recherche appliquée en linguistique informatique

an a state of a state of the

Université de Montréal

Natural Language Processing with Deep Learning IFT6289, Winter 2022

Lecture 13: GNNs and Graph-based NLP Bang Liu

- TO AT THE PARTY OF THE PARTY

TANKS IN THE

A STATE STATE

Lecture outline

- 1. Why graphs for NLP?
- 2. Modeling text as graphs
- 3. Graph neural networks
- 4. Text clustering: Story Forest for fine-grained
 - events detection and organization
- 5. Text matching: matching article pairs with graphical decomposition and convolutions

Why Graphs for NLP?

Representation and Computation

How to represent text

How to compute

Bag-of-Words

Bag-of-Words

Statistics

R Word Vectors

		King	Queen	1	Prince	SS	Воу
Royal		0,99	0,99		0,99		0,01
Male		0,99	0,02		0,01		0,98
Female	\rightarrow	0,02	0,99		0,99		0,01
Age		0,7	0,6		0,1		0,2

Word Vector

Recurrent Neural Networks (RNN)

Matrix

Convolutional Neural Networks (CNN)

Real Language Models

Pre-trained Language Models

Transformers

Reural History of NLP

Rew Trends in NLP

Why Graphs: Relation Matters

- Oata in its native form is sparse, distributed and unstructured it is chaotic.
- Transformation and organization produces information.
- Knowledge is connected information.
- Identify meaningful pieces of information in the second structure in the se

[Cartoon by David Somerville, based on a two pane version by Hugh McLeod.]

buted and unstructured – it is **chaotic**. uces **information**.

Identify meaningful pieces of information and relate them to each other leads to

Why Graphs: Graphs are Everywhere in NLP

Constituency-based parse tree

Knowledge graph

Semantic structure

Dependency-based parse tree

Why Graphs: Nature of Language

Natural language is flexible, compositional, hierarchical

Why Graphs: Nature of the World

Social Graphs

Web Graphs

Transportation Graphs

Brain Graphs

Gene Graphs

Modeling Text as Graphs

NLP from a Graph Perspective

How to represent text by graphs

How to compute via graph modeling

NLP from a Graph Perspective

How to represent text by graphs

How to compute via graph modeling

Node: words, keywords

Sayyadi et al., TOIT 2013

Word Graph

Rousseau et al., ACL 2015

Rousseau et al., CIKM 2013

Edge: word co-occurrence, directed/undirected

retrieval

Text Graph

3: BC-HurricaineGilbert, 09-11 339

- 4: BC-Hurricaine Gilbert, 0348
- 5: Hurricaine Gilbert heads toward Dominican Coast 6: By Ruddy Gonzalez
- 7: Associated Press Writer
- 8: Sante Dominge, Dominican Republic (AP)
- 9: Hurricaine Gilbert Swept towrd the Dominican Republic Sunday, and the Civil Defense alerted its heavily populated south coast to prepare for high winds, heavy rains, and high seas.
- 10: The storm was approaching from the southeast with sustained winds of 75 mph gusting to 92 mph.
- 11: "There is no need for alarm," Civil Defense Director Eugenio Cabral said in a television alert shortly after midnight Saturday.
- 12: Cabral said residents of the province of Barahena should closely follow Gilbert's movement. 13: An estimated 100,000 people live in the province, including 70,000 in the city of Barahona,
- about 125 miles west of Santo Domingo. 14. Tropical storm Gilbert formed in the eastern Carribean and strenghtened into a hurricaine Saturday night
- 5: The National Hurricaine Center in Miami reported its position at 2 a.m. Sunday at latitude 16.1 north, longitude 67.5 west, about 140 miles south of Ponce, Puerto Rico, and 200 miles southeast of Santo Domingo.
- 6: The National Weather Service in San Juan, Puerto Rico, said Gilbert was moving westard at 15 mph with a 'broad area of cloudiness and heavy weather' rotating around the center of the storm.
- 7. The weather service issued a flash flood watch for Puerte Rice and the Virgin Islands until at least 6 p.m. Sunday.
- 8: Strong winds associated with the Gilbert brought coastal flooding, strong southeast winds, and up to 12 feet to Puerto Rice's south coast.
- 19: There were no reports on casualties.
- 20: San Juan, on the north coast, had heavy roins and gusts Saturday, but they subsided during the night.
- 21: On Saturday, Hurricane Florence was downgraded to a tropical storm, and its remnants pushed inland from the U.S. Gulf Coast,
- 22: Residents returned home, happy to find little damage from 90 mph winds and sheets of rain.
- 23: Florence, the sixth named storm of the 1988 Atlantic storm season, was the second hurricane.
- 24: The first, Debby, reached minimal hurricane strength briefly before hitting the Mexican coast last month.

