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5. The Prompt-based Massive Multi-task Learning



3

Paradigms of NLP 
Technical Development

10%

29%

31%

30%

0

100

200

300

400

500

600

700

A B C D E F

Morbi fermen
tum justo.

TEXT 1 TEXT 2

Lorem ipsum
dolor sit.

Morbi fermen
tum justo.

Lorem ipsum
dolor sit.

TEXT 3 TEXT 4



Four Paradigms of NLP Technical Development4

1. Feature Engineering
2. Architecture Engineering
3. Objective Engineering
4. Prompt Engineering



Feature Engineering5

Liu, P. et al. 2021. Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. arXiv:2107.13586.

๏ Paradigm: Fully supervised learning (Non-neural network)
๏ Time Period: Most popular through 2015
๏ Characteristics:
• Non-neural machine learning models mainly used
• Require manually defined feature extraction
๏ Representative Work:
• Manual features → linear or kernelized SVM
• Manual features → conditional random fields (CRF)

CLS: Classification
TAG: Seq tagging
GEN: Text generation

: Unsupervised training
: Supervised training
: Sup. + Unsup. training
: Textual prompt



Architecture Engineering6

Liu, P. et al. 2021. Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. arXiv:2107.13586.

๏ Paradigm: Fully supervised learning (Neural networks)
๏ Time Period: About 2013-2018
๏ Characteristics:
• Rely on neural networks
• Don’t need manually defined features
• Should modify network structure (e.g., LSTM vs. CNN)
• Sometimes use pretraining of LMs but often only for shallow 

features such as embeddings (word2vec / GloVe)
๏ Representative Work:
• CNN / LSTM for text classification

CLS: Classification
TAG: Seq tagging
GEN: Text generation

: Unsupervised training
: Supervised training
: Sup. + Unsup. training
: Textual prompt



Objective Engineering7

Liu, P. et al. 2021. Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. arXiv:2107.13586.

๏ Paradigm: Pre-train → Fine-tune
๏ Time Period: 2017-Now
๏ Characteristics:
• Pre-trained LMs (PLMs) used as initialization of full model –

both shallow and deep features
• Less work on architecture design, but engineer objective 

functions
๏ Representative Work:
• BERT + Fine-tuning

CLS: Classification
TAG: Seq tagging
GEN: Text generation

: Unsupervised training
: Supervised training
: Sup. + Unsup. training
: Textual prompt



Prompt Engineering8

Liu, P. et al. 2021. Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. arXiv:2107.13586.

๏ Paradigm: Pre-train → Prompt → Predict
๏ Time Period: 2019-Now
๏ Characteristics:
• NLP tasks are modeled entirely by relying on LMs
• The tasks of shallow & deep feature extraction, and 

prediction of the data are all given to the LM
• Engineering of prompts is required
๏ Representative Work:
• GPT-3

CLS: Classification
TAG: Seq tagging
GEN: Text generation

: Unsupervised training
: Supervised training
: Sup. + Unsup. training
: Textual prompt
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Architectures for 
Pretrained Language 

Models (PLMs)



PLMs Categorized by Architectures10

๏ Transformer Encoder
• BERT, RoBERTa, SpanBERT, XLNet…

๏ Transformer Decoder
• GPT, GPT-2, GPT-3…

๏ Transformer Encoder-Decoder
• T5, BART, mBART, MASS, XNLG…



PLMs Categorized by Frameworks11

๏ Some popular frameworks include…
• Left-to-Right LM
• Masked LM
• Prefix LM
• Encoder-decoder



Left-to-Right Language Model12

๏ Characteristics
• First proposed by Markov (1913)
• Count-based → Neural network-based
• Specifically suitable to highly larger-scale LMs

๏ Example: GPT, GPT-2, GPT-3

๏ Roles in Prompting Methods
• The earliest architecture chosen for prompting



Masked Language Model13

๏ Characteristics
• Unidirectional → Bi-directional prediction
• Suitable for NLU tasks
• Not suitable for NLG tasks

๏ Example: BERT, ERNIE



Prefix Language Model14

๏ Characteristics
• A combination of Left-to-Right LM and Masked LM
• Use a Transformer but 2 different mask mechanisms to handle text X and y 

separately
• Corruption operations can be introduced when encoding X

๏ Example: UniLMv1/v2, ERNIE-M



Encoder-Decoder15

๏ Characteristics
• A denoised auto-encoder
• Use 2 Transformers and 2 different mask mechanisms to handle text X and 

y separately
• Corruption operations can be introduced when encoding X

๏ Example: T5, BART
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Prompting



What is Prompting?17

Liu, P. et al. 2021. Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. arXiv:2107.13586.

