
Natural Language Processing
with Deep Learning

IFT6289, Winter 2022

Lecture 4: Word Meaning and Word Embedding
Bang Liu

Lecture outline2

1. Represent the Meaning of a Word
2. Word Embeddings: Word2Vec and GloVe
3. Word Vector Evaluation

Certain Slides Adapted From or Referred To…

๏ Stanford CS224n - Natural Language Processing with Deep Learning, Chris Manning
• Winter 2020: http://web.stanford.edu/class/cs224n/, lecture 1, 2

๏ NTU S-108 Applied Deep Learning, Yun-Nung (Vivian) Chen
• Spring 2020: https://www.csie.ntu.edu.tw/~miulab/s108-adl/syllabus, lecture 3, 5

๏ http://jalammar.github.io/illustrated-word2vec/

๏ https://ruder.io/word-embeddings-softmax/

3

http://web.stanford.edu/class/cs224n/
https://www.csie.ntu.edu.tw/~miulab/s108-adl/syllabus
http://jalammar.github.io/illustrated-word2vec/
https://ruder.io/word-embeddings-softmax/

Represent the
Meaning of a Word

Meaning Representations

๏ Definition of “Meaning”
• the idea that is represented by a word, phrase, etc.
• the idea that a person wants to express by using words, signs, etc.
• the idea that is expressed in a work of writing, art, etc.

5

Meaning Representations in Computers6

 Knowledge-Based Representation Corpus-Based Representation

Knowledge-Based Representations

๏ Hypernyms (is-a) relationships of WordNet

7

 Issues:
 ▪ newly-invented words
 ▪ subjective
 ▪ annotation effort
 ▪ difficult to compute word similarity

Corpus-Based Representations

๏ Atomic symbols: one-hot representation

8

Idea: words with
similar meanings
often have similar
neighbors

Issues: difficult to
compute the similarity
(i.e. comparing “car”
and “motorcycle”)

motorcycle [0 0 1 0 0 0 0 0 0 … 0]

 car [0 0 0 0 0 0 1 0 0 … 0]

Corpus-Based Representations

๏ Neighbor-based representation
• Co-occurrence matrix constructed via neighbors
• Neighbor definition: full document v.s. windows

9

full document
 word-document co-occurrence matrix gives general topics

 → “Latent Semantic Analysis”

windows
 context window for each word

 → capture syntactic (e.g. POS) and semantic information

Window-Based Co-occurrence Matrix

ᶉ Example
o Window length=1

o Left or right context

o Corpus:

9

I love AI.
I love deep learning.
I enjoy learning.

Counts I love enjoy AI deep learning

I 0 2 1 0 0 0
love 2 0 0 1 1 0

enjoy 1 0 0 0 0 1
AI 0 1 0 0 0 0

deep 0 1 0 0 0 1
learning 0 0 1 0 1 0

similarity > 0

Issues:
ඵ matrix size increases with vocabulary
ඵ high dimensional
ඵ sparsity Æ poor robustness

Idea: low dimensional word vector

Window-Based Co-occurrence Matrix10

Low-Dimensional Dense Word Vector

๏ Method 1: dimension reduction on the matrix

๏ Singular Value Decomposition (SVD) of co-occurrence matrix X

11

Low-Dimensional Dense Word Vector

๏ Method 1: dimension reduction on the matrix

๏ Singular Value Decomposition (SVD) of co-occurrence matrix X

12

 Issues:
 ▪ computationally expensive:
 when n<m for matrix
 ▪ difficult to add new words

O(mn2) n × m

Idea: directly learn low-dimensional word
vectors

 semantic relations syntactic relations

Low-Dimensional Dense Word Vector

๏ Method 2: directly learn low-dimensional word vectors
• Learning representations by back-propagation. (Rumelhart et al., 1986)
• A neural probabilistic language model (Bengio et al., 2003)
• NLP (almost) from Scratch (Collobert & Weston, 2008)
• Most popular models: word2vec (Mikolov et al. 2013) and Glove (Pennington et al., 2014)

(as known as “Word Embeddings ”)

13

Word Embedding

What are you like?
Personality Embedding

Big Five Personality Trait Test

๏ On a scale of 0 to 100, how introverted/extraverted are you (where 0 is the most introverted,
and 100 is the most extraverted)?