Node: sentences, paragraphs, documents Edge: word co-occurrence, text similarities, location

TextRank

Putra et al., ACL 2017

Syntactic Graph

https://corenlp.run/

Dependency Parsing

https://demo.allennlp.org/constituency-parsing/constituency-parser

Constituency Parsing

Semantic Graph

Source: Leskovec et al., LinkKDD 2004

Reveal the semantic structure between words or phrases

LOGIC format:

 \exists w, b, g: instance(w, want-01) \land instance(g, go-01) \land instance(b, boy) \land arg0(w, b) \land arg1(w, g) \land arg0(g, b)

AMR format (based on PENMAN):

(w / want-01 :arg0 (b / boy) :arg1 (g / go-01 :arg0 b))

GRAPH format:

Figure 1: Equivalent formats for representating the meaning of "The boy wants to go".

Abstract Meaning Representation for Sembanking

Reverse Knowledge Graph

Knowledge Graph

Attention Ontology

Heterogeneous Graph

Hu et al., EMNLP 2019

https://graphaware.com/nlp/2018/09/26/bring-order-to-chaos.html

NLP from a Graph Perspective

How to represent text by graphs

How to compute via graph modeling

Node Classification

Octoli et al. TLT2016 - Graph Convolutional Networks for Named Entity Recognition • Gui et al. EMNLP2019 - A Lexicon-Based Graph Neural Network for Chinese NER ••••

Assign labels to nodes

Link Prediction

Predict incomplete edges

- Benchmark for Open Link Prediction
- Scheme Stang et al. NeurIPS 2018 Link Prediction Based on Graph Neural Networks
- ••••

• Rossi et al. TKDD2021 - Knowledge Graph Embedding for Link Prediction: A Comparative Analysis • Broscheit et al. ACL 2020 - Can We Predict New Facts with Open Knowledge Graph Embeddings? A

Relation Extraction

Figure 1: An example dependency tree for two sentences expressing a relation (sensitivity) among three entities. The shortest dependency path between these entities is highlighted in bold (edges and tokens). The root node of the LCA subtree of entities is *present*. The dotted edges indicate tokens K=1 away from the subtree. Note that tokens *partial response* off these paths (shortest dependency path, LCA subtree, pruned tree when K=1).

- O Zhao et al. ACML2019 Improving Relation Classification by Entity Pair Graph
- Extraction
- Semantic Role Labeling

•

 Guo et al. ACL2019 - Attention Guided Graph Convolutional Networks for Relation Extraction
Attention Guided Graph Convolutional Networks for Relation Extraction
Attention Guided Graph Convolutional Networks for Relation Extraction
Attention Guided Graph Convolutional Networks
For Relation Extraction
Attention Guided Graph Convolutional Networks
For Relation Extraction
Attention Guided Graph Convolutional Networks
For Relation Extraction
Attention
Subscript State
Subscri O Zhang et al. EMNLP2018 - Graph Convolution over Pruned Dependency Trees Improves Relation

• Zhu et al. ACL2019 - Graph Neural Networks with Generated Parameters for Relation Extraction • Marcheggiani et al. EMNLP2017 - Encoding Sentences with Graph Convolutional Networks for

Graph Classification

• Zhang et al. ACL2020 - Every Document Owns Its Structure: Inductive Text Classification via Graph Neural Networks • Yao et al. AAAI2019 - Graph Convolutional Networks for Text Classification • Huang et al. EMNLP2019 - Text Level Graph Neural Network for Text Classification Output States And A States And A States And A States A •

Assign a label/score to the whole graph

Graph Matching

Assign a label/score to a pair of graphs

vector space similarity

• Liu et al. ACL2019 - Matching Article Pairs with Graphical Decomposition and Convolutions

•

• Li et al. PMLR2019 - Graph Matching Networks for Learning the Similarity of Graph Structured Objects

Community Detection

• Liu et al. TKDD2020 - Story Forest: Extracting Events and Telling Stories from Breaking News • Chen et al. ICLR 2019 - Supervised Community Detection with Line Graph Neural Networks •

Group similar nodes

Graph to Text Generation

Job creation is not expected to slow down but will instead accelerate.

