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© Lecture outline

Tasks using sentence representations

From word embedding to sentence embedding

From RNN to CNN

Context matters: EImo

Structure matters: hierarchical sentence factorization

SANINAI o S N

Multi-task learning for sentence embedding



© Certain Slides Adapted From or Referred To...

@ CMU CS11-747 - Neural Networks for NLP, Graham Neubig

e Spring 2020: http:// www.phontron.com/class/nn4nlp2020/schedule/contextualword-
sentemb.html

@ NTU S-108 Applied Deep Learning, Yun-Nung (Vivian) Chen
e Spring 2020: https://www.csie.ntu.edu.tw/~miulab/s108-adl/syllabus, lecture 3, 5

@ https://amitness.com/2020/06/universal-sentence-encoder/


http://www.phontron.com/class/nn4nlp2020/schedule/contextualword-sentemb.html
http://www.phontron.com/class/nn4nlp2020/schedule/contextualword-sentemb.html
https://www.csie.ntu.edu.tw/~miulab/s108-adl/syllabus
https://amitness.com/2020/06/universal-sentence-encoder/

Tasks Using Sentence *= /. (A2~

Representations
\ i )



© Where would we need sentence representations?

® Sentence classification
@ Paraphrase 1dentification
® Semantic matching

@ Entailment

® Retrieval



© Sentence classification

@ Classify sentences according to various traits

@ Topic, sentiment, subjectivity/objectivity, etc.

0%
ﬁ




© Paraphrase identification

@ Identify whether
sentence A and sentence
B mean the same thing

® Note: exactly the same
thing 1s too restrictive.
Therefore, usually we
use a loose sense of
similarity.

Paraphrases in Twitter (PIT-2015)

Task: Given two sentences from Twitter,
predict whether they imply the same meaning.

Roberto Mancini gets the boot from Man City ¢ ~ Yes!
Roberto Mancini has been sacked by Manchester City with the Blues saying
WORLD OF JENKS IS ON AT 11 No!

World of Jenks is my favorite show on tv
Setup:
¢ 18k training/dev data:
well balanced: about 35% paraphrases, 65% non-paraphrases
representative: semi-randomly selected from Twttier's trends
annotated by 5 Amazon Mechanical Turkers (good correlation with experts)

¢ 1k test data:

from a different time period
annotated by expert

¢ 2 baselines: ?\?Pcnn Microsoft Research

Supervised: Logistic Regression
Unsupervised: Weighted Textual Matrix Factorization

Organizers: Wei Xu, Chris Callison-Burch, Bill Dolan

https://alt.qcri.org/semeval2015/task1/



© Semantic similarity/relatedness

® Do two sentences have similar meanings?

® Like paraphrase i1dentification, but with shades of gray.

STSbenchmark dataset

http://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark

The two sentences are completely equivalent, as they
mean the same thing.

The bird 1s bathing in the sink.
Birdie is washing itself in the water basin.

The two sentences are mostly equivalent, but some
unimportant details differ.

Two boys on a couch are playing video games.
Two boys are playing a video game.

The two sentences are roughly equivalent, but some
important information differs/missing.

John said he 1s considered a witness but not a suspect.
“He is not a suspect anymore.” John said.

The two sentences are not equivalent, but share some
details.

They flew out of the nest in groups.
They flew into the nest together.

The two sentences are not equivalent, but are on the
same topic.

The woman is playing the violin.
The young lady enjoys listening to the guitar.

The two sentences are completely dissimilar.

The black dog 1s running through the snow.
A race car driver is driving his car through the mud.

Table 1: Similarity scores with explanations and
English examples from Agirre et al. (2013).



© Textual entailment

@ Entailment: if A 1s true, then B 1s true (c.f. paraphrase, where opposite 1s also true)
@ Contradiction: if A 1s true, then B 1s not true

@ Neutral: cannot say either of the above

P A woman 1s talking on the phone while standing next to a dog

H1 | A woman is on the phone entailment
H2 | A woman 1s walking her dog neutral
H3 | A woman is sleeping contradiction
P Tax records show Waters earned around $65,000 in 2000

H1 | Waters’ tax records show clearly that he earned a lovely $65k in 2000 | entailment
H2 | Tax records indicate Waters earned about $65K in 2000 entailment
H3 | Waters’ tax records show he earned a blue ribbon last year contradiction

Table 2: Examples from the development sets of SNLI (top) and MultiNLI (bottom). Each example contains one
premise that 1s paired with three hypotheses in the datasets.

A Survey on Recognizing Textual Entailment as an NLP Evaluation



https://arxiv.org/pdf/2010.03061.pdf

@ Model for Sentence Pair Processing

@ Calculate vector representation

@ Feed vector representation into classifier

Sentence A —m I\

How do we get such a representation?

