Natural Language Processing with Deep Learning IFT6289, Winter 2022

Lecture 4: Word Meaning and Word Embedding Bang Liu

(2) Lecture outline

1. Represent the Meaning of a Word
2. Word Embeddings: Word2Vec and GloVe
3. Word Vector Evaluation

(3) Certain Slides Adapted From or Referred To...

- Stanford CS224n - Natural Language Processing with Deep Learning, Chris Manning
- Winter 2020: http://web.stanford.edu/class/cs224n/, lecture 1,2
- NTU S-108 Applied Deep Learning, Yun-Nung (Vivian) Chen
- Spring 2020: https://www.csie.ntu.edu.tw/~miulab/s108-adl/syllabus, lecture 3, 5
- http://jalammar.github.io/illustrated-word2vec/
- https://ruder.io/word-embeddings-softmax/

Represent the Meaning of a Word

(5) Meaning Representations

- Definition of "Meaning"
- the idea that is represented by a word, phrase, etc.
- the idea that a person wants to express by using words, signs, etc.
- the idea that is expressed in a work of writing, art, etc.

© Meaning Representations in Computers

Knowledge-Based Representation

Corpus-Based Representation

(7) Knowledge-Based Representations

© Hypernyms (is-a) relationships of WordNet

```
from nltk.corpus import wordnet as wn
panda = wn.synset('panda.n.01')
hyper = lambda s: s.hypernyms()
list(panda.closure(hyper))
```

[Synset('procyonid.n.01'),
Synset('carnivore.n.01'),
Synset('placental.n.01'),
Synset('mammal.n.01'),
Synset('vertebrate.n.01'),
Synset('chordate.n.01'),
Synset('animal.n.01'),
Synset('organism.n.01'),
Synset('living_thing.n.01'),
Synset('whole.n.02'),
Synset('object.n.01'),
Synset('physical_entity.n.01'),
Synset('entity.n.01')]

Issues:

- newly-invented words
- subjective
- annotation effort
- difficult to compute word similarity

(8) Corpus-Based Representations

- Atomic symbols: one-hot representation

$$
\begin{aligned}
& \text { car [000000100 ... 0] } \\
& \text { motorcycle [001000000 ... 0] }
\end{aligned}
$$

Issues: difficult to compute the similarity (i.e. comparing "car" and "motorcycle")

Idea: words with similar meanings often have similar neighbors

- Corpus-Based Representations

- Neighbor-based representation
- Co-occurrence matrix constructed via neighbors
- Neighbor definition: full document v.s. windows

full document

word-document co-occurrence matrix gives general topics
\rightarrow "Latent Semantic Analysis"

windows

context window for each word
\rightarrow capture syntactic (e.g. POS) and semantic information
(10) Window-Based Co-occurrence Matrix

O Example

- Window length=1
- Left or right context
- Corpus: I love AI.

I love deep learning.
I enjoy learning.
similarity >0

Counts	I	love	enjoy	Al	deep	learning
I	0	2	1	0	0	0
love	2	0	0	1	1	0
enjoy	1	0	0	0	0	1
AI	0	1	0	0	0	0
deep	0	1	0	0	0	1
learning	0	0	1	0	1	0

Issues:

- matrix size increases with vocabulary
- high dimensional
- sparsity \rightarrow poor robustness

Idea: low dimensional word vector

(11) Low-Dimensional Dense Word Vector

- Method 1: dimension reduction on the matrix
- Singular Value Decomposition (SVD) of co-occurrence matrix X

(1) Low-Dimensional Dense Word Vector

- Method 1: dimension reduction on the matrix
- Singular Value Decomposition (SVD) of co-occurrence matrix X

semantic relations

(13) Low-Dimensional Dense Word Vector

- Method 2: directly learn low-dimensional word vectors
- Learning representations by back-propagation. (Rumelhart et al., 1986)
- A neural probabilistic language model (Bengio et al., 2003)
- NLP (almost) from Scratch (Collobert \& Weston, 2008)
- Most popular models: word2vec (Mikolov et al. 2013) and Glove (Pennington et al., 2014) (as known as "Word Embeddings ")

Word Embedding

What are you like? Personality Embedding

(16) Big Five Personality Trait Test

- On a scale of 0 to 100 , how introverted/extraverted are you (where 0 is the most introverted, and 100 is the most extraverted)?