๏ Encouraging a pre-trained model to make particular predictions by
providing a “prompt” specifying the task to be done



Terms About Prompts18

Schick, T, Schütze, H. 2020. Exploiting cloze questions for few shot text classification and natural language inference. In EACL 2021.

๏ Input 𝑥𝑥: the original input text of a task
๏ Label 𝑦𝑦: the original output of a task
๏ Template/Pattern 𝑃𝑃(𝑥𝑥): a sentence that contains one masked section
๏ Verbalizer 𝑣𝑣(𝑦𝑦): transforming label to a token or a text span
๏ Answer 𝑧𝑧: the text filled to the template’s masked section by the model

E.g., For a sentiment classification task,

Best pizza ever!

𝑥𝑥
Best pizza ever! It was ___

Template: [x] It was [z]

𝑃𝑃(𝑥𝑥)

PLM
Best pizza ever! It was great

𝑧𝑧

𝑣𝑣 𝑃𝑃𝑃𝑃𝑃𝑃 =“great”            
𝑣𝑣 𝑁𝑁𝑁𝑁𝑁𝑁 =“terrible”

POS
𝑦𝑦



Typical Workflow of Prompting19

Schick, T, Schütze, H. 2020. Exploiting cloze questions for few shot text classification and natural language inference. In EACL 2021.

1. Prompt Addition: Generate prompt with masked section by pattern 𝑃𝑃
2. Answer Prediction: Fill in answer 𝑧𝑧 to the masked section by PLM
3. Mapping: Given predicted answer 𝑧𝑧, map it back to the label

Best pizza ever!

𝑥𝑥
Best pizza ever! It was ___

Template: [x] It was [z]

𝑃𝑃(𝑥𝑥)

PLM
Best pizza ever! It was great

𝑧𝑧

𝑣𝑣 𝑃𝑃𝑃𝑃𝑃𝑃 =“great”            
𝑣𝑣 𝑁𝑁𝑁𝑁𝑁𝑁 =“terrible”

POS
𝑦𝑦



Different Types of Prompts20

Liu, P. et al. 2021. Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. arXiv:2107.13586.

๏ Cloze Prompt: [x] I think it is a [z] restaurant
• Suitable for Masked LMs (BERT, RoBERTa…)

๏ Prefix Prompt: [x] I think it is [z]
• Suitable for Left-to-right LMs (GPT-2, GPT-3…), Prefix LMs (UniLMv1/v2), 

and Encoder-Decoders (T5, BART…)



Different Types of Answers21

Liu, P. et al. 2021. Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. arXiv:2107.13586.

๏ Token: Answer is one token in the vocabulary
• E.g., Sentiment classification: I love this movie. This movie is {great, bad…}

๏ Span: A short multi-token span. Typically used with cloze prompts
• E.g., Topic classification: He trained a neural network. This sentence is 

about {machine learning, quantum physics…}

๏ Sentence: An arbitrary length sentence. Typically used with prefix prompts
• E.g., Machine translation: English: I love natural language processing. 

French: {J'adore le traitement automatique du langage naturel}



Different Types of Training Strategies22

Liu, P. et al. 2021. Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. arXiv:2107.13586.

Strategy LM Params Tuned Additional Trainable 
Params for Prompt Examples

Promptless
Fine-tuning ✔ N/A BERT Fine-tuning

Tuning-free 
Prompting ❌ ❌ GPT-3

Fixed-LM
Prompt Tuning ❌ ✔ Prefix-tuning

Fixed-prompt
LM Tuning ✔ ❌ PET

Prompt+LM
Fine-tuning ✔ ✔ PADA



Different Types of Settings23

Brown, T. et al. 2020. Language Models are Few-shot Learners. In NeurIPS 2020.

๏ Zero-shot: without any explicit training samples of the downstream task
๏ Few-shot: only few training samples (e.g., 1-100) of the downstream task
๏ Full-data: Use plenty of training samples (e.g., 10K) from the full dataset



Some Examples of Prompting24

Liu, P. et al. 2021. Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. arXiv:2107.13586.