SELL I —  yes/no

Sentence B



From Word
Embedding to
Sentence Embedding

"=l e ——







® Bag-of-Words/Bag-of-n-grams

@ Bag-of-Words (BOW): no word order, different sentences can have same meaning

@ Bag-of-n-grams: order in short context, data sparsity, high dimensionality, little sense about
word semantics

It was the best of times

It was

<start> It

times <end>
was the

best of

of times the best




@ Weighted averaging of word embeddings

@ Loses the word order in the same way as the standard bag-of-words models do.

word Embeddings

It IS cool
T 111 OO

\ Aerage
Y

Sentence Embedding




® Framework of learning word vectors

® Map a word to a unique vector: A particular implementation for training the word vectors:
code.google.com/p/word2vec/ (Mikolov et al., 2013a).

® Predict the next word 1n a sentence

Training objective: maximize the average
log probability:

| Tk
T Z log p(wt|wi—k; -+, Wit k)

Each of Y: is un-normalized log-probability
for each output word 7:

y= b+ Uh(wt—k:a cooy Wit ks W)

Le et al., “Distributed Representations of Sentences and Documents” in ICML, 2014.

Classifier on
Average/Concatenate (11111
111 E[JEEED 111111
Word Matrix
the cat sat

Figure 1. A framework for learning word vectors. Context of
three words (“the,” “cat,” and “sat™) 1s used to predict the fourth
word (“on”). The mnput words are mapped to columns of the ma-
trix W to predict the output word.



From Word2Vec to Doc2Vec
Distributed Memory version of Paragraph Vector

@ Paragraph Vector, an unsupervised Classifier “on
algorithm that learns fixed-length
feature representations from variable-
length pieces of texts (sentences, Average/Concatenate

paragraphs, documents) /7 1 \

® Assign a paragraph vector while *

sharing word vectors among all Paragrap the ca
sentences. Then we either average or

concatenate them (p aragrap h vector and Figure 2. A framework for learning paragraph vector. This {frame-

words vector) to get the final sentence work is similar to the framework presented in Figure 1; the only
representation, change 1s the additional paragraph token that 1s mapped to a vec-
tor via matrix L. In this model, the concatenation or average of
this vector with a context of three words 1s used to predict the

Paragraph Matrix-----

@ If you notice, 1t 1s an extension of the fourth word. The paragraph vector represents the missing infor-
Continuous Bag-of-Word type of mation from the current context and can act as a memory of the
topic of the paragraph.
Word2 Vec P patagrap

Le et al., “Distributed Representations of Sentences and Documents” in ICML, 2014.



From Word2Vec to Doc2Vec
Distributed Memory version of Paragraph Vector

@ Training stage: training to get word vectors Classifier “on |
W, softmax weights U, b and paragraph

vectors D on already seen paragraphs
Average/Concatenate

@ Inference stage: get paragraph vectors D for /y 1 \
new paragraphs (never seen before) by

adding more columns in D and gradient *

descending on D while holding W, U, b Paragrap the ca
fixed.

Paragraph Matrix-----

Figure 2. A framework for learning paragraph vector. This {frame-
work 1s similar to the framework presented in Figure 1; the only
change 1s the additional paragraph token that 1s mapped to a vec-
tor via matrix L. In this model, the concatenation or average of
this vector with a context of three words 1s used to predict the
tourth word. The paragraph vector represents the missing infor-
mation from the current context and can act as a memory of the
topic of the paragraph.

® D can be utilized for text classification tasks.

Le et al., “Distributed Representations of Sentences and Documents” in ICML, 2014.



From Word2Vec to Doc2Vec
Distributed Bag of Words version of Paragraph Vector

@ PVDOBW is another extension, this time of the
Skip-gram type.

Classifier [ the]

® Here, we just sample random words from the v\\ //'
COII

sentence and make the model predict which
sentence 1t came from(a classification task).

@ The authors of the paper recommend using Paragraph Matrix --------- >
both 1n combination, but state that usually
: Paragraph
PVDM is more than enough for most tasks. id

Figure 3. Distributed Bag of Words version of paragraph vectors.
In this version, the paragraph vector is trained to predict the words
in a small window.

Le et al., “Distributed Representations of Sentences and Documents” in ICML, 2014.



@® Doc2Vec on Sentiment Classification

Table 1. The performance of our method compared to other ap-
proaches on the Stanford Sentiment Treebank dataset. The error
rates of other methods are reported in (Socher et al., 2013b).

Table 2. The performance of Paragraph Vector compared to other
approaches on the IMDB dataset. The error rates of other methods
are reported in (Wang & Manning, 2012).

