recherche appliquée en linguistique informatique

Natural Language Processing with Deep Learning IFT6289, Winter 2022

Lecture 8: Prompting Suyuchen Wang

- 1. Paradigms of NLP Technical Development
- 2. Architectures for Pretrained Language Models
- 3. Prompting
- 4. Development of Prompting
- 5. The Prompt-based Massive Multi-task Learning

Paradigms of NLP **Technical Development**

4 Four Paradigms of NLP Technical Development

- 1. Feature Engineering
- 2. Architecture Engineering
- 3. Objective Engineering
- 4. Prompt Engineering

Feature Engineering 5

- **Paradigm**: Fully supervised learning (Non-neural network) $oldsymbol{O}$
- **Time Period**: Most popular through 2015 \odot
- **Characteristics**: \bigcirc
 - Non-neural machine learning models mainly used
 - Require manually defined feature extraction
- **Representative Work**: \odot
 - Manual features \rightarrow linear or kernelized SVM Manual features \rightarrow conditional random fields (CRF)

6 Architecture Engineering

- **Paradigm:** Fully supervised learning (Neural networks) \odot
- Time Period: About 2013-2018 \odot
- **Characteristics**: \bigcirc
 - Rely on neural networks
 - Don't need manually defined features
 - Should modify network structure (e.g., LSTM vs. CNN)
 - Sometimes use pretraining of LMs but often only for shallow features such as embeddings (word2vec / GloVe)
- **Representative Work**: \odot
 - **CNN / LSTM for text classification**

GEN

Objective Engineering 7

- **Paradigm**: Pre-train \rightarrow Fine-tune \odot
- Time Period: 2017-Now \odot
- **Characteristics**: \odot
 - Pre-trained LMs (PLMs) used as initialization of full model both shallow and deep features
 - Less work on architecture design, but engineer objective functions
- **Representative Work**: \odot
 - BERT + Fine-tuning

Prompt Engineering

- **Paradigm**: Pre-train \rightarrow Prompt \rightarrow Predict \odot
- Time Period: 2019-Now \odot
- **Characteristics**: \bigcirc
 - NLP tasks are modeled entirely by relying on LMs
 - The tasks of shallow & deep feature extraction, and prediction of the data are all given to the LM
 - Engineering of prompts is required
- **Representative Work**: \odot
 - GPT-3

Architectures for Pretrained Language Models (PLMs)

- **Transformer Encoder** \bigcirc
 - BERT, RoBERTa, SpanBERT, XLNet...
- **Transformer Decoder** $oldsymbol{O}$
 - GPT, GPT-2, GPT-3...
- **Transformer Encoder-Decoder** \bigcirc T5, BART, mBART, MASS, XNLG...

- Some popular frameworks include... \odot
 - Left-to-Right LM
 - Masked LM
 - **Prefix LM**
 - **Encoder-decoder**

12 Left-to-Right Language Model

- Characteristics
 - First proposed by Markov (1913)
 - Count-based → Neural network-based
 - Specifically suitable to highly larger-scale LMs
- **Example**: GPT, GPT-2, GPT-3
- Roles in Prompting Methods
 - The earliest architecture chosen for prompting

s) -based mer-scale I M

Masked Language Model 13

- Characteristics $oldsymbol{O}$
 - Unidirectional \rightarrow Bi-directional prediction
 - Suitable for NLU tasks
 - Not suitable for NLG tasks

Example: BERT, ERNIE \odot

14 Prefix Language Model

- **Characteristics** \bullet
 - A combination of Left-to-Right LM and Masked LM
 - separately
 - Corruption operations can be introduced when encoding X
- **Example**: UniLMv1/v2, ERNIE-M \odot

Use a Transformer but 2 different mask mechanisms to handle text X and y

- Characteristics \bigcirc
 - A denoised auto-encoder
 - y separately
 - Corruption operations can be introduced when encoding X
- **Example**: T5, BART \odot

Use 2 Transformers and 2 different mask mechanisms to handle text X and

Prompting

 \odot providing a "prompt" specifying the task to be done

Liu, P. et al. 2021. Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. arXiv:2107.13586.