16

Example of the result of a Big Five Personality Trait test. It can really tell you a lot about yourself
and is shown to have predictive ability in academic, personal, and professional success.

http://psychology.okstate.edu/faculty/jgrice/psyc4333/FiveFactor_GPAPaper.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1744-6570.1999.tb00174.x
https://www.massgeneral.org/psychiatry/assets/published_papers/soldz-1999.pdf

Which Person is More Similar?

๏ Let’s switch the range to be from -1 to 1. Say Jay get hit by a bus and Jay need to be replaced
by someone with a similar personality. In the following figure, which of the two people is more
similar to Jay?

17

http://jalammar.github.io/illustrated-word2vec/

Which Person is More Similar?

๏ Let’s use all five dimensions in our comparison. Which of the two people is more similar to
Jay?

18

http://jalammar.github.io/illustrated-word2vec/

Central Idea: Represent Things by Vectors19

http://jalammar.github.io/illustrated-word2vec/

Words can also be
Represented by Vectors:

Word Embedding

Word Embedding21

http://jalammar.github.io/illustrated-word2vec/

[0.50451 , 0.68607 , -0.59517 , -0.022801, 0.60046 ,
 -0.13498 , -0.08813 , 0.47377 , -0.61798 , -0.31012 ,
 -0.076666, 1.493 , -0.034189, -0.98173 , 0.68229 ,
 0.81722 , -0.51874 , -0.31503 , -0.55809 , 0.66421 ,
 0.1961 , -0.13495 , -0.11476 , -0.30344 , 0.41177 ,
 -2.223 , -1.0756 , -1.0783 , -0.34354 , 0.33505 ,
 1.9927 , -0.04234 , -0.64319 , 0.71125 , 0.49159 ,
 0.16754 , 0.34344 , -0.25663 , -0.8523 , 0.1661 ,
 0.40102 , 1.1685 , -1.0137 , -0.21585 , -0.15155 ,
 0.78321 , -0.91241 , -1.6106 , -0.64426 , -0.51042]

This is a word embedding for the word “king” (GloVe vector trained on Wikipedia).

“King”

Visualize Word Embedding

๏ Let’s color code the cells based on their values (red if they’re close to 2, white if they’re close
to 0, blue if they’re close to -2)

22

http://jalammar.github.io/illustrated-word2vec/

[0.50451 , 0.68607 , -0.59517 , -0.022801, 0.60046 ,
 -0.13498 , -0.08813 , 0.47377 , -0.61798 , -0.31012 ,
 -0.076666, 1.493 , -0.034189, -0.98173 , 0.68229 ,
 0.81722 , -0.51874 , -0.31503 , -0.55809 , 0.66421 ,
 0.1961 , -0.13495 , -0.11476 , -0.30344 , 0.41177 ,
 -2.223 , -1.0756 , -1.0783 , -0.34354 , 0.33505 ,
 1.9927 , -0.04234 , -0.64319 , 0.71125 , 0.49159 ,
 0.16754 , 0.34344 , -0.25663 , -0.8523 , 0.1661 ,
 0.40102 , 1.1685 , -1.0137 , -0.21585 , -0.15155 ,
 0.78321 , -0.91241 , -1.6106 , -0.64426 , -0.51042]

“King”

Compare Word Embeddings

๏ A list of examples (compare by vertically scanning the columns looking for columns with
similar colors).

23

http://jalammar.github.io/illustrated-word2vec/

Compare Word Embeddings24

http://jalammar.github.io/illustrated-word2vec/

These words are similar along
this dimension (and we don’t
know what each dimensions
codes for).

Compare Word Embeddings25

http://jalammar.github.io/illustrated-word2vec/

“woman” and
“girl” are similar to
each other in a lot
of places. The
same with “man”
and “boy”.

Compare Word Embeddings26

http://jalammar.github.io/illustrated-word2vec/

“boy” and “girl”
also have places
where they are
similar to each
other, but different
from “woman” or
“man”. Could
these be coding for
a vague
conception of
youth? possible.

Compare Word Embeddings27

http://jalammar.github.io/illustrated-word2vec/

This column goes all the way
down and stops before the
embedding for “water”.

Different category!

Compare Word Embeddings28

There are clear
places where
“king” and
“queen” are similar
to each other and
distinct from all the
others. Could
these be coding for
a vague concept of
royalty?

http://jalammar.github.io/illustrated-word2vec/

Compare Word Embeddings29

http://jalammar.github.io/illustrated-word2vec/

The resulting vector from "king-man+woman" doesn't exactly equal "queen", but
"queen" is the closest word to it from the 400,000 word embeddings we have in
this collection.