Example of the result of a Big Five Personality Trait test. It can really tell you a lot about yourself and is shown to have predictive ability in academic, personal, and professional success.

(17) Which Person is More Similar?

- Let's switch the range to be from -1 to 1 . Say Jay get hit by a bus and Jay need to be replaced by someone with a similar personality. In the following figure, which of the two people is more similar to Jay?

Introversion

(18) Which Person is More Similar?

- Let's use all five dimensions in our comparison. Which of the two people is more similar to Jay?

\[

\]

(10) Central Idea: Represent Things by Vectors

1- We can represent things (and people) as vectors of numbers
(Which is great for machines!)

Jay -0.4	0.8	0.5	-0.2	0.3

2- We can easily calculate how similar vectors are to each other

The people most similar to Jay are:

cosine_similarity \mathbf{V}

```
Person #1
0.86
Person \#2
0.5
Person \#3 \(\quad \mathbf{- 0 . 2 0}\)
```

Words can also be
Represented by Vectors: Word Embedding

(21) Word Embedding

```
[ 0.50451 , 0.68607 , -0.59517 , -0.022801, 0.60046 ,
    -0.13498 , -0.08813 , 0.47377 , -0.61798 , -0.31012 ,
    -0.076666, 1.493 , -0.034189, -0.98173 , 0.68229,
    0.81722 , -0.51874 , -0.31503 , -0.55809 , 0.66421,
    0.1961 , -0.13495 , -0.11476 , -0.30344 , 0.41177 ,
    -2.223 , -1.0756 , -1.0783 , -0.34354 , 0.33505 ,
    1.9927 , -0.04234 , -0.64319 , 0.71125 , 0.49159 ,
    0.16754 , 0.34344 , -0.25663 , -0.8523 , 0.1661 ,
    0.40102 , 1.1685 , -1.0137 , -0.21585 , -0.15155 ,
    0.78321 , -0.91241 , -1.6106 , -0.64426 , -0.51042 ]
```

This is a word embedding for the word "king" (GloVe vector trained on Wikipedia).

22) Visualize Word Embedding

- Let's color code the cells based on their values (red if they're close to 2, white if they're close to 0 , blue if they're close to -2)

(23) Compare Word Embeddings

- A list of examples (compare by vertically scanning the columns looking for columns with similar colors).

(24) Compare Word Embeddings

(25) Compare Word Embeddings

(26) Compare Word Embeddings

"boy" and "girl" also have places where they are similar to each other, but different from "woman" or "man". Could these be coding for a vague conception of youth? possible.

272 Compare Word Embeddings

${ }^{28}$ Compare Word Embeddings

There are clear places where "king" and "queen" are similar to each other and distinct from all the others. Could
these be coding for a vague concept of royalty?

(20) Compare Word Embeddings

king - man + woman $\sim=$ queen

The resulting vector from "king-man+woman" doesn't exactly equal "queen", but "queen" is the closest word to it from the 400,000 word embeddings we have in this collection.

(30 Compare Word Embeddings

```
model.most_similar(positive=["king","woman"], negative=["man"])
[('queen', 0.8523603677749634),
    ('throne', 0.7664333581924438),
    ('prince', 0.7592144012451172),
    ('daughter', 0.7473883032798767),
    ('elizabeth', 0.7460219860076904),
    ('princess', 0.7424570322036743),
    ('kingdom', 0.7337411642074585),
    ('monarch', 0.721449077129364),
    ('eldest', 0.7184862494468689),
    ('widow', 0.7099430561065674)]
```

Using the Gensim library in python, we can add and subtract word vectors, and it would find the most similar words to the resulting vector. The image shows a list of the most similar words with "king+woman-man", each with its cosine similarity.

How to Train Word Embeddings? Recall Language Modeling

(32) Recall Language Modeling

- A language model can take a list of words (let's say two words), and attempt to predict the word that follows them.

(3) Recall Language Modeling

- A language model actually outputs a probability score for all the words it knows (the model's "vocabulary")

(34) Recall Language Modeling

- After being trained, early neural language models (Bengio 2003) would calculate a prediction in three steps:

(3) Recall Language Modeling

- In the first step, we get a matrix that contains an embedding for each word in our vocabulary.

http://jalammar.yınuv.ıU/ınusuateu-woru

(3) Language Model Training

- Words get their embeddings by looking at which other words they tend to appear next to. 1. We get a lot of text data (say, all Wikipedia articles, for example).