Encouraging a pre-trained model to make particular predictions by

18 Terms About Prompts

- Input χ : the original input text of a task
- **Label** *y*: the original output of a task
- **Template/Pattern** P(x): a sentence that contains one masked section
- Verbalizer v(y): transforming label to a token or a text span
- Answer z: the text filled to the template's masked section by the model

E.g., For a sentiment classification task,

$$\begin{array}{c} \text{Template: [x] It was [z]} \\ \hline \mathcal{X} \end{array} \xrightarrow{} \begin{array}{c} \text{Best pizza} \\ \mathcal{X} \end{array}$$

Schick, T, Schütze, H. 2020. Exploiting cloze questions for few shot text classification and natural language inference. In EACL 2021.

Typical Workflow of Prompting 19

- 1.
- **2.** Answer Prediction: Fill in answer z to the masked section by PLM
- **3.** Mapping: Given predicted answer z, map it back to the label

Schick, T, Schütze, H. 2020. Exploiting cloze questions for few shot text classification and natural language inference. In EACL 2021.

Prompt Addition: Generate prompt with masked section by pattern P

Different Types of Prompts 20

- **Cloze Prompt**: [X] I think it is a [Z] restaurant $oldsymbol{O}$
 - Suitable for Masked LMs (BERT, RoBERTa...)
- **Prefix Prompt**: [x] | think it is [z] \odot
 - and Encoder-Decoders (T5, BART...)

Liu, P. et al. 2021. Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. arXiv:2107.13586.

Suitable for Left-to-right LMs (GPT-2, GPT-3...), Prefix LMs (UniLMv1/v2),

Different Types of Answers 21

- **Token**: Answer is one token in the vocabulary \odot E.g., Sentiment classification: I love this movie. This movie is {great, bad...}
- **Span**: A short multi-token span. Typically used with **cloze prompts** $oldsymbol{O}$ E.g., Topic classification: He trained a neural network. This sentence is about {machine learning, quantum physics...}
- **Sentence**: An arbitrary length sentence. Typically used with **prefix prompts** \odot E.g., Machine translation: English: I love natural language processing. French: {J'adore le traitement automatique du langage naturel}

Different Types of Training Strategies 22

Liu, P. et al. 2021. Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. arXiv:2107.13586.

Different Types of Settings 23

- \odot
- \odot
- \odot

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

Brown, T. et al. 2020. Language Models are Few-shot Learners. In NeurIPS 2020.

Zero-shot: without any explicit training samples of the downstream task **Few-shot:** only few training samples (e.g., 1-100) of the downstream task Full-data: Use plenty of training samples (e.g., 10K) from the full dataset

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

24 Some Examples of Prompting

Туре	Task	Input ([X])	Template	Answer ([Z])
	Sentiment	I love this movie.	[X] The movie is [Z].	great fantastic
Text CLS	Topics	He prompted the LM.	[X] The text is about [Z].	sports science
	Intention	What is taxi fare to Denver?	[X] The question is about [Z].	quantity city
Text-span CLS	Aspect Sentiment	Poor service but good food.	[X] What about service? [Z].	Bad Terrible
Text-pair CLS	NLI	[X1]: An old man with [X2]: A man walks	[X1]? [Z], [X2]	Yes No
Tagging	NER	[X1]: Mike went to Paris. [X2]: Paris	[X1] [X2] is a [Z] entity.	organization location
Text Generation	Summarization	Las Vegas police	[X] TL;DR: [Z]	The victim A woman
	Translation	Je vous aime.	French: [X] English: [Z]	I love you. I fancy you.

Liu, P. et al. 2021. Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. arXiv:2107.13586.

Using Prompts in More Complicated Tasks 25

- Natural Language Inference (NLI) \odot
 - [x1] ? {Yes (Entailment), No (Contradiction), Maybe (Neutral)} [x2] A soccer game with multiple males playing ? Yes. Some men are playing a
 - sport.
- Aspect-Based Sentiment Analysis (ABSA) \odot
 - [x] The [Aspect] is [Opinion] ? {Yes, No}. This is {POS, NEG, NEU}. The owners are great fun and the beer selection is worth staying for. The owners are great fun ? Yes. This is POS.