Model Error rate | Error rate Model Error rate
(Positive/ (Fine- BoW (bnc) (Maas et al., 2011) 12.20 %
i Negative) | grained) BoW (bAt’c) (Maas et al., 2011) 11.77%
Naive Bayes 18.2 % 59.0%
LDA (Maas et al., 2011) 32.58%
(Socher et al., 2013b) 1 1 201 116
SVMs (Socher et al., 2013b) 206% | 59.3% Full+BoW (Maas et al., 2011) 1.67%
Bigram Naive Bayes 16.9% 58 1% Full+Unlabeled+BoW (Maas et al., 2011) 11.11%
(Socher et al., 2013b) WRRBM (Dahl et al., 2012) 12.58%
Word Vector Averaging 19.9% 67.3% WRRBM + BoW (bnc) (Dahl et al., 2012) 10.77%
(Socher et al., 2013b) MNB-uni (Wang & Manning, 2012) 16.45%
?Secutfswet ?leu;glgg)twmk 176% [ 6.5% MNB-bi (Wang & Manning, 2012) 13.41%
ocher et al., o .
Matrix Vector-RNN [7.1% | 55.6% gzﬁ Efugv ang&&MManT‘mgé(z)(Sz) }ggig"
(Socher et al., 2013b) -b1 (Wang & Manning, 2012) 84%
Recursive Neural Tensor Network 14.6% 54.3% NBSVM-uni (Wang & Manning, 2012) 11.71%
(Socher et al., 2013b) NBSVM-bi (Wang & Manning, 2012) 8.78%
Paragraph Vector 12.2% 51.3% Paragraph Vector 7.42 %

Le et al., “Distributed Representations of Sentences and Documents” in ICML, 2014.




@ Doc2Vec on Information Retrieval

Table 3. The performance of Paragraph Vector and bag-of-words
models on the information retrieval task.
bigrams™ 1s the method where we learn a linear matrix W on TF-
IDF bigram features that maximizes the distance between the first
and the third paragraph and minimizes the distance between the

first and the second paragraph.

“Weighted Bag-of-

Model Error rate
Vector Averaging 10.25%
Bag-of-words 8.10 %
Bag-of-bigrams 7.28 %
Weighted Bag-of-bigrams 5.67%
Paragraph Vector 3.82%

Le et al., “Distributed Representations of Sentences and Documents” in ICML, 2014.




From RNN to CNN




® From RNNs to Convolutional Neural Nets

® Recurrent neural nets cannot capture phrases without prefix context

@ Often capture too much of last words 1n final vector

LJ—»[]—»[}—)[}—»[]
S [45] ;

Monae walked into ceremony

Softmax is often only calculated at the last step.



® From RNNs to Convolutional Neural Nets

® What 1f we compute vectors for every possible word subsequence of a certain length?

® Regardless of whether phrase 1s grammatical (not very linguistically or cognitively plausible)

tentative deal reached to keep government open



@ 1d convolution

® 1D discrete convolution

M
(f x g ) [TL] — E f [TL — m] g[m] Input (Embed Size = 4)
m=—M Kernel window size 3
Feature Vector
02 04 05 -0.1 . .
.0.20.
eq o . . . The - 0.1 06 08 -02
® Mostly utilized in signal processing Pl il il B
Food 02 04 -02 08 01 07 09 0.2
@ Example: (on the right) Weash 02| OO FO=tH —

: . y (0°-0.2) + (0°0.4) + (0°0.5) + (0*-0.1) |
e Kernel window size: 3 Mony 0|0 e s y L

e Number of filters: 1 Delicious | o _ 0 | il _ ] | (0.3'0.2) = 0.20
e Padding size: 2
e Stride size: 1



@ 2d convolution

® 2D discrete convolution

M N

(f *g) mn:Z Zf”tj m—i,n — j|

1=—M j3=—N

4
@ Classically used to extract features from 1mages
@ Example: (on the right)
¢ Kernel window size: 3*3 Convolved
e Number of filters: 1 Image Coature

e Padding size: 0
e Stride size: 1



@ Receptive field and CNN

@ Convolutional Neural Networks (CNN) 1s a type of feedforward neural network. It 1s
motivated by biologically receptive fields mechanism.

® Areceptive field is an area 1n which stimulation leads to response of a particular sensory

ncuron.

Receptive
field 2

Receptive
field 1

Receptive
field 3




@ Receptive field and CNN

How to recognize?



® Receptive field and CNN VY

_/
Convnel
Filter /,/
One
/! Feature P
" " // N{np //
Convolutional filters L : |

Feature maps

a8 an eye on the left?
[

7 "; an eye on the right?
/

a nose in the middle?

All Featurc Maps

(image pixels)

D D input layer

J

— a face?

.

a mouse?

hair on the above?




Hierarchical feature representations

Deep neural
networks learn

hierarchical feature
representations

t

hidden layer 1  hidden layer 2  hidden layver 3
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® CNN for sentence classification T T |

Model architecture:

Input: 2 channels
random vectors + word2vec

Pooling:
1. capture the most important
feature for each feature map.

single layer 1d CNN

2. naturally deals with variable
wait [ | | | | | L= 1 sentence lengths.
for R -
the — 1L
video -
™
do —1.
n't
rent | | A | | e
it L T T P - -
I | | |
n X k representation of Convolutional layer with Max-over-time Fully connected layer
sentence with static and multiple filter widths and pooling with dropout and
non-static channels feature maps softmax output
Feature extraction:
uses multiple filters (with varying window Regularization:
sizes) to obtain multiple features dropout and constraint [2-norms
of weight vectors
Yoon Kim, "Convolutional Neural Networks for Sentence Classification," in EMNLP, 2014 . . . Layer
Original Network PFappen=Uut Natwork




