function approximation *Without non-linearity*, deep n transform

$$W_1(W_2 \cdot x) =$$

With non-linearity, networks with more layers can approximate more complex functions

Without non-linearity, deep neural networks work the same as linear

$$(W_1W_2)x = Wx$$

What does the "good" function mean? Loss Function

$$y = f(x) = \sigma(W^L \cdots \sigma(W^2 \sigma(W^1 x + b^1) + b^2) \dots + b^L)$$

function set different parameters *W* and *b* \rightarrow different functions

model parameter set $f(x; \theta)$ $\theta = \{W^1, b^1, W$

pick a function f = pick a set of model parameters θ

$$V^2, b^2, \cdots W^L, b^L \Big\}$$

- Define a function to measure the quality of a parameter set θ • Evaluating by a loss/cost/error function $C(\theta) \rightarrow -$ how bad θ is
 - Best model parameter set

- Evaluating by an objective/reward function $O(\theta) \rightarrow \text{how good } \theta$ is Best model parameter set 0

$\theta^* = \arg \min_{\theta} C(\theta)$

$\theta^* = \arg \max_{\theta} O(\theta)$

sum over the error of all training samples

Frequent Loss Functions 61

https://www.analyticsvidhya.com/blog/2019/08/detailed-guide-7-loss-functions-machine-learning-python-code/

$$(y - f(x))^2$$

max $(0, 1 - y * f(x))$
 $-y * \log(p) - (1 - y) * \log(1 - p)$

$$L(X_i, Y_i) = -\sum_{j=1}^c y_{ij} * \log(p_{ij})$$

where Y_i is one – hot encoded target vector $(y_{i1}, y_{i2}, \dots, y_{ic})$,

$$\begin{split} y_{ij} &= \begin{cases} 1, & \text{if } i_{th} \text{ element is in class } j \\ 0, & \text{otherwise} \end{cases} \\ p_{ij} &= f(X_i) = \text{Probability that } i_{th} \text{ element is in class } j \end{split}$$

How can we pick the "best" function? Optimization

- Given a loss function and several model parameter sets Loss function: $C(\theta)$ 0
 - Model parameter sets: $\{\theta_1, \theta_2, \cdots\}$ 0

 \bigcirc Find a model parameter set that minimizes $C(\theta)$

How to solve this optimization problem?

 \bigcirc 1) Brute force – enumerate all possible θ • 2) Calculus – $\frac{\partial C(\theta)}{\partial C(\theta)} = 0$

Issue: whole space of $C(\theta)$ is unknown

θ^{i} : the model at the i-th iteration

Assume that θ has only one variable \bigcirc

Randomly start at θ^0 Compute $dC(\theta^0)/d\theta$: $\theta^1 \leftarrow \theta^0 - \eta \frac{\partial C(\theta^0)}{\partial \theta}$ Compute $dC(\theta^1)/d\theta$: $\theta^2 \leftarrow \theta^1 - \eta \frac{\partial C(\theta^1)}{\partial \theta}$

O Assume that θ has two variables $\{\theta_1, \theta_2\}$

- Randomly start at θ^0 : $\theta^0 = \begin{bmatrix} \theta_1^0 \\ \theta_2^0 \end{bmatrix}$
- Compute the gradients of $C(\theta)$ at θ^0 : $\nabla_{\theta} C(\theta^0) =$
- Update parameters:

$$\begin{bmatrix} \theta_1^1 \\ \theta_2^1 \end{bmatrix} = \begin{bmatrix} \theta_1^0 \\ \theta_2^0 \end{bmatrix} - \eta \begin{bmatrix} \frac{\partial C(\theta_1)}{\partial \theta_1} \\ \frac{\partial C(\theta_2)}{\partial \theta_2} \end{bmatrix}$$

$$\begin{bmatrix} \frac{\partial C(\theta_1^0)}{\partial \theta_1} \\ \frac{\partial C(\theta_2^0)}{\partial \theta_2} \end{bmatrix}$$