Li, C. et al. 2021. Sentiprompt: Sentiment knowledge enhanced prompt-tuning for aspect-based sentiment analysis. arXiv:2109.08306 Schick T, Schütze H. 2020. Exploiting cloze questions for few shot text classification and natural language inference. arXiv:2001.07676.

• The PLM may be too large to fine-tune.

Brown, T. et al. 2020. Language Models are Few-shot Learners. In NeurIPS 2020. Smith, S, et al. 2022. Using DeepSpeed and Megatron to Train Megatron-Turing NLG 530B, A Large-Scale Generative Language Model. arXiv:2201.11990.

When dealing with multiple tasks, only need to keep one copy of PLM! \odot

Fine-tuning

Prompting

- ...[z]: Prompt for dataset 1 [X].
- [x]...[z]: Prompt for dataset 2
- [x]...[z]: Prompt for dataset 3
- [x]...[z]: Prompt for dataset 4

.

- Vs.

Why Prompting? (contd.) 28

- \odot
- \odot
- Adapters reduce #params/task by \odot **30x** at only 0.4% accuracy drop.

Houlsby, N. et al. 2019. Parameter-Efficient Transfer Learning for NLP. In ICML 2019.

When dealing with multiple tasks, only need to keep one copy of PLM! Note: the previous most popular solution for this is called Adapters.

• Large PLMs performs well under even zero-shot setting using prompts.

	LAMBADA	LAMBADA	StoryCloze	HellaSwag	Setting	NaturalQS	WebQS	TriviaQA
Setting	(acc)	(ppl)	(acc)	(acc)	RAG (Fine-tuned, Open-Domain) [LPP+20]	44.5	45.5	68.0
SOTA	60 00	0 626	01 QC	95 c d	T5-11B+SSM (Fine-tuned, Closed-Book) [RRS20]	36.6	44.7	60.5
SOIA	08.0*	8.05	91.0	05.0	T5-11B (Fine-tuned, Closed-Book)	34.5	37.4	50.1
GPT-3 Zero-Shot	76.2	3.00	83.2	78.9	GPT-3 Zero-Shot	14.6	14.4	64.3
GPT-3 One-Shot	72.5	3.35	84.7	78.1	GPT-3 One-Shot	23.0	25.3	68.0
GPT-3 Few-Shot	86.4	1.92	87.7	79.3	GPT-3 Few-Shot	29.9	41.5	71.2

Brown, T. et al. 2020. Language Models are Few-shot Learners. In NeurIPS 2020.

A good prompt is worth hundreds to thousands of labeled data. \odot

ve	verage Advantage (# Training Points)						
	COPA	MultiRC*	RTE	WiC	WSC		
2	288 ± 242	384 ± 378	282 ± 34	-424 ± 74	281 ± 137		
	-	74 ± 56	404 ± 68	-354 ± 166	-		
	-	309 ± 320	-122 ± 62	-70 ± 160	-		

• Researchers' interest in prompting is HIGH!

Trend of Prompt-based Research

It is hard to manually design a "good" prompt. \odot

Prompt	P@1
[X] is located in [Y]. (original)	31.29
[X] is located in which country or state? [Y].	19.78
[X] is located in which country? [Y].	31.40
[X] is located in which country? In [Y].	51.08

Table 1. Case study on LAMA-TREx P17 with bert-base-cased. A single-word change in prompts could yield a drastic difference.

mined			y _{mine} released t	<i>he</i> DirectX		
	paraphrased DirectX is created by ypara					
	Top 5 predictions and log probabilities					
		$y_{ m man}$	$y_{ m mine}$	$y_{ m para}$		
	1	Intel -1.06	Microsoft -1.77	Microsoft -2.23		
	2	Microsoft -2.21	They -2.43	Intel -2.30		
	3	IBM -2.76	It -2.80	default -2.96		
	4	Google -3.40	Sega -3.01	Apple -3.44		
	5	Nokia -3.58	Sony -3.19	Google -3.45		

Prompts

manual

DirectX is developed by yman

Figure 1: Top-5 predictions and their log probabilities using different prompts (manual, mined, and paraphrased) to query BERT. Correct answer is underlined.