@ CNN for sentence classification

+ activation function

Following previous work

convalution * r——" softmax functior -
‘L 3re iof sizes: (2,34 2' feature heeins Y l ir:gt;::rg;;?n J (Klm 201 4)-
Senlence malrix 2 ﬁ"egrs for each(rég:io)n maps for 6 univariate 2 classes TeSt the eﬁeCts Of
x> totallsigeﬁlters reg?:: I;lze con?act:te:r:ted d iﬂ:e rent Setti ngs.

together ta form a

/ - I single feature
veclor
d=5 ) )
| - 'I Effects of different settings:
like 1. input word vectors:

this
movie word2vec, glove,
hagld concatenate
! \ . filter region size
_ I . humber of feature maps
. activation function
The best settings ./ . pooling strategy

depends on the
task and dataset!

\ . regularization: dropout and
12 norm constraint

.

Zhang et al., "A Sensitivity Analysis of (and Practitioners’ Guide to) Convolutional Neural Networks for Sentence Classification," arXiv



Context Matters:
ELMo




@ Context matters

Hey ELMo, what's the embedding
of the word “stick”?

There are multiple pcssible
embeddings! Use it in a sentence.

Oh, okay. Here:
‘Let’s stick to improvisaton in this
skit”

Oh in thet case, the embedding is:

-0.02,-0.16, 0.12,-0.1 ....etc

http://jalammar.github.i10/1llustrated-bert/



© Word embedding polysemy issue

® Words are polysemy
An apple a day, keeps the doctor away.

Smartphone companies including apple, ...
® However, their embeddings are NOT polysemy
® Issue

Multi-senses (polysemy)

Multi-aspects (semantics, syntax)




©® ELMo: Embedding from Language Models

@ Idea: contextualized word representations
Learn word vectors using long contexts instead of a context window
Learn a deep BI-NLM and use all its layers in prediction

a nice day

| | |

have a nice

Peters et al., “Deep Contextualized Word Representations™, in NAACL-HLT, 2018.



©® ELMo: Embedding from Language Models

N
1) Bidirectional LM p(¢y, ¢y, -+ ,tn) = Hp(tk ty, et
k=1

a nice day Forward LM
OF
T T k—1
— — — ﬁLM
k2
! ! k—1
. —» — ﬁLM
k1
! ! t
L
have a

nice L.
Peters et al., “Deep Contextualized Word Representations™, in NAACL-HLT, 2018.



@ ELMo: Embedding from Language Models

1) Bidirectional LM

N Forward LM Backward LM
p(t17t27° o 7tN) — Hp(tk | tla' e 7tk—1)
k=1 OF OL
N k—1 hk + 1
t1i to. coo tar) = te |t ce. 1
p( 1, 02, 9 N) ]:[p( k ‘ k+1; 9 N) ﬁLM %LM
- Y k-1t k41
Character CNN for initial word embeddings . %T/v
LM
2048 n-gram filters, 2 highway layers, 512 dim projection hffl hF1
2 BLSTM layers
Lk L
Parameter tying for input/output layers T T
N
%
O:Z (logp(tk ‘ t17°°° 7tk—1;@a?7 @LSTM7@S) tk tk
k=1

<_
+ logp(tk | tk+1, - 1 IN; O, O LsT M, @s))
Peters et al., “Deep Contextualized Word Representations”, in NAACL-HLT, 2018.




© ELMo: Embedding from Language Models

2) ELMo
Learn task-specific linear combination of LM embeddings

Forward LM Backward LM

Use multiple layers in LSTM instead of top one Ok L “k k]
— otask LM & 7 <
S Xt higt hig! LM %TI;/[?
L h i h i
ELMOZaSk _ ,Yta,sk < Z< Siiask > hﬁlM X ﬁlM 3 51]\4 EF—1 hk 4 1
7 LM S LM
S}:)ask < hLM I T k1 k1
- . f f
y'ask scales overall usefulness of ELMo to task T T
stk gre softmax-normalized weights T T
optional layer normalization U1 U1



© ELMo: Embedding from Language Models

3) Use ELMo in Supervised NLP Tasks
Get LM embedding for each word

Freeze LM weights to form ELMo enhanced embeddings

h; ELMot%]:

21,; ELMot5%]:

concatenate ELMo into the intermediate layer

concatenate ELMo into the input layer

Tricks: dropout, regularization

The way for concatenation depends on the task

CRF

BLOC <

>ELOC‘k

Dense 1
[ by

<——>

- Sequence
tagging

ELMot?s-

Sequence
representatlon

b| RNN
(Rz)

I/

&~

II/ |

s S0

»%M

Concat LM

bi-RNN ( embedding

Peters et al.,

“Deep Contextualized Word Representations™, in NAACL-HLT, 2018.