Algorithm Initialization: start at θ^{0} while($\theta^{(i+1)} \neq \theta^i$) compute gradient at θ^i update parameters $\theta^{i+1} \leftarrow \theta^i - \eta \nabla_\theta C(\theta^i)$

 θ_1

Fully connected feedforward netw \bigcirc

vork
$$f: \mathbb{R}^N \to \mathbb{R}^M$$

70 Gradient Descent for Neural Network

$$y = f(x) = \sigma(W^{L} \cdots \sigma(W^{2}))$$
$$\theta = \left\{ W^{1}, b^{1}, W^{2}, b^{2}, \cdots W^{L}, b^{L} \right\}$$
$$W^{l} = \begin{bmatrix} w_{11}^{l} & w_{12}^{l} & \cdots \\ w_{21}^{l} & w_{22}^{l} \\ \vdots & \ddots \end{bmatrix} b^{l} = \begin{bmatrix} \vdots \\ b_{i}^{l} \\ \vdots \end{bmatrix}$$
$$\nabla C(\theta) = \begin{bmatrix} \frac{\partial C(\theta)}{\partial w_{ij}^{l}} \\ \vdots \\ \frac{\partial C(\theta)}{\partial b_{i}^{l}} \end{bmatrix}$$

 $W^2 \sigma (W^1 x + b^1) + b^2) \dots + b^L$

```
 \begin{array}{l} \textbf{Algorithm} \\ \text{Initialization: start at } \theta^{0} \\ \text{while}(\theta^{(i+1)} \neq \theta^{i}) \\ \{ \\ \text{compute gradient at } \theta^{i} \\ \text{update parameters} \\ \theta^{i+1} \leftarrow \theta^{i} - \eta \nabla_{\theta} C(\theta^{i}) \\ \} \end{array}
```

Gradient Descent for Optimization Simple Case

$$y = f(x; \theta) = \sigma(Wx + b)$$

 $\theta = \{W, b\} = \{w_1, w_2, b\}$

Algorithm Initialization: start at θ^0 while($\theta^{(i+1)} \neq \theta^i$) { compute gradient at θ^i update parameters $\theta^{i+1} \leftarrow \theta^i - \eta \nabla_{\theta} C(\theta^i)$ }

$$\begin{bmatrix} w_1^i \\ w_2^i \\ b^i \end{bmatrix} - \eta \begin{bmatrix} \frac{\partial C(\theta)}{\partial w_1} \\ \frac{\partial C(\theta)}{\partial w_2} \\ \frac{\partial C(\theta)}{\partial b} \end{bmatrix}$$

Gradient Descent for Optimization Simple Case: Three Parameters and Square Error Loss 72

$$\begin{split} w_1^{(t+1)} &= w_1^{(t)} - \eta \frac{\partial C(\theta^{(t)})}{\partial w_1} \\ w_2^{(t+1)} &= w_2^{(t)} - \eta \frac{\partial C(\theta^{(t)})}{\partial w_2} \\ b^{(t+1)} &= b^{(t)} - \eta \frac{\partial C(\theta^{(t)})}{\partial b} \end{split}$$

$$C(\theta) = \sum_{\forall x} \|\hat{y} - f(x;\theta)\| = (\hat{y} - f(x;\theta))^2$$

$$\begin{aligned} \frac{\partial C(\theta)}{\partial w_1} &= \frac{\partial}{\partial w_1} (f(x;\theta) - \hat{y})^2 \\ &= 2(f(x;\theta) - \hat{y}) \frac{\partial}{\partial w_1} f(x;\theta) \\ &= 2(\sigma(Wx + b) - \hat{y}) \frac{\partial}{\partial w_1} \frac{\partial}{\partial$$