- **Promptless Fine-tuning** \odot
- **Fixed-prompt Tuning** \odot
- **Prompt+LM Fine-tuning** \odot
- **Tuning-free Prompting** \odot
- **Fixed-LM Prompt Tuning** \odot

- If you have a huge PLM to use (e.g., GPT-3)?
- If you have few training \odot examples?
- If you have lots of training \odot examples?

Development of Prompting

 In this section, we will *very* briefly introduce the papers in green rectangles in an approximately chronological order (More details will be covered in your mini-lecture!):

Liu, P. et al. 2021. Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. arXiv:2107.13586.

LAMA: Patterns to Probe Knowledge in PLMs 36

- \odot
- \odot Probes), which forms a knowledge probing task for PLMs

e.g. ELMo/BERT

Figure 1: Querying knowledge bases (KB) and language models (LM) for factual knowledge.

Use a prompt to probe knowledge in unfine-tuned PLMs, like querying a KG Contains templates for a set of datasets for knowledge probing (a.k.a LAMA)

37 LPAQA: Easily Generate More Patterns for Ensembling

- \odot extraction tasks)
 - **Prompt mining (answers** \rightarrow **prompts)**
 - **Prompt paraphrasing (existing prompts** \rightarrow **new prompts)**
 - Back-translation: [x] shares a border with $[y] \rightarrow |_{\text{translation}} \mapsto [x] adjoins [y]$

Simple ways to generate & select prompts (especially for relation

Middle-word prompts: Barack Obama was born in Hawaii $\rightarrow [x]$ was born in [y] Dependency-based prompts: The capital of France is $Paris \rightarrow capital of [x] is [y]$

GPT-3: Fine-tuning is Not Needed! 38

- Instead of fine-tuning, GPT-3 \odot uses "in-context learning"
- The task description and examples \odot forms the "context", while the prompt completes the task
- Large PLM + in-context learning \odot works surprisingly well
- Later works refine the way to \odot choose and orders in-context examples

The three settings we explore for in-context learning

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

Traditional fine-tuning (not used for GPT-3)

Fine-tuning

The model is trained via repeated gradient updates using a large corpus of example tasks.

Fixed-prompt LM Tuning + ALBERT-xxlarge-v2 >= GPT-3 in few-shot setting \odot

	Model	Params (M)	BoolQ	CB	COPA	RTE	WiC Acc	WSC Acc	MultiRC EM / E1a	ReCoRD	Avg
	Model	(141)	1100.	700.711	1100.	1100.	1100.	1100.		/////	
	GPT-3 Small	125	43.1	42.9 / 26.1	67.0	52.3	49.8	58.7	6.1 / 45.0	69.8 / 70.7	50.1
	GPT-3 Med	350	60.6	58.9 / 40.4	64.0	48.4	55.0	60.6	11.8 / 55.9	77.2 / 77.9	56.2
	GPT-3 Large	760	62.0	53.6/32.6	72.0	46.9	53.0	54.8	16.8 / 64.2	81.3 / 82.1	56.8
	GPT-3 XL	1,300	64.1	69.6 / 48.3	77.0	50.9	53.0	49.0	20.8 / 65.4	83.1 / 84.0	60.0
2	GPT-3 2.7B	2,700	70.3	67.9 / 45.7	83.0	56.3	51.6	62.5	24.7 / 69.5	86.6 / 87.5	64.3
de	GPT-3 6.7B	6,700	70.0	60.7 / 44.6	83.0	49.5	53.1	67.3	23.8 / 66.4	87.9 / 88.8	63.6
	GPT-3 13B	13,000	70.2	66.1 / 46.0	86.0	60.6	51.1	75.0	25.0/69.3	88.9 / 89.8	66.9
	GPT-3	175,000	77.5	82.1 / 57.2	92.0	72.9	55.3	75.0	32.5 / 74.8	89.0 / 90.1	73.2
	Рет	223	79.4	85.1 / 59.4	95.0	69.8	52.4	80.1	37.9 / 77.3	86.0 / 86.5	74.1
	iPet	223	80.6	92.9 / 92.4	95.0	74.0	52.2	80.1	33.0 / 74.0	86.0 / 86.5	76.8
	GPT-3	175,000	76.4	75.6 / 52.0	92.0	69.0	49.4	80.1	30.5 / 75.4	90.2 / 91.1	71.8
test	Рет	223	79.1	87.2 / 60.2	90.8	67.2	50.7	88.4	36.4 / 76.6	85.4 / 85.9	74.0
	iPet	223	81.2	88.8 / 79.9	90.8	70.8	49.3	88.4	31.7 / 74.1	85.4 / 85.9	75.4
	SotA	11,000	91.2	93.9790.8	94.8	92.3	/0.9	93.8	88.1/03.3	94.1 93.4	89.3