Using Prompts in More Complicated Tasks25

Li, C. et al. 2021. Sentiprompt: Sentiment knowledge enhanced prompt-tuning for aspect-based sentiment analysis. arXiv:2109.08306
Schick T, Schütze H. 2020. Exploiting cloze questions for few shot text classification and natural language inference. arXiv:2001.07676.

๏ Natural Language Inference (NLI)
• [x1] ? {Yes (Entailment), No (Contradiction), Maybe (Neutral)} [x2]
• A soccer game with multiple males playing ? Yes. Some men are playing a 

sport.

๏ Aspect-Based Sentiment Analysis (ABSA)
• [x] The [Aspect] is [Opinion] ? {Yes, No}. This is {POS, NEG, NEU}.
• The owners are great fun and the beer selection is worth staying for. The 

owners are great fun ? Yes. This is POS.



Why Prompting?26

๏ The PLM may be too large to fine-tune.

Brown, T. et al. 2020. Language Models are Few-shot Learners. In NeurIPS 2020.
Smith, S, et al. 2022. Using DeepSpeed and Megatron to Train Megatron-Turing NLG 530B, A Large-Scale Generative Language Model. arXiv:2201.11990.



Why Prompting? (contd.)27

๏ When dealing with multiple tasks, only need to keep one copy of PLM!

Fine-tuning

BERT for dataset 1

BERT for dataset 2

BERT for dataset 3

BERT for dataset 4

…………

Vs.

Prompting

[x]…[z]: Prompt for dataset 1
[x]…[z]: Prompt for dataset 2
[x]…[z]: Prompt for dataset 3
[x]…[z]: Prompt for dataset 4

…………



Why Prompting? (contd.)28

๏ When dealing with multiple tasks, only need to keep one copy of PLM!
๏ Note: the previous most popular solution for this is called Adapters.

Houlsby, N. et al. 2019. Parameter-Efficient Transfer Learning for NLP. In ICML 2019.

๏ Adapters reduce #params/task by
30x at only 0.4% accuracy drop.



Why Prompting? (contd.)29

๏ Large PLMs performs well under even zero-shot setting using prompts.

Brown, T. et al. 2020. Language Models are Few-shot Learners. In NeurIPS 2020.



Why Prompting? (contd.)30

๏ A good prompt is worth hundreds to thousands of labeled data.

Scao, T L, Rush, A M. 2021. How many data points is a prompt worth?. In NAACL-HLT 2021.



Why Prompting? (contd.)31

๏ Researchers’ interest in prompting is HIGH!

http://pretrain.nlpedia.ai/



What is the Problem with Prompting?32

๏ It is hard to manually design a “good” prompt.

Liu, X, et al. 2021. GPT Understands, Too. arXiv: 2103.10385. 
Jiang, Z, et al. 2020. How Can We Know What Language Models Know? In TACL 2020.



How to Select a Strategy to Use PLMs (Currently)33

๏ Promptless Fine-tuning

๏ Fixed-prompt Tuning

๏ Prompt+LM Fine-tuning

๏ Tuning-free Prompting

๏ Fixed-LM Prompt Tuning

๏ If you have a huge PLM to use 
(e.g., GPT-3)?

๏ If you have few training 
examples?

๏ If you have lots of training 
examples?
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Development of 
Prompting



From a General View35

๏ In this section, we will very briefly introduce the papers in green rectangles
in an approximately chronological order (More details will be covered in 
your mini-lecture!): 

Liu, P. et al. 2021. Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. arXiv:2107.13586.



LAMA: Patterns to Probe Knowledge in PLMs36

๏ Use a prompt to probe knowledge in unfine-tuned PLMs, like querying a KG
๏ Contains templates for a set of datasets for knowledge probing (a.k.a LAMA 

Probes), which forms a knowledge probing task for PLMs

Petroni, F, et al. 2019. Language Models as Knowledge Bases?. In EMNLP 2019.



LPAQA: Easily Generate More Patterns for Ensembling37

๏ Simple ways to generate & select prompts (especially for relation 
extraction tasks)

• Prompt mining (answers → prompts)
• Middle-word prompts: Barack Obama was born in Hawaii → [x] was born in [y]

• Dependency-based prompts: The capital of France is Paris → capital of [x] is [y]

• Prompt paraphrasing (existing prompts → new prompts)
• Back-translation: [x] shares a border with [y]

Jiang, Z, et al. 2020. How Can We Know What Language Models Know?. In TACL 2020.