$f(x;\theta) = \sigma(Wx+b)$

 $;\theta)$

 $-\sigma(Wx+b)$

Gradient Descent for Optimization Simple Case: Square Error Loss 74

$$\frac{\partial \sigma(Wx+b)}{\partial w_1} = \frac{\partial \sigma(Wx+b)}{\partial(Wx+b)} \frac{\partial(Wx+b)}{\partial w_1}$$
$$\frac{\partial g}{\partial x} = \frac{\partial g}{\partial f} \frac{\partial f}{\partial x} \text{ chain rule } \frac{\partial g(z)}{\partial z} = [1-g(z)]g(z) \underset{g(z) = \frac{1}{1+e^{-x}}}{\text{sigmoid func}}$$
$$= [1-\sigma(Wx+b)]\sigma(Wx+b) \frac{\partial(Wx+b)}{\partial w_1}$$
$$\frac{\partial(Wx+b)}{\partial w_1} = \frac{\partial(w_1x_1+w_2x_2+b)}{\partial w_1} = x_1$$

$$\frac{\partial (Wx+b)}{\partial w_1} = \frac{\partial (w_1x_1+w_2x_2)}{\partial w_1}$$
$$\frac{\partial \sigma (Wx+b)}{\partial w_1} = [1-\sigma (Wx+b)]$$

 $b)]\sigma(Wx+b)x_1$

Gradient Descent for Optimization Simple Case: Square Error Loss 75

$$\frac{\partial C(\theta)}{\partial w_1} = \frac{\partial}{\partial w_1} (f(x;\theta) - \hat{y})^2
= 2(f(x;\theta) - \hat{y}) \frac{\partial}{\partial w_1} f(x;\theta) \qquad f(x;\theta) = \sigma(Wx + \theta)^2
= 2(\sigma(Wx + b) - \hat{y}) \frac{\partial}{\partial w_1} \sigma(Wx + b)^2
\frac{\partial \sigma(Wx + b)}{\partial w_1} = [1 - \sigma(Wx + b)]\sigma(Wx + b)x_1$$

Gradient Descent for Optimization Simple Case: Three Parameters and Square Error Loss 76

Update three parameters for *t*-th iteration

 $w_1^{(t+1)} = w_1^{(t)} - \eta \frac{\partial C(\theta^{(t)})}{\partial w_1}$ $\frac{\partial C(\theta)}{\partial w_1} = 2(\sigma(Wx+b) - \hat{y})[1 - \sigma(Wx+b)]$ $w_{2}^{(t+1)} = w_{2}^{(t)} - \eta \frac{\partial C(\theta^{(t)})}{\partial w_{2}}$ $\frac{\partial C(\theta)}{\partial w_{2}} = 2(\sigma(Wx+b) - \hat{y})[1 - \sigma(Wx+b)]\sigma(Wx+b)x_{2}$ $b^{(t+1)} = b^{(t)} - \eta \frac{\partial C(\theta^{(t)})}{\partial b}$ $\frac{\partial C(\theta)}{\partial b} = 2(\sigma(Wx+b) - \hat{y})[1 - \sigma(Wx+b)]$

$$[x+b)]\sigma(Wx+b)x_1$$

$$(x+b)]\sigma(Wx+b)$$

Gradient Descent for Neural Network

$$y = f(x) = \sigma(W^{L} \cdots \sigma(W^{2}\sigma(W^{1}x + b^{1}) + b^{2})... + b^{L})$$

$$\theta = \left\{W^{1}, b^{1}, W^{2}, b^{2}, \cdots W^{L}, b^{L}\right\}$$

$$W^{l} = \begin{bmatrix}w_{11}^{l} w_{12}^{l} \cdots \\ w_{21}^{l} w_{22}^{l} \\ \vdots & \cdots \end{bmatrix} b^{l} = \begin{bmatrix}\vdots \\ b_{i}^{l} \\ \vdots \end{bmatrix}$$

$$\psi^{l} = \begin{bmatrix}w_{11}^{l} w_{12}^{l} \cdots \\ w_{21}^{l} w_{22}^{l} \\ \vdots & \cdots \end{bmatrix} b^{l} = \begin{bmatrix}\vdots \\ b_{i}^{l} \\ \vdots \end{bmatrix}$$

$$\nabla C(\theta) = \begin{bmatrix}\frac{\partial}{\partial C(\theta)} \\ \frac{\partial C(\theta)}{\partial w_{ij}^{l}} \\ \vdots \\ \frac{\partial C(\theta)}{\partial b_{i}^{l}} \end{bmatrix}$$
Computing the gradient includes millions of parameters. To compute it efficiently, we use backpropagation.