Compare Word Embeddings30

http://jalammar.github.io/illustrated-word2vec/

Using the Gensim library in python, we can add and subtract word vectors, and it
would find the most similar words to the resulting vector. The image shows a list
of the most similar words with “king+woman-man”, each with its cosine similarity.

How to Train Word Embeddings?
Recall Language Modeling

Recall Language Modeling

๏ A language model can take a list of words (let’s say two words), and attempt to predict the
word that follows them.

32

http://jalammar.github.io/illustrated-word2vec/

Recall Language Modeling

๏ A language model actually outputs a probability score for all the words it knows (the model’s
“vocabulary”）

33

http://jalammar.github.io/illustrated-word2vec/

Recall Language Modeling

๏ After being trained, early neural language models (Bengio 2003) would calculate a prediction
in three steps:

34

http://jalammar.github.io/illustrated-word2vec/

Recall Language Modeling

๏ In the first step, we get a matrix that contains an embedding for each word in our
vocabulary.

35

http://jalammar.github.io/illustrated-word2vec/

Language Model Training

๏ Words get their embeddings by looking at which other words they tend to appear next to.
1. We get a lot of text data (say, all Wikipedia articles, for example).
2. We have a window (say, of three words) that we slide against all of that text.
3. The sliding window generates training samples for our model

36

http://jalammar.github.io/illustrated-word2vec/

37
http://jalammar.github.io/illustrated-word2vec/

We take the first two words to be features, and
the third word to be a label:

We then slide our window to the next position
and create a second sample:

And pretty soon we have a larger dataset of
which words tend to appear after different
pairs of words:

From Language Modeling to
Word Embedding:
Look Both Ways

Language Model Training39

“bus”

http://jalammar.github.io/illustrated-word2vec/

Look Both Ways40

“bus”

?

Word2Vec: CBOW and Skip-gram 41

(Mikolov et.al 2013) Efficient Estimation of Word Representations in Vector Space

CBOW: Continuous Bag of Words

๏ Instead of only looking at words before the target word, we can also look at words after it.

42

http://jalammar.github.io/illustrated-word2vec/

“You shall know a word by the company it keeps” — J.R. Firth

Build training dataset

Skip-gram

๏ Instead of guessing a word based on its context (the words before and after it), this other
architecture tries to guess neighboring words using the current word.

43

http://jalammar.github.io/illustrated-word2vec/

The word in the green slot would be the input word, each pink box would be a
possible output. The pink boxes are in different shades because this sliding
window actually creates four separate samples in our training dataset.

Skip-gram44

http://jalammar.github.io/illustrated-word2vec/

By sliding our window to the next positions, a couple of positions later, we will
have a lot more training examples.

45
http://jalammar.github.io/illustrated-word2vec/

Step 1: grab a example from the
dataset. Feed it into an untrained
model asking it to predict an
appropriate neighbour word.

Step 2: The model conducts the
three steps and outputs a
prediction vector (with a
probability assigned to each word
in its vocabulary)

Step 3: This error vector can now be used to
update the model so the next time, it’s a little more
likely to guess thou when it gets not as input.

Step 4: We proceed to do the same process with the
next sample in our dataset, and then the next, until
we’ve covered all the samples in the dataset.

It’s still not how word2vec is
actually trained. We’re missing a

couple of key ideas.

Negative Sampling

๏ The third step is very expensive from a computational point of view. How to improve the
performance?

47

http://jalammar.github.io/illustrated-word2vec/

Negative Sampling

๏ One way is to split our target into two steps:
1. Generate high-quality word embeddings (Don’t worry about next-word prediction);
2. Use these high-quality embeddings to train a language model (to do next-word prediction).

48

http://jalammar.github.io/illustrated-word2vec/

To generate high-quality
embeddings using a high-
performance model, we can
switch the model’s task from
predicting a neighboring word
to takes the input and output
word, and outputs a score
indicating if they’re neighbors
or not (0 for “not neighbors”, 1 for
“neighbors”).

much simpler
and much faster
to calculate

Negative Sampling

๏ Switch the structure of our dataset

49

http://jalammar.github.io/illustrated-word2vec/

Negative Sampling50

http://jalammar.github.io/illustrated-word2vec/

No negative
sample

So a smartass model that
always returns 1 – achieving
100% accuracy, but learning
nothing and generating
garbage embeddings.

Skip-gram with Negative Sampling

๏ Randomly selected words that are not neighbors from the vocabulary to get negative examples.

51

http://jalammar.github.io/illustrated-word2vec/

Hierarchical Softmax

๏ Another way to accelerate model training is H-Softmax.