En-De 
translation

En-De 
translation [x] adjoins [y]



GPT-3: Fine-tuning is Not Needed!38

๏ Instead of fine-tuning, GPT-3 
uses “in-context learning”

๏ The task description and examples 
forms the “context”, while the 
prompt completes the task

๏ Large PLM + in-context learning 
works surprisingly well

๏ Later works refine the way to 
choose and orders in-context 
examples

Brown, T. et al. 2020. Language Models are Few-shot Learners. In NeurIPS 2020.



PET: You Don’t Need a Huge PLM to Beat GPT-3 39

๏ Fixed-prompt LM Tuning + ALBERT-xxlarge-v2 >= GPT-3 in few-shot setting

Schick, T, Schütze, H. 2021. It's Not Just Size That Matters: Small Language Models Are Also Few-Shot Learners. In NAACL-HLT 2021.



AutoPrompt: Prompts Can Be Automatically Optimized40

๏ Automatically optimize arbitrary prompts based on existing words
๏ Train “trigger tokens” as prompt using SGD. Doesn’t have to be meaningful.

Shin, T, et al. 2020. AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts. In EMNLP 2020.



Prefix-Tuning: Do Prompts Have to Be Discrete?41

๏ Directly optimize the embedding vectors for the prompt, instead of words
๏ Adds fixed-length trainable prefix vectors to each Transformer layer

Li, X L, Liang, P. 2021. Prefix-Tuning: Optimizing Continuous Prompts for Generation. In ACL 2021.



Prompt-Tuning: Continuous Prompts at its Best42

๏ Optimizing only the prefix for embedding layer instead of all layers in 
prefix-tuning

๏ Lots of useful ablation studies about different designs!

Lester, B, et al. 2021. The Power of Scale for Parameter-Efficient Prompt Tuning. In EMNLP 2021.



Multi-prompt Learning43

๏ 4 representative processes: Prompt ensembling; Prompt augmentation; 
Prompt composition; Prompt decomposition.

Liu, P. et al. 2021. Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. arXiv:2107.13586.



Multi-prompt Learning44

Liu, P. et al. 2021. Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. arXiv:2107.13586.

๏ Prompt Ensembling: Use multiple prompts and perform model ensembling
techniques like weighted averaging or majority voting



Multi-prompt Learning45

Liu, P. et al. 2021. Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. arXiv:2107.13586.

๏ Prompt Augmentation: Provide some examples of correct answers to the 
prompt. The selection and ordering of the examples are crucial.



Multi-prompt Learning46

Liu, P. et al. 2021. Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. arXiv:2107.13586.

๏ Prompt Composition: For composable tasks (like relation extraction), 
compose several small sub-prompts into a single complete prompt for the task.



Multi-prompt Learning47

Liu, P. et al. 2021. Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. arXiv:2107.13586.

๏ Prompt Decomposition: For tasks that needs multiple predictions (like 
sequence labeling), break down into sub-prompts and answer each separately.
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The Prompt-based 
Massive Multi-task 

Learning



How Does Prompting Affects Pretraining?49

๏ Why different prompts for a single input have huge performance gap?
๏ A possible reason: the prompt’s expression is not like the ones PLM sees 

during pretraining; a gap has to be bridged

๏ What if PLM sees such “prompt-like” expressions during pretraining?

Liu, X, et al. 2021. GPT Understands, Too. arXiv: 2103.10385. 

←The expressions in the pretraining corpus are like this.

←What if we add lots of such kind of sentences for pretraining?



MetaICL: No Need for Patterns After Meta Learning50

๏ Meta-learning for in-context learning: train the model to recognize task 
based on context instances (with meta-learning on 142 tasks)

๏ No need for patterns: concatenate 𝑘𝑘 labeled instances with the input

Min, S, et al. 2021. MetaICL: Learning to Learn In Context. arXiv:2110.15943.

Task 1

(𝑥𝑥11,𝑦𝑦11)
(𝑥𝑥21,𝑦𝑦21)

……
(𝑥𝑥𝑁𝑁1
1 ,𝑦𝑦𝑁𝑁1

1 )

Task 2

(𝑥𝑥12,𝑦𝑦12)
(𝑥𝑥22,𝑦𝑦22)

……
(𝑥𝑥𝑁𝑁2

2 ,𝑦𝑦𝑁𝑁2
2 )

Meta-training Tasks

Task 𝐶𝐶

(𝑥𝑥1𝐶𝐶 ,𝑦𝑦1𝐶𝐶)
(𝑥𝑥2𝐶𝐶 ,𝑦𝑦2𝐶𝐶)

……
(𝑥𝑥𝑁𝑁𝐶𝐶

𝐶𝐶 ,𝑦𝑦𝑁𝑁𝐶𝐶
𝐶𝐶 )

……

Target Task

(𝑥𝑥1,𝑦𝑦1)
(𝑥𝑥2,𝑦𝑦2)

……
𝑥𝑥?