2. We have a window (say, of three words) that we slide against all of that text.
3. The sliding window generates training samples for our model

We take the first two words to be features, and the third word to be a label:

We then slide our window to the next position and create a second sample:

And pretty soon we have a larger dataset of which words tend to appear after different pairs of words:

From Language Modeling to

 Word Embedding: Look Both Ways(3) Language Model Training

Jay was hit by a

(40) Look Both Ways

Jay was hit by a
 \qquad
 Jay was hit by a ___ bus

(4) Word2Vec: CBOW and Skip-gram

Figure 1: New model architectures. The CBOW architecture predicts the current word based on the context, and the Skip-gram predicts surrounding words given the current word.

(42) CBOW: Continuous Bag of Words

- Instead of only looking at words before the target word, we can also look at words after it.

> "You shall know a word by the company it keeps" - J.R. Firth

Jay was hit by a ____ bus in...

by	a	red	bus	in

Build training dataset

input 1	input 2	input 3	input 4	output
by	a	bus	in	red

(4) Skip-gram

- Instead of guessing a word based on its context (the words before and after it), this other architecture tries to guess neighboring words using the current word.

Thou shalt not make a nachine in the likeness of a human mind

The word in the green slot would be the input word, each pink box would be a possible output. The pink boxes are in different shades because this sliding window actually creates four separate samples in our training dataset.

(4) Skip-gram

Thou shalt not make a machine in the likeness of a human mind

thou	shalt	not	make	a	machine	in	the

| thou | shalt | not | make | a machine in the \ldots |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

input word	target word
not	thou
not	shalt
not	make
not	a
make	shalt
make	a
make	machine
make	not
a	make
a	machine
a	in
a	make
machine	a
machine	in
machine	the
machine	a
in	machine
in	lheness
in	

By sliding our window to the next positions, a couple of positions later, we will have a lot more training examples.

Step 1: grab a example from the dataset. Feed it into an untrained model asking it to predict an appropriate neighbour word.

input word	target word
not	thou
not	shalt
not	make
not	a
make	shalt
make	not
make	a
make	machine
a	not
a	make
a	machine
a	in
machine	make
machine	a
machine	in
machine	the
in	a
in	machine
in	the
in	likeness

Step 4: We proceed to do the same process with the next sample in our dataset, and then the next, until we've covered all the samples in the dataset.

Step 2: The model conducts the three steps and outputs a prediction vector (with a probability assigned to each word in its vocabulary)

It's still not how word2vec is actually trained. We're missing a couple of key ideas.

(4) Negative Sampling

- The third step is very expensive from a computational point of view. How to improve the performance?

1) Look up
embeddings
2) Calculate
prediction
3) Project
to output
vocabulary
[Computationally
Intensive]

(3) Negative Sampling

- One way is to split our target into two steps:

1. Generate high-quality word embeddings (Don't worry about next-word prediction);
2. Use these high-quality embeddings to train a language model (to do next-word prediction).

To generate high-quality
embeddings using a high-
performance model, we can
switch the model's task from
predicting a neighboring word
to takes the input and output
word, and outputs a score
indicating if they're neighbors
or not (0 for "not neighbors", 1 for
"neighbors").

Change Task from

(4) Negative Sampling

- Switch the structure of our dataset

input word	target word	input word	output word	target
not	thou	not	thou	1
not	shalt	not	shalt	1
not	make	not	make	1
not	a	not	a	1
make	shalt	make	shalt	1
make	not	make	not	1
make	a	make	a	1
make	machine	make	machine	1

50 Negative Sampling

(3) Skip-gram with Negative Sampling

- Randomly selected words that are not neighbors from the vocabulary to get negative examples.