๏ Idea: compute the probability of leaf nodes using the paths

52

 Mikolov et al., “Distributed representations of words and phrases and their compositionality,” in NIPS, 2013.

<latexit sha1_base64="sbT+ckRYf34qF+pTl8N9+SCkXUA=">AAACB3icbVDLSsNAFJ3UV62vqEtBBotQNyURRZdFN+5awT6gCWUynaRDJ5kwM1FK2p0bf8WNC0Xc+gvu/BsnbRbaeuDC4Zx7ufceL2ZUKsv6NgpLyyura8X10sbm1vaOubvXkjwRmDQxZ1x0PCQJoxFpKqoY6cSCoNBjpO0NrzO/fU+EpDy6U6OYuCEKIupTjJSWeuZhvTJujU+gI2gwUEgI/gDrFYfxAGZ6zyxbVWsKuEjsnJRBjkbP/HL6HCchiRRmSMqubcXKTZFQFDMyKTmJJDHCQxSQrqYRCol00+kfE3islT70udAVKThVf0+kKJRyFHq6M0RqIOe9TPzP6ybKv3RTGsWJIhGeLfITBhWHWSiwTwXBio00QVhQfSvEAyQQVjq6kg7Bnn95kbROq/Z51bo9K9eu8jiK4AAcgQqwwQWogRvQAE2AwSN4Bq/gzXgyXox342PWWjDymX3wB8bnD12amFo=</latexit>

O(|V |) ! O(log |V |)

Hierarchical Softmax

๏ Idea: compute the probability of leaf nodes
using the paths

๏ Obviously, the structure of the tree is of
significance. Mikolov et al. (2013) utilized A
Huffman tree for their hierarchical softmax,
(generates such a coding by assigning fewer
bits to more common symbols.)

๏ Notably, we are only able to obtain this
speed-up during training, when we know
the word we want to predict (and
consequently its path) in advance. During
testing, when we need to find the most likely
prediction, we still need to calculate the
probability of all words, although narrowing
down the choices in advance helps here.

53

 Mikolov et al., “Distributed representations of words and phrases and their compositionality,” in NIPS, 2013.

Word2Vec Training Process

Model initialization

๏ At the start of the training phase, we create two matrices – an Embedding matrix and
a Context matrix. These two matrices have an embedding for each word in our vocabulary. We
initialize these matrices with random values. (Why two vectors? Easier optimization.)

55

http://jalammar.github.io/illustrated-word2vec/

Feed Data

๏ For the input word, we look in the Embedding matrix. For the context words, we look in the
Context matrix

56

http://jalammar.github.io/illustrated-word2vec/

Forward Propagation
๏ Take the dot product of the input embedding with each of the context embeddings.
๏ Calculate probability by Sigmoid().
๏ Calculate error.

57

error = target - sigmoid_scores

Back-propagation58

๏ We can now use this error score to adjust the embeddings of not, thou, aaron, and taco so that
the next time we make this calculation, the result would be closer to the target scores.

http://jalammar.github.io/illustrated-word2vec/

error = target - sigmoid_scores

Proceed to Next Batch

๏ Then we proceed to our next step (the next positive sample and its associated negative samples)
and do the same process again.

59

http://jalammar.github.io/illustrated-word2vec/

Glove

Comparison61 Comparison

ᶉ Count-based
o LSA, HAL (Lund & Burgess), COALS (Rohde et

al), Hellinger-PCA (Lebret & Collobert)

o Pros
9 Fast training
9 Efficient usage of statistics

o Cons
9 Primarily used to capture word

similarity
9 Disproportionate importance given to

large counts

ᶉ Direct prediction
o NNLM, HLBL, RNN, Skipgram/CBOW

(Bengio et al; Collobert & Weston; Huang et al; Mnih &
Hinton; Mikolov et al; Mnih & Kavukcuoglu)

o Pros
9 Generate improved performance on

other tasks
9 Capture complex patterns beyond

word similarity

o Cons
9 Benefits mainly from large corpus
9 Inefficient usage of statistics

Combining the benefits from both worlds Æ GloVe

38

GloVe62 GloVe

ᶉ Idea: ratio of co-occurrence probability can encode meaning
ᶉ Pij is the probability that word wj appears in the context of word wi

ᶉ Relationship between the words wi and wj

x = solid x = gas x = water x = fashion
P(x | ice) ͳǤͻ ൈ ͳͲିସ ͸Ǥ͸ ൈ ͳͲିହ ͵ǤͲ ൈ ͳͲିଷ ͳǤ͹ ൈ ͳͲିହ