78 Gradient Descent Issue

$$\begin{split} \theta^{i+1} &= \theta^i - \eta \nabla C(\theta^i) & \underset{\{(x_1, \hat{y}_1), (x_2, \hat{y}_2), \ldots\}}{\text{Training Data}} \\ C(\theta) &= \frac{1}{K} \sum_k \|f(x_k; \theta) - \hat{y}_k\| = \frac{1}{K} \sum_k C_k(\theta) \\ \nabla C(\theta^i) &= \frac{1}{K} \sum_k \nabla C_k(\theta^i) \end{split}$$

After seeing all training samples, the model can be updated \rightarrow slow

$$\theta^{i+1} = \theta^i - \eta \nabla C(\theta^i) \quad \nabla C(\theta^i) = \underbrace{\frac{1}{K} \sum_k \nabla C_k(\theta^i)}_{k}$$
Stochastic Gradient Descent (SGD)

S Pick a training sample x_k 0

$$\theta^{i+1} = \theta^i - \eta \nabla C_k(\theta^i)$$

If all training samples have same probability to be picked 0

$$E[\nabla C_k(\theta^i)] = \frac{1}{K} \sum_k \nabla C_k(\theta^i)$$

Training Data
$$\{(x_1, \hat{y}_1), (x_2, \hat{y}_2), ...\}$$

$$heta^i)$$

The model can be updated after seeing one training sample \rightarrow faster

When running SGD, the model starts θ^0 \bigcirc

pick
$$x_{I}$$
 $\theta^{1} = \theta^{0} - \eta \nabla C_{1}(\theta^{0})$
pick x_{2} $\theta^{2} = \theta^{1}_{1} - \eta \nabla C_{2}(\theta^{1})$
pick $\theta^{k} = \theta^{k-1} - \eta \nabla C_{k}(\theta^{k-1})$
 x_{k} : :
pick x_{K} $\theta^{K} = \theta^{K-1} - \eta \nabla C_{K}(\theta^{K-1})$
pick x_{I} $\theta^{K+1} = \theta^{K} - \eta \nabla C_{1}(\theta^{K})$
 \Rightarrow one epoch

Training Data
$$\{(x_1, \hat{y}_1), (x_2, \hat{y}_2), ...\}$$

Gradient Descent \bigcirc

Update after seeing all examples

Stochastic Gradient Descent If there are 20 examples, update 20 times in one epoch.

Use all K samples in each iteration

Stochastic Gradient Descent (SGE O Pick a training sample x_k

Use 1 samples in each iteration

Mini-Batch SGD • Pick a set of *B* training samples as a batch *b* • *B* is "batch size" $\rho^{i+1} - \rho^{i+1} - \rho^{$

Use all B samples in each iteration

$$\theta^{i+1} = \theta^i - \eta \frac{1}{K} \sum_k \nabla C_k(\theta^i)$$

)
$$\theta^{i+1} = \theta^i - \eta \nabla C_k(\theta^i)$$

$$\theta^{i+1} = \theta^i - \eta \frac{1}{B} \sum_{x_k \in b} \nabla C_k(\theta^i)$$

Require: Learning rate ϵ_k .

Require: Initial parameter $\boldsymbol{\theta}$

while stopping criterion not met do

corresponding targets $y^{(i)}$.