Ol I

/

Char
CNN/ / Token b\

Token
representation

RNN embedding
X R

New

York

IS located



@ ELMo illustration

&

Forward Language Model Backward Language Model

S f ?‘» ?‘
v G- @

bt
I . I .

Let's stick to Let's stick to

Embedding of “stick” in “Let’s stick to” - Step #1

Embedding

Peters et al., “Deep Contextualized Word Representations™, in NAACL-HLT, 2018. http://jalammar.github.10/1llustrated-bert/



@® ELMo illustration

Embedding of “stick” in “Let’s stick to” - Step #2

1- Concatenate hidden layers Forward Language Model Backward Language Model

— ;

?"»
|

2- Multiply each vector by
a weight based on the task

R
EEEE X s

stick stick

3- Sum the (now weighted)
vectors

ELMo embedding of “stick” for this task in this context

Peters et al., “Deep Contextualized Word Representations™, in NAACL-HLT, 2018. http://jalammar.github.10/1llustrated-bert/



® ELMo on Named Entity Recognition

&

Model Description CONII':IQ €008
Klein+, 2003 MEMM softmax markov model 86.07
Florian+, 2003 Linear/softmax/TBL/HMM 88.76
Finkel+, 2005 Categorical feature CRF 86.86
Ratinov and Roth, 2009 CRF+Wiki+Word cls 90.80
Peters+, 2017 BLSTM + char CNN + CRF 90.87
Ma and Hovy, 2016 BLSTM + char CNN + CRF 91.21
TagLM (Peters+, 2017) LSTM BiLM in BLSTM Tagger 91.93
ELMo (Peters+, 2018) ELMo in BLSTM 92.22

Peters et al., “Deep Contextualized Word Representations™, in NAACL-HLT, 2018.



® ELMo results

® Improvement on various NLP tasks

Machine Comprehension
Textual Entailment
Semantic Role Labeling
Coreference Resolution
Name Entity Recognition
Sentiment Analysis

INCREASE
TASK PREVIOUS SOTA OUR LLMO + (ABSOLUTE/
BASELINE BASELINE RELATIVE)
SQuAD | Liu et al. (2017) 84.4 || 81.1 85.8 4.7 1 24.9%
SNLI Chen et al. (2017) 88.6 || 88.0 88.7 £ 0.17 0.7/5.8%
SRL He et al. (2017) 81.7 || 81.4 84.6 3.2/7/17.2%
Coref Lee et al. (2017) 67.2 || 67.2 70.4 3.2/9.8%
NER Peters et al. (2017) 91.93 £ 0.19 || 90.15 0222 +0.10 2.06/21%
SST-5 McCann et al. (2017) 53.7 || 51.4 54.7 £ 0.5 3.3/6.8%

Peters et al., “Deep Contextualized Word Representations”, in NAACL-HLT, 2018.



@ EL Mo analysis

® Word embeddings v.s. contextualized embeddings

Source

Nearest Neighbors

GloVe play

playing, game, games, played, players, plays, player,
Play, football, multiplayer

Chico Ruiz made a spec-
tacular play on Alusik ’s

hiT M grounder {...}

Kieffer , the only junior in the group , was commended
for his ability to hit in the clutch , as well as his all-round
excellent play .

Olivia De  Havilland
signed to do a Broadway
play for Garson {... }

{...} they were actors who had been handed fat roles in
a successful play , and had talent enough to fill the roles
competently , with nice understatement .

The biLM is able to disambiguate both the PoS and word sense
- Inthe source sentence

Peters et al., “Deep Contextualized Word Representations”, in NAACL-HLT, 2018.



® ELMo analysis

® The two NLM layers have differentiated uses/meanings

Lower layer is better for lower-level syntax, etc. (e.g. Part-of-speech tagging,
syntactic dependencies, NER)

Higher layer is better for higher-level semantics (e.g. sentiment, semantic role
labeling, question answering, SNLI)

PoS Tagging Word Sense Disambiguation
Model Acc. Model F,
Collobert et al. (2011) | 97.3 WordNet 1st Sense Baseline | 65.9
Ma and Hovy (2016) | 97.6 Raganato et al. (2017a) 69.9
Ling et al. (2015) 97.8 [acobacci et al. (2016) 70.1
CoVe, First Layer 93.3 CoVe, First Layer 59.4
CoVe, Second Layer | 92.8 CoVe, Second Layer 64.7

(biLM, First Layer 97.3 | biLM, First layer 67.4
biLM, Second Layer | 96.8 [biLM, Second layer 69.0 ]

Peters et al., “Deep Contextualized Word Representations”, in NAACL-HLT, 2018.



Structure Matters:
Hierarchical Sentence
Factorization




® Semantic matching

passages + question
answer

source
target

uct need

. :
e et Translation

question
answer

Summarization Question Answering Comprehension




® Semantic similarity estimation

Degree of semantic similarity between two sentences

(5) Completely equivalent: they mean the same thing

(4) Mostly equivalent: some unimportant details ditter.

(3) Roughly equivalent: some important information differs/missing.
(2) Not equivalent: share some details.