P(x | stream) ʹǤʹ ൈ ͳͲିହ ͹Ǥͺ ൈ ͳͲିସ ʹǤʹ ൈ ͳͲିଷ ͳǤͺ ൈ ͳͲିହ

3 [_ LFH
3 [_ VWUHDP

ͺǤͻ ͺǤͷ ൈ ͳͲିଶ ͳǤ͵͸ ͲǤͻ͸

x = solid x = gas x = water x = random
P(x | ice) large small large small
P(x | stream) small large large small
3 [_ LFH

3 [_ VWUHDP
large small ~ 1 ~ 1

3HQQLQJWRQ�HW�DO���´GloVe��*OREDO�9HFWRUV�IRU�:RUG�5HSUHVHQWDWLRQ�´�LQ�(01/3�������

39

Pennington et al., ”GloVe: Global Vectors for
Word Representation,” in EMNLP, 2014.

GloVe

ᶉ Idea: ratio of co-occurrence probability can encode meaning
ᶉ Pij is the probability that word wj appears in the context of word wi

ᶉ Relationship between the words wi and wj

x = solid x = gas x = water x = fashion
P(x | ice) ͳǤͻ ൈ ͳͲିସ ͸Ǥ͸ ൈ ͳͲିହ ͵ǤͲ ൈ ͳͲିଷ ͳǤ͹ ൈ ͳͲିହ

P(x | stream) ʹǤʹ ൈ ͳͲିହ ͹Ǥͺ ൈ ͳͲିସ ʹǤʹ ൈ ͳͲିଷ ͳǤͺ ൈ ͳͲିହ

3 [_ LFH
3 [_ VWUHDP

ͺǤͻ ͺǤͷ ൈ ͳͲିଶ ͳǤ͵͸ ͲǤͻ͸

x = solid x = gas x = water x = random
P(x | ice) large small large small
P(x | stream) small large large small
3 [_ LFH

3 [_ VWUHDP
large small ~ 1 ~ 1

3HQQLQJWRQ�HW�DO���´GloVe��*OREDO�9HFWRUV�IRU�:RUG�5HSUHVHQWDWLRQ�´�LQ�(01/3�������

39

Pennington et al., ”GloVe: Global Vectors for
Word Representation,” in EMNLP, 2014.

large

small

small small

smalllarge

large

large

large small ~=1 ~=1

GloVe63

GloVe64 GloVe

ᶉ The relationship of wi and wj approximates the ratio of their co-occurrence
probabilities with various wk

3HQQLQJWRQ�HW�DO���´GloVe��*OREDO�9HFWRUV�IRU�:RUG�5HSUHVHQWDWLRQ�´�LQ�(01/3�������

40

Pennington et al., ”GloVe: Global Vectors for
Word Representation,” in EMNLP, 2014.

GloVe65 GloVe

3HQQLQJWRQ�HW�DO���´GloVe��*OREDO�9HFWRUV�IRU�:RUG�5HSUHVHQWDWLRQ�´�LQ�(01/3�������

41

Pennington et al., ”GloVe: Global Vectors for
Word Representation,” in EMNLP, 2014.

1.As P(wj|wi) = Xij/Xi, we get first
equation

2. In neural networks, we have some bias
terms. we can merge the constant
log(Xi) with the learnable bias term bi,
so that we get the second equation

3.So our Cost function to learn word
vectors are the third equation

4. If we take bias terms into account, we
get the forth equation.

5.Note we weight the cost by taking the
frequency of co-occurrence into
account. The weight is some function
over the co-occurrence frequency Xij
or Pij.

GloVe – Weighted Least Squares Regression66 GloVe ± Weighted Least Squares Regression Model

ᶉ Weighting function should obey
o
o should be non-decreasing so that rare co-occurrences are not overweighted

o should be relatively small for large values of ݔ, so that frequent co-occurrences are not overweighted

fast training, scalable, good performance even with small corpus, and small vectors
3HQQLQJWRQ�HW�DO���´GloVe��*OREDO�9HFWRUV�IRU�:RUG�5HSUHVHQWDWLRQ�´�LQ�(01/3�������

42

Pennington et al., ”GloVe: Global Vectors for
Word Representation,” in EMNLP, 2014.