Compute gradient estimate: $\hat{\boldsymbol{g}} \leftarrow +\frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$

Apply update: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \epsilon \hat{\boldsymbol{g}}$

end while

Algorithm 8.1 Stochastic gradient descent (SGD) update at training iteration k

Sample a minibatch of m examples from the training set $\{x^{(1)}, \ldots, x^{(m)}\}$ with

Batch v.s. Mini-Batch 84 Handwriting Digit Classification

Stochastic Gradient Descent (SGD) \bigcirc

Mini-Batch SGD

Modern computers run matrix-matrix multiplication faster than matrix-vector multiplication

Big Issue: Local Optima

Neural networks has no guarantee for obtaining global optimal solution

http://karpathy.github.io/2019/04/25/recipe/ https://www.lri.fr/~gcharpia/deeppractice/2020/tips.pdf

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-deep-learning-tips-and-tricks#

89 Concluding Remarks

- Q1. What is the model?
- Q2. What does a "good" function mean?
- Q3. How do we pick the "best" function?

Computing Gradients by Backpropagation

Backpropagation

Recap: Notation Summary 91

- a_i^l : output of a neuron
- a^l : output vector of a layer
- Z_{i}^{l} : input of activation function
- : input vector of activation function for a layer Z^{l}

$$w_{ij}^l$$
 : a weight W^l : a weight matrix

b_i^l : a bias h^l : a bias vector

Recap: Layer Output Relation: from *a* to *z*

3 Layer Output Relation: from z to a

 $a_i^l = \sigma(z_i^l)$ $\sigma(z_1')$ a_1^{i} $\sigma(z_2')$ a_2^{\prime} ٠ : = $\sigma(z_i^l)$ a_i' $a' = \sigma(z')$

Fully connected feedforward network $f: \mathbb{R}^N \to \mathbb{R}^M$

Fully connected feedforward network $f: \mathbb{R}^N \to \mathbb{R}^M$

sum over the error of all training samples

98 Gradient Descent for Neural Network

$$\begin{split} y &= f(x) = \sigma(W^L \cdots \sigma(W^2 \sigma(W^1 x + b^1) + b^2) \dots + b^L) \\ \theta &= \left\{ W^1, b^1, W^2, b^2, \cdots W^L, b^L \right\} \\ W^l &= \begin{bmatrix} w_{11}^l & w_{12}^l & \cdots \\ w_{21}^l & w_{22}^l & \cdots \\ \vdots & \ddots \end{bmatrix} b^l = \begin{bmatrix} \vdots \\ b_i^l \\ \vdots \end{bmatrix} \\ b^l &= \begin{bmatrix} \vdots \\ \partial C(\theta) \\ \frac{\partial C(\theta)}{\partial b_i^l} \end{bmatrix} \\ \nabla C(\theta) &= \begin{bmatrix} \frac{\partial C(\theta)}{\partial w_{ij}^l} \\ \vdots \\ \frac{\partial C(\theta)}{\partial b_i^l} \end{bmatrix} \\ \end{split}$$

How to efficiently compute the gradients? Backpropagation

Forward v.s. Backpropagation

In a feedforward neural network

- forward propagation Ο

 - scalar cost $C(\theta)$
- back-propagation Ο
 - network, in order to compute the gradient
 - can be applied to any function

Why backward?

Reduce the redundant computations (same computation repreated for different parameters. e.g., w, b)

from input x to output y information flows forward through the network during training, forward propagation can continue onward until it produces a

allows the information from the cost to then flow backwards through the

Training in

progress...

 $\Delta w \to \Delta x \to \Delta y \to \Delta z$ $\frac{\partial z}{\partial w} = \frac{\partial z \,\partial y \,\partial x}{\partial y \,\partial x \,\partial w}$ = f'(y)f'(x)f'(w)= f'(f(f(w)))f'(f(w))f'(w)

$$y = f(x) = \sigma(W^{L} \cdots \sigma(W^{2}\sigma(W^{1}x + b^{1}) + b^{2})... + b^{L})$$