(22) Hierarchical Softmax

- Another way to accelerate model training is H-Softmax.
- Idea: compute the probability of leaf nodes using the paths

[^0]
(3) Hierarchical Softmax

- Idea: compute the probability of leaf nodes using the paths
- Obviously, the structure of the tree is of significance. Mikolov et al. (2013) utilized A Huffman tree for their hierarchical softmax, (generates such a coding by assigning fewer bits to more common symbols.)
- Notably, we are only able to obtain this speed-up during training, when we know the word we want to predict (and consequently its path) in advance. During testing, when we need to find the most likely prediction, we still need to calculate the probability of all words, although narrowing down the choices in advance helps here.

$$
p(\text { right } \mid n, c)=\sigma\left(h^{\top} v_{n}^{\prime}\right)
$$

Word2Vec Training Process

(5) Model initialization

- At the start of the training phase, we create two matrices - an Embedding matrix and a Context matrix. These two matrices have an embedding for each word in our vocabulary. We initialize these matrices with random values. (Why two vectors? Easier optimization.)

Embedding

Context

© Feed Data

- For the input word, we look in the Embedding matrix. For the context words, we look in the Context matrix
dataset

input word	output word	target
not	thou	1
not	aaron	0
not	taco	0
not	shalt	1
not	mango	0
not	finglonger	0
not	make	1
not	plumbus	0
\cdots		\ldots

(5) Forward Propagation

- Take the dot product of the input embedding with each of the context embeddings.
- Calculate probability by Sigmoid().
- Calculate error.

(3) Back-propagation

- We can now use this error score to adjust the embeddings of not, thou, aaron, and taco so that the next time we make this calculation, the result would be closer to the target scores.

© Proceed to Next Batch

- Then we proceed to our next step (the next positive sample and its associated negative samples) and do the same process again.
dataset

input word	output word	target
not	thou	1
not	aaron	0
not	taco	0
not	shalt	1
not	mango	0
not	finglonger	0
not	make	1
not	plumbus	0
\ldots	\ldots	\ldots

model

Glove

61 Comparison

- Count-based
- LSA, HAL (Lund \& Burgess), COALS (Rohde et al), Hellinger-PCA (Lebret \& Collobert)
- Pros
\checkmark Fast training
\checkmark Efficient usage of statistics
- Cons
$\checkmark \quad$ Primarily used to capture word similarity
\checkmark Disproportionate importance given to large counts
- Direct prediction
- NNLM, HLBL, RNN, Skipgram/CBOW
(Bengio et al; Collobert \& Weston; Huang et al; Mnih \& Hinton; Mikolov et al; Mnih \& Kavukcuoglu)
- Pros
\checkmark Generate improved performance on other tasks
$\checkmark \quad$ Capture complex patterns beyond word similarity
- Cons
$\checkmark \quad$ Benefits mainly from large corpus
$\checkmark \quad$ Inefficient usage of statistics

62 GloVe

O Idea: ratio of co-occurrence probability can encode meaning

- $P_{i j}$ is the probability that word w_{j} appears in the context of word w_{i}

$$
P_{i j}=P\left(w_{j} \mid w_{i}\right)=X_{i j} / X_{i}
$$

- Relationship between the words w_{i} and w_{j}

Probability and Ratio	$k=$ solid	$k=$ gas	$k=$ water	$k=$ fashion
$P(k \mid$ ice $)$	1.9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}
$P(k \mid$ steam $)$	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
$P(k \mid$ ice $) / P(k \mid$ steam $)$	8.9	8.5×10^{-2}	1.36	0.96

63 GloVe

O Idea: ratio of co-occurrence probability can encode meaning

- $P_{i j}$ is the probability that word w_{j} appears in the context of word w_{i}

$$
P_{i j}=P\left(w_{j} \mid w_{i}\right)=X_{i j} / X_{i}
$$

- Relationship between the words w_{i} and w_{j}

Probability and Ratio	$k=$ solid	$k=$ gas	$k=$ water	$k=$ fashion
$P(k \mid$ ice $)$	large	small	large	small
$P(k \mid$ steam $)$	small	large	large	small
$P(k \mid$ ice $) / P(k \mid$ steam $)$	large	small	$\sim=1$	$\sim=1$