Target Task (Unseen)



FLAN: Bridge the Gap by Instruction Tuning51

๏ Fine-tune PLM on “instructions” from diverse labeled datasets

Wei, J, et al. 2021. Finetuned Language Models are Zero-Shot Learners. In ICLR 2022 (Oral).

1. Construct 10 templates for each 
dataset

2. Randomly select instance + 
template from all datasets to 
construct “instruction”

3. Instruction-tune PLM on all tasks
4. Zero-shot inference on unseen 

task with instruction (prompt)



FLAN: Bridge the Gap by Instruction Tuning (contd.)52

๏ Fine-tune PLM on “instructions” from diverse labeled datasets

Wei, J, et al. 2021. Finetuned Language Models are Zero-Shot Learners. In ICLR 2022 (Oral).

Total 62 datasets for instruction-tuning
NLU tasks in blue, NLG tasks in teal

Example instruction templates for NLI
Use textual instructions to describe the task



FLAN: Bridge the Gap by Instruction Tuning (contd.)53

๏ Fine-tune PLM on “instructions” from diverse labeled datasets
๏ Makes texts seen in pretraining & inference more similar
๏ Only helps large PLMs to generalize; small models are limited by capacity

Wei, J, et al. 2021. Finetuned Language Models are Zero-Shot Learners. In ICLR 2022 (Oral).



T0: More Diverse Instructions, Less Parameters54

๏ Also fine-tune PLM on prompts from diverse labeled datasets
๏ Some differences vs. FLAN:

Sanh, V, et al. 2021. Multitask Prompted Training Enables Zero-Shot Task Generalization. In ICLR 2022 (Spotlight).

Strategy T0 FLAN

PLM Selection T5+LM (Enc-Dec)
trained with MLM

LaMDA-PT (Dec)
trained with LM

Dataset Count 171 62

Total Prompts 1939 620

Prompt Source Crowdsourcing
(more diversity)

Manually design
(less diversity)



T0: More Diverse Instructions, Less Parameters (Contd.)55

๏ Also fine-tune PLM on prompts from diverse labeled datasets

Sanh, V, et al. 2021. Multitask Prompted Training Enables Zero-Shot Task Generalization. In ICLR 2022 (Spotlight).

Total 171 datasets
Training tasks in yellow, validation tasks in green

The more diverse prompts from crowdsourcing

(Compare with FLAN’s)



T0: More Diverse Instructions, Less Parameters (Contd.)56

๏ Also fine-tune PLM on prompts from diverse labeled datasets
๏ The difference in PLM and prompt diversity brings different results

Sanh, V, et al. 2021. Multitask Prompted Training Enables Zero-Shot Task Generalization. In ICLR 2022 (Spotlight).

Small model also performs zero-shot well!



The General Paradigm Shift to LM-based Solutions57

๏ Lots of NLP tasks can be solved by applying prompting to LM… 
Seems language modeling is unifying the task paradigms…?

๏ Is this the real unified NLP solution we are seeking? Think about it 

Sun, T, et al. 2021. Paradigm Shift in Natural Language Processing. arXiv:2109.12575.



References

1. CMU LTI CS11-711 Advanced NLP, Fall 2021: 
http://phontron.com/class/anlp2021/schedule/prompting.html#, 
Representation 3

๏ Recommended reading: Pre-train, Prompt, and Predict: A Systematic 
Survey of Prompting Methods in Natural Language Processing
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http://phontron.com/class/anlp2021/schedule/prompting.html
https://arxiv.org/pdf/2107.13586.pdf


About the Assignments and Mini-lectures

๏ Assignment 2 will be released today. It will be about neural machine 
translation (NMT) using seq2seq w/ attention. Due: 23:59 EST, March 1st.

๏ The grades for Assignment 1 will be released this week. We are still 
looking at your project proposals.

๏ Don’t forget to submit your mini-lecture slides on both StudiUM and the 
slack channel #mini-lectures before 11:59 a.m. EST, March 18th!

๏ Check your presentation order on the link posted in the #general channel 
in advance. Looking forward to your presentation!
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