$$\theta = \left\{W^{1}, b^{1}, W^{2}, b^{2}, \cdots W^{L}, b^{L}\right\}$$

$$W^{l} = \begin{bmatrix}w_{11}^{l} w_{12}^{l} \cdots \\ w_{21}^{l} w_{22}^{l} \\ \vdots & \cdots \end{bmatrix} b^{l} = \begin{bmatrix}\vdots \\ b_{i}^{l} \\ \vdots \end{bmatrix}$$

$$\psi^{l} = \begin{bmatrix}w_{0}^{l} + w_{0}^{l} + w_{0}^{l} \\ w_{0}^{l} + w_{0}^{l} \\ \vdots \end{bmatrix}$$

$$\psi^{l} = \begin{bmatrix}w_{0}^{l} + w_{0}^{l} \\ w_{0}^{l} \\ \vdots \\ w_{0}^{l} \\ w_{0}^{l$$

 $\partial C(\theta) / \partial w_{ij}^l$

 $\partial z_i^l / \partial w_{ij}^l \ (l > 1)$

 $z^l = W^l a^{l-1} + b^l$ $z_i^l = \sum w_{ij}^l a_j^{l-1} + b_i^l$ $\frac{\partial z_i^l}{\partial w_{ij}^l} = a_j^{l-1}$

 $\partial z_i^l / \partial w_{ij}^l (l=1)$

 $z^1 = W^1 x + b^1$ $z_i^1 = \sum w_{ij}^1 x_j + b_i^1$ ∂z_i^1 $\frac{1}{\partial w_{ij}^1} = x_j$

 $\partial C(\theta) / \partial w_{ij}^l$

 $\frac{\partial z_i^l}{\partial w_{ij}^l} = \begin{cases} a_j^{l-1} \ , l > 1 \\ x_j \ , l = 1 \end{cases}$

 $\partial C(\theta) / \partial w_{ij}^l$

 $\partial C(\theta) / \partial z_i^l$

Idea: computing δ^l layer by layer (from δ^L to δ^1) is more efficient

 $\partial C(\theta) / \partial z_i^l = \delta_i^l$

Idea: from L to 1 \bigcirc 1 Initialization: compute δ^L 2 Compute δ^l based on δ^{l+1}

 $\partial C(\theta) / \partial z_i^l = \delta_i^l$

Idea: from L to 1 \bigcirc 1 Initialization: compute δ^{L} 2 Compute δ^l based on δ^{l+1}

$\partial C / \partial y_i$ depends on the loss function

 $\Delta z_i^L \to \Delta a_i^L = \Delta y_i \to \Delta C$

 $\partial C(\theta) / \partial z_i^l = \delta_i^l$

Idea: from L to 1 Initialization: compute δ^L Compute δ^l based on δ^{l+1}

 $\delta^L_i = \frac{\partial C}{\partial z^L_i}$ $\begin{aligned} \dot{z} &= \frac{\partial C}{\partial z_i^L} \qquad \Delta z_i^L \to \Delta a_i^L = \Delta y_i \to \Delta C \\ &= \frac{\partial C}{\partial y_i} \frac{\partial Q}{\partial z_i^L} = a_i^L = \sigma(z_i^L) \\ &= \frac{\partial C}{\partial y_i} \frac{\partial Q}{\partial z_i^L} = a_i^L = \sigma(z_i^L) \\ &= \sigma'(z_i^L) \\$ $= \frac{\partial C}{\partial y_i} \sigma'(z_i^L) \qquad \qquad \delta^L = \sigma'(z^L) \odot \nabla C(y)$

 $\partial C(\theta) / \partial z_i^l = \delta_i^l$

Idea: from L to 1 \bigcirc **1** Initialization: compute δ^L **2** Compute δ^l based on δ^{l+1}