64 GloVe

- The relationship of w_{i} and w_{j} approximates the ratio of their co-occurrence probabilities with various w_{k}

$$
\begin{aligned}
& F\left(w_{i}, w_{j}, \tilde{w}_{k}\right)=\frac{P_{i k}}{P_{j k}} \\
& F\left(w_{i}-w_{j}, \tilde{w}_{k}\right)=\frac{P_{i k}}{P_{j k}} \\
& F\left(\left(v_{w_{i}}-v_{w_{j}}\right)^{T} v_{\tilde{w}_{k}}^{\prime}\right)=\frac{P_{i k}}{P_{j k}} \quad F(\cdot)=\exp (\cdot) \\
& v_{w_{i}} \cdot v_{\tilde{w}_{k}}^{\prime}=v_{w_{i}}^{T} v_{\tilde{w}_{k}}^{\prime}=\log P\left(w_{k} \mid w_{i}\right)
\end{aligned}
$$

© GloVe

$$
\begin{array}{cc}
v_{w_{i}} \cdot v_{\tilde{w}_{j}}^{\prime}=v_{w_{i}}^{T} v_{\tilde{w}_{j}}^{\prime}=\log P\left(w_{j} \mid w_{i}\right) & P_{i j}=X_{i j} / X_{i} \\
=\log P_{i j}=\log \left(X_{i j}\right)-\log \left(X_{i}\right) & \begin{array}{l}
\text { 1. As P(wjlwi)=Xij/Xi, we get first } \\
\text { equation } \\
\text { 2.In neural networks, we have some bias } \\
\text { terms. we can merge the constant } \\
\text { log (Xi) with the learnable bias term bi, } \\
\text { so that we get the second equation }
\end{array} \\
v_{w_{i}}^{T} v_{\tilde{w}_{j}}^{\prime}+b_{i}+\tilde{b}_{j}=\log \left(X_{i j}\right) & \begin{array}{l}
\text { 3. So our Cost function to learn word } \\
\text { vectors are the third equation }
\end{array} \\
C(\theta)=\sum_{i, j=1}^{V} f\left(P_{i j}\right)\left(v_{w_{i}} \cdot v_{\tilde{w}_{j}}^{\prime}-\log P_{i j}\right)^{2} & \begin{array}{l}
\text { get the forthe equation. } \\
\text { 5. Note we weight the cost by taking the } \\
\text { frequency of co-occurrence into } \\
\text { account. The weight is some function } \\
\text { over the co-occurrence frequency Xij } \\
\text { or Pij. }
\end{array}
\end{array}
$$

© GloVe - Weighted Least Squares Regression

$$
C(\theta)=\sum_{i, j=1}^{V} f\left(X_{i j}\right)\left(v_{w_{i}}^{T} v_{\tilde{w}_{j}}^{\prime}+b_{i}+\tilde{b}_{j}-\log X_{i j}\right)^{2}
$$

O Weighting function should obey

- $f(0)=0$
- $f(x)$ should be non-decreasing so that rare co-occurrences are not overweighted
- $f(x)$ should be relatively small for large values of x, so that frequent co-occurrences are not overweighted

fast training, scalable, good performance even with small corpus, and small vectors

© GloVe Results

Nearest words to frog:

1. frogs
2. toad
3. litoria
4. leptodactylidae
5. rana
6. lizard
7. eleutherodactylus

litoria

rana

leptodactylidae

eleutherodactylus

Word Vector
Evaluation

69 Intrinsic Evaluation - Word Analogies

- Word linear relationship $w_{A}: w_{B}=w_{C}: w_{x}$

$$
x=\arg \max _{x} \frac{\left(v_{w_{B}}-v_{w_{A}}+v_{w_{C}}\right)^{T} v_{w_{x}}}{\left\|v_{w_{B}}-v_{w_{A}}+v_{w_{C}}\right\|}
$$

- Syntactic and Semantic example questions [link]