Schick, T, Schütze, H. 2021. It's Not Just Size That Matters: Small Language Models Are Also Few-Shot Learners. In NAACL-HLT 2021.

- \odot
- \odot

AutoPrompt: Prompts Can Be Automatically Optimized

Automatically optimize arbitrary prompts based on existing words Train "trigger tokens" as prompt using SGD. Doesn't have to be meaningful.

Prefix-Tuning: Do Prompts Have to Be Discrete? 41

- \odot
- \odot

Li, X L, Liang, P. 2021. Prefix-Tuning: Optimizing Continuous Prompts for Generation. In ACL 2021.

Directly optimize the embedding vectors for the prompt, instead of words Adds fixed-length trainable prefix vectors to each Transformer layer

- \odot prefix-tuning
- Lots of useful ablation studies about different designs! \odot

Optimizing only the prefix for embedding layer instead of all layers in

Multi-prompt Learning 43

4 representative processes: Prompt ensembling; Prompt augmentation; \odot Prompt composition; Prompt decomposition.

nput (X)	Google became a subsidiary of Alphabet
	Sub-PR1 [X] The [MASK] Google.
	Sub-PR2 [X] The [MASK] Alphabet.
↓ (Sub-PR3 [X] Google [MASK] Alphabet.
PR	•
[X] The	[MASK] Google [MASK] the [MASK] Alphab

(c) Prompt Composition.

Liu, P. et al. 2021. Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. arXiv:2107.13586.

(d) Prompt Decomposition.

Multi-prompt Learning 44

Prompt Ensembling: Use multiple prompts and perform model ensembling \odot techniques like weighted averaging or majority voting

Input (2	K) Google became a subsidiary of Alphabet.
	Sub-PR1 [X] The [MASK] Google.
	Sub-PR2 [X] The [MASK] Alphabet.
Ļ	Sub-PR3 [X] Google [MASK] Alphabet.
PR	•
[X] Th	e [MASK] Google [MASK] the [MASK] Alphab
	(c) Prompt Composition.

Liu, P. et al. 2021. Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. arXiv:2107.13586.

Multi-prompt Learning 45

Prompt Augmentation: Provide some examples of correct answers to the \odot prompt. The selection and ordering of the examples are crucial.

Prompt Composition: For composable tasks (like relation extraction), \odot compose several small sub-prompts into a single complete prompt for the task.

Liu, P. et al. 2021. Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. arXiv:2107.13586.

Prompt Decomposition: For tasks that needs multiple predictions (like \odot sequence labeling), break down into sub-prompts and answer each separately.

The Prompt-based **Massive Multi-task** Learning

How Does Prompting Affects Pretraining? 49

- Why different prompts for a single input have huge performance gap? A possible reason: the prompt's expression is not like the ones PLM sees during pretraining; a gap has to be bridged
- \odot $oldsymbol{O}$

What if PLM sees such "prompt-like" expressions during pretraining? \odot

Prompt	P@1
[X] is located in [Y]. (original)	31.29
[X] is located in which country or state? [Y].	19.78
[X] is located in which country? [Y].	31.40
[X] is located in which country? In [Y].	51.08

Table 1. Case study on LAMA-TREx P17 with bert-base-cased. A single-word change in prompts could yield a drastic difference.