 $\partial C(\theta) / \partial z_i^l = \delta_i^l$

• Idea: from L to 1 • Initialization: compute δ^L

Compute δ^l based on δ^{l+1}

$$a_i^l + b_k^{l+1}$$

 $\partial C(\theta) / \partial z_i^l = \delta_i^l$

Rethink the propagation

 $\partial C(\theta) / \partial z_i^l = \delta_i^l$

 $\delta_i^l = \sigma'(z_i) \sum w_{ki}^{l+1} \delta_k^{l+1}$ k $\sigma'(z^l) = \begin{vmatrix} \sigma'(z_1^l) \\ \sigma'(z_2^l) \\ \vdots \\ \sigma'(z_i^l) \end{vmatrix}$ $\delta^l = \sigma'(z^l) \odot (W^{l+1})^T \delta^{l+1}$

 $\partial C(\theta) / \partial z_i^l = \delta_i^l$

Idea: from L to 1 1 Initialization: compute δ^L 2 Compute δ^{l-1} based on δ^l

 $\delta^L = \sigma'(z^L) \odot \nabla C(y)$ $\delta^l = \sigma'(z^l) \odot (W^{l+1})^T \delta^{l+1}$

$$\frac{\partial z_i^l}{\partial w_{ij}^l} = \begin{cases} a_j^{l-1} , l > \\ x_j \\ x_j \\ l = \end{cases}$$

$$\frac{Forward Pass}{z^1 = W^1x + b^1} \quad a^1 = z^l = W^l a^{l-1} + b^l \quad a^l = w^l a^{l-1} + b^l \quad$$

θ ∂w^{ι}_{ij} ∂w_{ij}^{ι} ∂z_i^l

> 1 = 1

,z' σ

$$\frac{\partial C(\theta)}{\partial z_i^l} = \delta_i^l$$

$$\begin{array}{l} \underline{\textit{Backward Pass}}\\ \delta^L = \sigma'(z^L) \odot \nabla C(y)\\ \delta^{L-1} = \sigma'(z^{L-1}) \odot (W^L)\\ \vdots\\ \delta^l = \sigma'(z^l) \odot (W^{l+1})^{\prime}\\ \vdots\end{array}$$

Gradient Descent for Optimization

$$\begin{split} y &= f(x) = \sigma(W^L \cdots \sigma(W^2 \sigma(W^1 x + b^1) + b^2) \dots + b^L) \\ \theta &= \left\{ W^1, b^1, W^2, b^2, \cdots W^L, b^L \right\} \\ W^l &= \begin{bmatrix} w_{11}^l & w_{12}^l & \cdots \\ w_{21}^l & w_{22}^l \\ \vdots & \ddots \end{bmatrix} b^l = \begin{bmatrix} \vdots \\ b_i^l \\ \vdots \end{bmatrix} \\ b^l &= \begin{bmatrix} \vdots \\ \theta^{l+1} \leftarrow \theta^i - \eta \nabla_\theta C(\theta^i) \\ \theta^{l+1} \leftarrow \theta^i - \eta \nabla_\theta C(\theta^i) \end{bmatrix} \\ \nabla C(\theta) &= \begin{bmatrix} \vdots \\ \frac{\partial C(\theta)}{\partial b_i^l} \\ \vdots \\ \frac{\partial C(\theta)}{\partial b_i^l} \end{bmatrix} \end{split}$$

• Remember: our problem is we have too many partial derivatives to calculate for different w

Compute the gradient based on two pre-computed terms from backward and forward passes

- **Reading assignment 1:** Deep learning https://www.cs.toronto.edu/~hinton/absps/NatureDeepReview.pdf **Due date:** 23:59 pm, January 21th, 2021
- Recommended reading: Automatic Differentiation in Machine Learning: a Survey https://jmlr.org/papers/v18/17-468.html

• Next lecture: Recurrent Neural Networks and Language Modeling

Candidate course projects You can have your own proposal

Project 1: SQuAD Question Answering 124

- SQuAD competition: <u>https://rajpurkar.github.io/SQuAD-explorer/</u>
- Objectives
 - Get familiar with the question answering task in NLP;
 - Implement one or several QA models;
 - Test some novel ideas: e.g., data augmentation, model visualization and analysis, model compression, multi-task learning, knowledge augmentation, etc.
- We will review your work based on the idea, novelty, implementation and so on, not based on \bigcirc your rank on the leadboard.