GloVe Results67 GloVe results

1. frogs
2. toad
3. litoria
4. leptodactylidae
5. rana
6. lizard
7. eleutherodactylus

litoria leptodactylidae

rana eleutherodactylus

Nearest words to
frog:

31

Word Vector
Evaluation

Intrinsic Evaluation – Word Analogies69 Intrinsic Evaluation ± Word Analogies

ᶉ Word linear relationship

ᶉ Syntactic and Semantic example questions [link]

44

Issue: what if the information is there but not linear

Intrinsic Evaluation – Word Analogies70 Intrinsic Evaluation ± Word Analogies

ᶉ Word linear relationship
ᶉ Syntactic and Semantic example questions [link]

45

Issue: different cities may have
same name

city---in---state
Chicago : Illinois = Houston : Texas
Chicago : Illinois = Philadelphia : Pennsylvania
Chicago : Illinois = Phoenix : Arizona
Chicago : Illinois = Dallas : Texas
Chicago : Illinois = Jacksonville : Florida
Chicago : Illinois = Indianapolis : Indiana
Chicago : Illinois = Aus8n : Texas
Chicago : Illinois = Detroit : Michigan
Chicago : Illinois = Memphis : Tennessee
Chicago : Illinois = Boston : Massachusetts

Issue: can change with time

capital---country
Abuja : Nigeria = Accra : Ghana
Abuja : Nigeria = Algiers : Algeria
Abuja : Nigeria = Amman : Jordan
Abuja : Nigeria = Ankara : Turkey
Abuja : Nigeria = Antananarivo : Madagascar
Abuja : Nigeria = Apia : Samoa
Abuja : Nigeria = Ashgabat : Turkmenistan
Abuja : Nigeria = Asmara : Eritrea
Abuja : Nigeria = Astana : Kazakhstan

Intrinsic Evaluation – Word Analogies71 Intrinsic Evaluation ± Word Analogies

ᶉ Word linear relationship
ᶉ Syntactic and Semantic example questions [link]

46

superlative
bad : worst = big : biggest
bad : worst = bright : brightest
bad : worst = cold : coldest
bad : worst = cool : coolest
bad : worst = dark : darkest
bad : worst = easy : easiest
bad : worst = fast : fastest
bad : worst = good : best
bad : worst = great : greatest

past tense
dancing : danced = decreasing : decreased
dancing : danced = describing : described
dancing : danced = enhancing : enhanced
dancing : danced = falling : fell
dancing : danced = feeding : fed
dancing : danced = flying : flew
dancing : danced = generating : generated
dancing : danced = going : went
dancing : danced = hiding : hid
dancing : danced = hiding : hit

Intrinsic Evaluation – Word Correlation72 Intrinsic Evaluation ± Word Correlation

ᶉ Comparing word correlation with human-judged scores
ᶉ Human-judged word correlation [link]

47

Word 1 Word 2 Human-Judged Score
tiger cat 7.35
tiger tiger 10.00
book paper 7.46

computer internet 7.58
plane car 5.77

professor doctor 6.62
stock phone 1.62

Ambiguity: synonym or same word with different POSs

Extrinsic Evaluation – Subsequent Task73

If two word vectors are similar, they may share the same NER tag or sentiment information.

Extrinsic Evaluation ± Subsequent Task

ᶉ Goal: use word vectors in neural net models built for subsequent tasks
ᶉ Benefit

ż Ability to also classify words accurately
Ŷ Ex. countries cluster together a classifying location words should be possible with

word vectors
ż Incorporate any information into them other tasks

Ŷ Ex. project sentiment into words to find most positive/negative words in corpus

48

Todo

๏ Reading assignment 2: (due date: February 1st, 2022 11:59 pm EST timezone)
• Distributed Representations of Words and Phrases and their Compositionality (negative sampling paper)

https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf

๏ Suggested readings:
• Efficient Estimation of Word Representations in Vector Space (original word2vec paper)
• GloVe: Global Vectors for Word Representation (original GloVe paper)
• Improving Distributional Similarity with Lessons Learned from Word Embeddings
• Evaluation methods for unsupervised word embeddings
• A Latent Variable Model Approach to PMI-based Word Embeddings
• Linear Algebraic Structure of Word Senses, with Applications to Polysemy
• On the Dimensionality of Word Embedding

Next lecture: Sentence Representation & Text Classification

74

https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf

Thanks! Q&A
Bang Liu 
Email: bang.liu@umontreal.ca
Homepage: http://www-labs.iro.umontreal.ca/~liubang/

mailto:bang.liu@umontreal.ca
http://www-labs.iro.umontreal.ca/~liubang/