(1) Not equivalent: on the same topic.

(0) On different topics.



® Siamese neural network




@ Siamese neural network




Natural Language is Flexible

Sentence A:
The blue cat is chasing the brown mouse.

Sentence B:
The brown mouse is being chased by the blue cat.



Natural Language is Flexible

Sentence A:
The blue cat is chasing the brown mouse.

Sentence B:
The brown mouse is being chased by the blue cat.

Normalized sentence:
chase blue cat brown mouse.

Predicate Argument O Argument 1



Natural Language is Compositional

Sentence A:
The blue cat is chasing the brown mouse.

Semantic Units: word, phrase, sentence



Natural Language is Hierarchical

Sentence A:
The blue cat is chasing the brown mouse.

The blue cat is chasing the brown mouse.

/N /\

The blue cat is chasing the brown mouse.



@ Input sentence pair

Sentence A: The little Jerry is being chased by Tom in the big yard.

Sentence B: The blue cat is catching the brown mouse in the forecourt.

- normalize order

- factorize semantic units

. multi-layer factorization




@ Hierarchical sentence factorization

Sentence A: The little Jerry is being chased by Tom in the big yard.

AMR Purification Node Traversal
(al) (a4)
chase (0) chase Tom Jerry little yard big (0)
Tom (0.0) chase (0.0)
Jerry (0.1) ; chase (0.0.0)
little (0.1.0) Tom (0.1)
yard (0.2) ‘

Tom (0.1.0)
Jerry little (0.2)

|— big (0.2.0)

Jerry (0.2.0)

T

AMR: ittle (0.2.1)
Abstract Meaning Representation yard big (0.3)
b yard (0.3.0)
big (0.3.1)

Liu et al., “Matching Natural Language Sentences with Hierarchical Sentence Factorization”, in WWW, 2018.



@ Alignment

Sentence A: The little Jerry is being chased Sentence B: The blue cat is catching

by Tom in the big yard. the brown mouse in the forecourt.
(a4) (b4)
chase Tom Jerry little yard big (0) catch cat blue mouse brown forecourt (0)
chase (0.0) catch (0.0)
; chase (0.0.0) L catch (0.0.0)
Tom (0.1) cat blue(0.1)

:

Tom (0.1.0) ‘: cat (0.1.0)
blue (0.1.1)

Jerry little (0.2) b (0.2)
mouse brown (0.

Jerry (0.2.0)
. b mouse (020)
ittle (0.2.1) prown (0.2.1)

yard big (0.3)

‘ yard (0.3.0) forecourt (0.3)
; forecourt (0.3.0)

big (0.3.1)

Liu et al., “Matching Natural Language Sentences with Hierarchical Sentence Factorization”, in WWW, 2018.

.



@ Word Mover’s Distance

minimize E 1i; D
M X N
TERJr .

D1 |Obama|speaks|to the/media|in|Illinois.

0]
M
@07_045k+ oth + 020&37 + 018& subject to ZTij :53‘ 1 <9< N|

Dy The President greets the press in Chicago. i=1
N

ZTM:CM 1 <1< M|

a = {aq, -+ ,ayp}: normalized bag-of-words vector of Sy

B ={B1, -+, BN} normalized bag-of-words vector of So

D;;: distance between word 7 € 57 and word 7 € S5
T;;: the portion of word ¢ € S that transports to word 5 € S»

Liu et al., “Matching Natural Language Sentences with Hierarchical Sentence Factorization”, in WWW, 2018.



@ Word Mover’s Distance

minimize 1D,
. . : TeRM XN Z F
Morty | is {laughing| at|Rick + 1,

M
subject to ZTU =0; 1<j5<N|
i=1

Rick| is |laughing|at | Morty

N
ZTij:CVi 1 <1< M|
1=1

a = {aq, -+ ,ayp}: normalized bag-of-words vector of Sy

B ={B1, -+, BN} normalized bag-of-words vector of So

D;;: distance between word 7 € 57 and word 7 € S5
T;;: the portion of word ¢ € S that transports to word 5 € S»

Liu et al., “Matching Natural Language Sentences with Hierarchical Sentence Factorization”, in WWW, 2018.



® Ordered Word Mover’s Distance

Morty | is |laughing | at|Rick minimize Y T3;Di; — MI(T) + MoK L(T||P)

TeR X —
WMD Matching " Z]\;

Rick| is |laughing|at |Morty subject to ZTU =3, 1<j< N,
=1
T T f OWMD Matching .

Morty |is [laughing| at| Rick Y Tij=of 1<i<M
i=1

M’ N’

Inverse difference moment: I(T)=> >

i=1 j=1 (1\2' ]\Jf’)Q + 1

. L . N p.. — .
prior distribution for values in T: e

. e . e Jiy/M =G /N
Distance from point (i, j) to diagonal line: (%) = JUM2 + 1/N?

Liu et al., “Matching Natural Language Sentences with Hierarchical Sentence Factorization”, in WWW, 2018.