Project 2: Question Generation 125

- Generating questions based on the input context with/without the answer
- The input can be multimodal, e.g., visual question generation
- Objectives
 - tasks;
 - Implement at least one QG method on a specific dataset;
 - etc.
- Reference papers include but not limited to the following:
 - http://www-labs.iro.umontreal.ca/~liubang/files/bliu-www20.pdf
 - http://www-labs.iro.umontreal.ca/~liubang/files/yCheng-acl21.pdf

• Investigate text generation and evaluation methods, with emphasize on question generation

Investigate how to improve the quality of questions, evaluation metrics, combine with QA,

Project 3: Event Causality Identification (ECI) 126

- two mentioned events.
- Reference papers:
 - event causal relation identification." Proc. NAACL 2019.
 - masking generalizations." Proc. IJCAI 2021.
 - Phu, Minh Tran, and Thien Huu Nguyen. "Graph Convolutional Networks for Event Causality Identification with Rich Document-level Structures." Proc. NAACL 2021.
- Datasets:
 - extraction." Proceedings of the Events and Stories in the News Workshop. 2017.
 - COLING 2016.

• Identifying causal relations of events in texts. For example, in a sentence: "The earthquake generates a **tsunami** that rose up to 135 feet", an ECI system should identify that a causal relationship holds between the

• Gao, Lei, Prafulla Kumar Choubey, and Ruihong Huang. "Modeling document-level causal structures for

• Liu, Jian, Yubo Chen, and Jun Zhao. "Knowledge enhanced event causality identification with mention

• EventStoryLine: "The event storyline corpus: A new benchmark for causal and temporal relation • Causal-Timebank: "Catena: Causal and temporal relation extraction from natural language texts."

127 Project 4: Story Forest

- Objectives:
 - that different components in it can be easily replaced with better ideas;
 - Apply it to a English news articles;
 - Visualize the results;
- Reference:
 - http://www-labs.iro.umontreal.ca/~liubang/files/bliu-tkdd20.pdf
 - https://github.com/BangLiu/StoryForest

• Story Forest System is originally implemented in Java and it aims to cluster documents into fine-grained events (a cluster of documents talking about the same event), and organize events by tree structure to track and visualize related events into stories (which called story tree).

• Reimplement the story forest system by Python: write modularized, well-organized code, so

• Try your own ideas in implementing the system, no need to follow the original paper.

Project 5: Text to Image Generation

- Generate image based on textual inputs.
- The input can be keywords, sentence descriptions, etc.
- The output can be realistic images, human faces, anime images, etc.
- Objective:
 - Survey a text-to-image task;
 - Implement a baseline published in recent years;
 - several images that forms a story), 3D image generation, etc.

• Test some novel ideas, e.g., controllable text-to-image generation, story generation (generate

- Music/poetry/novel/story generation
- Machine translation
- Chatbot
- Document understanding
- Electronic Health Records analysis
- Mental health prediction based on social media posts
- Visual question answering
- Embodied question answering

What you should do next 130

- website: https://nlpprogress.com/, and so on.
- existing method? Design a new task/dataset/model? Take part in a competition? etc.
- instruction.
- Write your proposal with your team.
 - Can come and discuss with me during the office hours

• Find a topic you are interested in: what we have proposed, your own proposal, tasks on this

• Define your objective: re-implement an existing but not open-sourced algorithm? Improving an

• Choose one of a few most related articles to read, and form your baselines (can be changed after proposal). Determine your dataset, evaluation criteria, etc. You can read the proposal

Thanks! Q&A

Bang Liu Email: <u>bang.liu@umontreal.ca</u> **Github:** <u>https://github.com/BangLiu/</u>

recherche appliquée en linguistique informatique

Homepage: <u>http://www-labs.iro.umontreal.ca/~liubang/</u>