Issue: what if the information is there but not linear

(70) Intrinsic Evaluation - Word Analogies

- Word linear relationship $w_{A}: w_{B}=w_{C}: w_{x}$
- Syntactic and Semantic example questions [link]
city---in---state
Chicago: :llinois = Houston: Texas
Chicago : lllinois = Philadelphia : Pennsylvania
Chicago: :llinois = Phoenix : Arizona
Chicago : Illinois = Dallas: Texas
Chicago : Illinois = Jacksonville : Florida
Chicago : Illinois = Indianapolis: Indiana
Chicago : Illinois = Aus8n : Texas
Chicago : Illinois = Detroit : Michigan
Chicago : :llinois = Memphis : Tennessee
Chicago : Illinois = Boston : Massachusetts
Issue: different cities may have same name
capital---country
Abuja : Nigeria = Accra : Ghana
Abuja : Nigeria = Algiers: Algeria
Abuja: Nigeria = Amman : Jordan
Abuja : Nigeria = Ankara : Turkey
Abuja: Nigeria = Antananarivo: Madagascar
Abuja : Nigeria = Apia : Samoa
Abuja : Nigeria = Ashgabat: Turkmenistan
Abuja : Nigeria = Asmara : Eritrea
Abuja : Nigeria = Astana: Kazakhstan

(71) Intrinsic Evaluation - Word Analogies

- Word linear relationship $w_{A}: w_{B}=w_{C}: w_{x}$
- Syntactic and Semantic example questions

superlative
bad : worst = big : biggest
bad : worst = bright : brightest
bad : worst = cold : coldest
bad : worst = cool : coolest
bad : worst = dark : darkest
bad : worst = easy : easiest
bad : worst = fast : fastest
bad : worst = good : best
bad : worst = great : greatest

past tense

dancing : danced = decreasing : decreased dancing : danced = describing : described
dancing : danced = enhancing : enhanced
dancing : danced $=$ falling : fell
dancing : danced $=$ feeding : fed
dancing : danced = flying : flew
dancing : danced = generating : generated
dancing : danced = going : went
dancing : danced $=$ hiding : hid
dancing : danced $=$ hiding : hit

(22) Intrinsic Evaluation - Word Correlation

O Comparing word correlation with human-judged scores

- Human-judged word correlation

Word 1	Word 2	Human-Judged Score
tiger	cat	7.35
tiger	tiger	10.00
book	paper	7.46
computer	internet	7.58
plane	car	5.77
professor	doctor	6.62
stock	phone	1.62

Ambiguity: synonym or same word with different POSs

(33) Extrinsic Evaluation - Subsequent Task

- Goal: use word vectors in neural net models built for subsequent tasks

```
In fact, the Chinese Nowe market has the three capomacl most influential names of the retail and tech space-Alibaba cos
Baidu Ors, and Tencent persom (collectively touted as BAT org), and is betting big in the global Al gmg in retail
industry space.The three curomal giants which are claimed to have a cut-throat competition with the U.S. cre cin terms of
resources and capital) are positioning themselves to become the 'future AI persow platforms'. The trio is also expanding in other
Asian woge countries and investing heavily in the U.S. CFE based Al CFE startups to leverage the power of Al cre
Backed by such powerful initiatives and presence of these conglomerates, the market in APAC Al is forecast to be the fastest-
```



```
To further elaborate on the geographical trends, North America Loc has procured more than 50% percent of the global share
in 2017 Dares and has been leading the regionsl lendscepe of Al opE in the retail market. The U.S. ofE has a significant
crecit in the regional trends with over 65% precenr of investments (inclucing M&AS, private equity, and venture capital) in
artificial intelligence technology. Additionally, the region is a huge hub for startups in tandem with the presence of tech titans,
such as Google one, IBM ono ,and Microsoft ono
```


If two word vectors are similar, they may share the same NER tag or sentiment information.

- Reading assignment 2: (due date: February 1st, 2022 11:59 pm EST timezone)
- Distributed Representations of Words and Phrases and their Compositionality (negative sampling paper) https://proceedings.neurips.ce/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf

- Suggested readings:

- Efficient Estimation of Word Representations in Vector Space (original word2vec paper)
- GloVe: Global Vectors for Word Representation (original GloVe paper)
- Improving Distributional Similarity with Lessons Learned from Word Embeddings
- Evaluation methods for unsupervised word embeddings
- A Latent Variable Model Approach to PMI-based Word Embeddings
- Linear Algebraic Structure of Word Senses, with Applications to Polysemy
- On the Dimensionality of Word Embedding

Next lecture: Sentence Representation \& Text Classification

Thanks! Q\&A

Bang Liu

Email: bang.liu@umontreal.ca
Homepage: http://www-labs.iro.umontreal.ca/~liubang/

[^0]: Mikolov et al., "Distributed representations of words and phrases and their compositionality," in NIPS, 2013.