® Results

Table 2: Pearson Correlation results on different distance

metrics.
Algorithm STSbenchmark SICK MSRvid
Test Dev Test Dev Test
BoW 0.5705 0.6561 | 0.6114 0.6087 | 0.5044
LexVec 0.5759 0.6852 | 0.6948 0.6811 | 0.7318
GloVe 0.4064 0.5207 | 0.6297 0.5892 | 0.5481
Fastext 0.5079 0.6247 | 0.6517 0.6421 | 0.5517
Word2vec | 0.5550 0.6911 | 0.7021 0.6730 | 0.7209
WMD 0.4241 0.5679 | 0.5962 0.5953 | 0.3430
OWMD 0.6144 0.7240 | 0.6797 0.6772 | 0.7519

Table 3: Spearman’s Rank Correlation results on different

distance metrics.

Algorithm STSbenchmark SICK MSRvid
Test Dev Test Dev Test

BoW 0.5592 0.6572 | 0.5727 0.5894 | 0.5233
LexVec 0.5472 0.7032 | 0.5872 0.5879 | 0.7311
GloVe 0.4268 0.5862 | 0.5505 0.5490 0.5828
Fastext 0.4874 0.6424 | 0.5739 0.5941 | 0.5634
Word2vec | 0.5184 0.7021 | 0.6082 0.6056 | 0.7175
WMD 0.4270 0.5781 | 0.5488 0.5612 | 0.3699
OWMD 0.5855 0.7253 | 0.6133 0.6188 | 0.7543

Liu et al., “Matching Natural Language Sentences with Hierarchical Sentence Factorization”, in WWW, 2018.



® Multi-scale sentence matching

Output Output
Prediction Layer Prediction Layer

Aggregation Layer

N [\ /)

Context Layer Contex Layer

T T P T T
BERNANIN NN BRBRRORORORAnN MU L

Senten Senten Depth O Dept Depth 2

f __— T~
AN

(@) Siamese Architecture for Sentence Matching (b) Siamese Architecture with Factorized Multi-scale Sentence Representation

Liu et al., “Matching Natural Language Sentences with Hierarchical Sentence Factorization”, in WWW, 2018.
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Liu et al., “Matching Natural Language Sentences with Hierarchical Sentence Factorization”, in WWW, 2018.



® Multi-scale sentence matching

Output

T

Prediction Layer

_ - T~
A [\ AN

ot ? ?
| 1 Bii0 QREN  GEORRAEENERARANE RRGARENRERRRNCI:

Depth O Depth 1 Depth 2

1N028.0)

Liu et al., “Matching Natural Language Sentences with Hierarchical Sentence Factorization”, in WWW, 2018.



® Comparison to existing methods

MSRP SICK MSRvid STSbenchmark
Model
Acc.(%) F1(%) r p r p r p
MaLSTM 66.95 73.95 | 0.7824 0.71843 | 0.7325 0.7193 | 0.5739 0.5558
Multi-scale MaLSTM 74.09 82.18 | 0.8168 0.74226 | 0.8236 0.8188 | 0.6839 0.6575
HCTI 73.80 80.85 | 0.8408 0.7698 | 0.8848 0.8763 | 0.7697 0.7549
Multi-scale HCTI 74.03 81.76 | 0.8437 0.7729 | 0.8763 0.8686 | 0.7269 0.7033

(Accuracy, F1, Pearson’s r , Spearman’s p )

Open source: https://github.com/BangLiu/SentenceMatching

Liu et al., “Matching Natural Language Sentences with Hierarchical Sentence Factorization”, in WWW, 2018.



Multitask Learning for
Sentence Embedding




@ Motivation: limited training data

@ Limited amounts of training data are 4 s N = w e N
available for many NLP tasks.

® Multitask to Increase Data: perform multi-
tasking when one of your two tasks has
many fewer data

@ Multitask to Increase Data: perform multi-

tasking when your tasks are related
Training

Data

Training Training
Data Data

N o d DS

Model 1 Model 2 Model 3

Task 1 Task 2 Task 3
(b)



® Types of learning

® Multi-task learning is a general term for training on multiple tasks

@ Transfer learning 1s a type of multi-task learning where we only really care about one of the
tasks

Training Testing

Transfer Learning

Multi-task Learning

Lifelong Learning

Learning to Transfer




® Universal Sentence Encoder (USE)

® Design an encoder that summarizes any given sentence to a 512-dimensional sentence
embedding.

® Use this same embedding to solve multiple tasks and based on the mistakes it makes on those,
we update the sentence embedding.

Multi-task Learning

Skip-thought

"Sentence” | Encoder | Response Prediction

Y * | Natural Language Inference

e - -
-— fr— — -
- e e e — — - wmm e -

Cer et al., “Universal Sentence Encoder”
https://amitness.com/2020/06/universal-sentence-encoder/



@ USE Encoder: Transformer

@ 6 stacked transformer layers. Each layer has a self-attention module followed by a feed-forward
network.