- \leftarrow The expressions in the pretraining corpus are like this.
- $\leftarrow What if we add lots of such kind of sentences for pretraining?$

MetaICL: No Need for Patterns After Meta Learning 50

- \odot based on context instances (with meta-learning on 142 tasks)
- \odot

	Meta-training
Task	C meta-training tasks
Data given	Training examples $\mathcal{T}_i = \{(x_j^i, y_j^i)\}_{j=1}^{N_i}, \forall$
Objective	For each iteration, 1. Sample task $i \in [1, C]$ 2. Sample $k + 1$ examples from \mathcal{T}_i : $(x_1$ 3. Maximize $P(y_{k+1} x_{k+1}, x_1, y_1, \cdots)$
	Meta-training T

Min, S, et al. 2021. MetalCL: Learning to Learn In Context. arXiv:2110.15943.

Meta-learning for in-context learning: train the model to recognize task

No need for patterns: concatenate k labeled instances with the input

- \bigcirc
- 1. Construct 10 templates for each dataset
- 2. Randomly select instance + template from all datasets to construct "instruction"
- 3. Instruction-tune PLM on all tasks
- 4. Zero-shot inference on unseen task with instruction (prompt)

Fine-tune PLM on "instructions" from diverse labeled datasets

Fine-tune PLM on "instructions" from diverse labeled datasets $oldsymbol{O}$

Total 62 datasets for instruction-tuning NLU tasks in blue, NLG tasks in teal

set the record for the longest space, a staggering 438 days, between 1994 and 1995.

Hypothesis

longest stay in space.

Target

Entailment Not entailment

Example instruction templates for NLI Use textual instructions to describe the task

- \odot
- Makes texts seen in pretraining & inference more similar \odot
- Only helps large PLMs to generalize; small models are limited by capacity \odot

Fine-tune PLM on "instructions" from diverse labeled datasets

- Also fine-tune PLM on prompts from diverse labeled datasets \odot
- Some differences vs. FLAN: $oldsymbol{O}$

Strategy	TO	FLA
PLM Selection	T5+LM (Enc-Dec) trained with MLM	LaMDA-P ⁻ trained w
Dataset Count	171	62
Total Prompts	1939	620
Prompt Source	Crowdsourcing (more diversity)	Manually (less dive

Also fine-tune PLM on prompts from diverse labeled datasets \odot

Total 171 datasets Training tasks in yellow, validation tasks in green

55 TO: More Diverse Instructions, Less Parameters (Contd.)

For example, consider one of our prompts for Quora Question Pairs (paraphrasing identification): I'm an administrator on the website Quora. There are two posts, one that asks "question1" and another that asks "question2". I can merge questions if they are asking the same thing. Can I merge these two questions? We hypothesize that this diversity could have concrete effects. For

The more diverse prompts from crowdsourcing

- Also fine-tune PLM on prompts from diverse labeled datasets \odot
- \odot

Small model also performs zero-shot well!

T0: More Diverse Instructions, Less Parameters (Contd.)

The difference in PLM and prompt diversity brings different results

- Lots of NLP tasks can be solved by applying prompting to LM... \odot Seems language modeling is unifying the task paradigms...?
- Is this the real unified NLP solution we are seeking? Think about it ③ \odot

Sun, T, et al. 2021. Paradigm Shift in Natural Language Processing. arXiv:2109.12575.

- 1. CMU LTI CS11-711 Advanced NLP, Fall 2021: http://phontron.com/class/anlp2021/schedule/prompting.html#, **Representation 3**
- Survey of Prompting Methods in Natural Language Processing

Recommended reading: <u>Pre-train, Prompt, and Predict: A Systematic</u>

59 About the Assignments and Mini-lectures

- Assignment 2 will be released today. It will be about neural machine translation (NMT) using seq2seq w/ attention. Due: 23:59 EST, March 1st.
- The grades for Assignment 1 will be released this week. We are still looking at your project proposals.
- Don't forget to submit your mini-lecture slides on both StudiUM and the slack channel #mini-lectures before 11:59 a.m. EST, March 18th!
- Check your presentation order on the link posted in the #general channel in advance. Looking forward to your presentation!