® The output context-aware word embeddings are added element-wise and divided by the square
root of the length of the sentence to account for the sentence-length difference.

@ Better accuracy, higher complexity. >12-dim embedding
Element-wise sum
Transformer Encoder Layer and length normalization

[ Context-aware embeddings

Layer 6

Layer 5

Feed Forward Network :

Transformer Layer 4

Encoder Layer 3

Self-Attention Layer 2

Layer 1

[ 1 1
hello world

hello world
Cer et al., “Universal Sentence Encoder”
https://amitness.com/2020/06/universal-sentence-encoder/



@ USE Encoder: Deep Average Network

512-dim embedding

@ First, the embeddings for word and bi-grams
present 1n a sentence are averaged together.

Final layer

@ Then, they are passed through 4-layer feed- Hidden layer 3
forward deep DNN to get 512-dimensional
sentence embedding.

Hidden layer 2

Hidden layer 1

® Slightly reduced accuracy, more efficient ]
inference

average

[ 1 (11 [ 1

hello world hello world

Deep Averaging Network

Cer et al., “Universal Sentence Encoder”
https://amitness.com/2020/06/universal-sentence-encoder/



@ Task: modified skip-thought

® The 1dea with original skip-thought paper from Kiros et al. was to use the current sentence to
predict the previous and next sentence.

@ In USE, the same core 1dea 1s used. But instead of LSTM encoder-decoder architecture,
transformer or DAN 1s used.
{(p.sT)] [(n.sT)J

D S N
Document 1
Vi N ‘
Previous sentence v> DNN ONN
Center Sentence | Captain America tries lifting Thor's hammer predict
Encoder Encoder Encoder
Next Sentence T T T
Previous Center Next
Sentence Sentence Sentence
Skip-Thought Vectors: https://arxiv.org/pdi/1506.06726.pdf Skip'thought Task Structure

Cer et al., “Universal Sentence Encoder”
https://amitness.com/2020/06/universal-sentence-encoder/



@ Task: conversational input-response prediction

@ Predict the correct response for a given imnput among a list of correct responses and other
randomly sampled responses.

® The dot product of this two vectors (u for input and v for response) gives the relevance of an

input to response. [ :
(U.Vv') }
Smart Reply paper I O 8§ vV U y
e Matthew Henderson 1o me = Apr17 ED]
Do you think the abstract looks okay?
DNN
Reply Prediction

‘ t{‘ O et ettt p-g ___________ "

| think it's fine. Looks good to me. it needs some work. En COder Encoder

Input Response

Input-Response Prediction

Cer et al., “Universal Sentence Encoder”
https://amitness.com/2020/06/universal-sentence-encoder/



@ Task: natural language inference

@ Predict 1f a hypothesis entails, contradicts, or 1s neutral to a premise

Premise Hypothesis

Judgement

A soccer game with multiple males playing Some men are playing a sport

entailment

| love Marvel movies | hate Marvel movies

contradiction

| love Marvel movies A ship arrived

neutral

Cer et al., “Universal Sentence Encoder”
https://amitness.com/2020/06/universal-sentence-encoder/

Entails

)

3-way softmax

l

Fully-connected layers

|

[ITTTTTITTITTI concat

U1 Us |U1'UZI UrU9

ad X
vy 1T [ITT]vu
A A
Encoder Encoder
T T
Premise Hypothesis



Which method is
better?




@ Which model?

@ Not very extensive comparison...
® Wieting et al. (2015) find that simple word averaging 1s more robust out-of-domain

@ Devlin et al. (2018) compare unidirectional and bi-directional transformer, but no comparison
to LSTM like ELMo (for performance reasons?)

® Yang et al. (2019) have ablation where similar data to BERT 1s used and improvements are
shown



@ Which training objective?

® Not very extensive comparison...

® Zhang and Bowman (2018) control for training data, and find that bi-directional LM seems
better than MT encoder

® Devlin et al. (2018) find next-sentence prediction objective good compliment to LM objective



@ Which data?

@ Not very extensive comparison...
® Zhang and Bowman (2018) find that more data 1s probably better, but results preliminary.

® Yang et al. (2019) show some improvements by adding much more data from web, but not
100% consistent.

@ Data with context 1s probably essential.



@ Todo

® Reading Assignment: A Sensitivity Analysis of (and Practitioners’ Guide to) Convolutional
Neural Networks for Sentence Classification: https://www.aclweb.org/anthology/117-1026.pdf
(Due: Feb 4th, 2022 23:59pm, EST timezone)

® Suggested Readings:

* Doc2Vec: https://cs.stanford.edu/~quocle/paragraph vector.pdf
e Universal Sentence Encoder: https://arxiv.org/pdf/1803.11175.pdt

Next lecture: Seq2Seq, Attention, Machine Translation


https://www.aclweb.org/anthology/I17-1026.pdf

Thanks! Q&A

Bang Liu
Email: bang.liu@umontreal.ca
Homepage: http://www-labs.iro.umontreal.ca/~liubang/
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