- Wang et al. TACL2020 AMR-To-Text Generation with Graph Transformer
- Song et al. ACL2018 A Graph-to-Sequence Model for AMR-to-Text Generation
- ••••

• Koncel-Kedziorski et al. NAACL2019 - Text Generation from Knowledge Graphs with Graph Transformers

• Alon et al. ICLR2019 - Code2Seq: Generating Sequences from Structured Representations of Code

Reasoning over Graphs

- Wang et al. AAAI2019 Explainable Reasoning over Knowledge Graphs for Recommendation
- Ding et al. ACL2019 Cognitive Graph for Multi-Hop Reading Comprehension at Scale
- Xiong et al. ACL2017 DeepPath: A Reinforcement Learning Method for Knowledge Graph Reasoning
- Chen et al. IJCAI2020 GraphFlow: Exploiting Conversation Flow with Graph Neural Networks for Conversational Machine Comprehension
- Asai et al. ICLR2020 Learning to Retrieve Reasoning Paths over Wikipedia Graph for Question Answering
- Fang et al. EMNLP2020 Hierarchical Graph Network for Multi-hop Question Answering

••••

• Tu et al. ACL2019 - Multi-hop Reading Comprehension across Multiple Documents by Reasoning over Heterogeneous Graphs

Graph Transformation/Generation

Graph at t-1 step

- Liao et al. NeurIPS2019 Efficient Graph Generation with Graph Recurrent Attention Networks
- O et al. KDD2019 Graph Transformation Policy Network for Chemical Reaction Prediction
- Brockschmidt et al. ICLR 2019 Generative Code Modeling with Graphs
- ••••

• Dinella et al. ICLR2020 - Hoppity: Learning Graph Transformations to Detect and Fix Bugs in Programs

Graph Neural Networks

First, let us recap What is Convolution?

Convolution: 1D

OUTPUT ARRAY

Continuous

$$(fst g)(n)=\int_{-\infty}^\infty f(au)g(n- au)d au$$

Discrete

$$(fst g)(n) = \sum_{ au=-\infty}^\infty f(au)g(n- au)$$

W Understand Convolution: 2D

$$(fst g)(u,v) = \sum_i \sum_j f(i,j) g(u-i,v-j) = \sum_i \sum_j a_{i,j} b_{u-i,v-j}$$

Understand Convolution: 3D

Input Layer

Latitude

Convolutional Layer

i j k

 $(f * g)(u, v, w) = \sum \sum \sum f(i, j, k)g(u - i, v - j, w - k)$

A Understand Convolution: M-D

Onvolution is a weighted sum with constraints Onvolution is a filter / feature extractor Convolution is a transformation

$$y(n_1, n_2, \dots, n_M) = x(n_1, n_2, \dots, n_M) * \stackrel{M}{\cdots} * h(n_1, n_2, \dots, n_M) \ \sum_{k_1 = -\infty}^{\infty} \sum_{k_2 = -\infty}^{\infty} \dots \sum_{k_M = -\infty}^{\infty} h(k_1, k_2, \dots, k_M) x(n_1 - k_1, n_2 - k_2, \dots, n_M - k_M)$$

Graph is different How to Define Graph Convolution?

From Euclidean to Graphs

Traditional DL is designed for simple grids or sequences

- CNNs for fixed-size images/grids
- RNNs for text/sequences

But nodes on graphs have different connections

- Arbitrary neighbor size
- **Complex topological structure**
- No fixed node ordering

Why We Need Graph Neural Networks

- CNN cannot process Non Euclidean Structure data, and traditional discrete convolution operation)
- learning, GCN has become the focus of research
 - application space.

convolutions cannot maintain translation invariance on Non Euclidean Structure data (the number of adjacent vertices in each vertex in the topological graph may be different, so of course it is impossible to use the same size Convolution kernel for

• Since CNN cannot process Non Euclidean Structure data, and hopes to effectively extract spatial features from such a data structure (topological map) for machine

• There is no topology network in my own research question, so is GNN not used at all?

In fact, it is not. Broadly speaking, any data can establish topological associations in the normed space. Spectral clustering is the application of this idea. So

topological connection is a generalized data structure, and GNNs has a lot of

Two ways to extract features of topological graph

• **Spatial domain (vertex domain):** find out the neighbours of each vertex

- How to define neighbours (or how to identify receptive field)?
- How to process different numbers of neighbours?

Main limitations:

- vertex
- The effect of extracting features may not be as good as convolution

Niepert et al., Learning Convolutional Neural Networks for Graphs

• Each vertex has different neighbors, so that the calculation must be done for each

Two ways to extract features of topological graph

Output is the second second

- Different nodes have different number of neighbours
- Nodes are unordered

Spectral domain

- We can define "convolution" operation based on Convolution Theorem
 - Convolution in one domain (e.g., time domain) equals point-wise multiplication in the other domain (e.g., frequency domain)

Convolution theorem
$$h(x) = f * g = \mathcal{F}^{-1} \{ F \cdot G \},$$

Research History of Graph Convolution

- **Transformation on graph**
- They then defines the convolution on the graph
- proposed

Q: How to represent graphs in Spectral Domain?

The scholar who first studied Graph Signal Processing (GSP) defined Fourier

• Finally, in combination with deep learning, Graph Convolutional Network was

A: Spectral Graph Theory

A Overview of Spectral Graph Theory

Study the properties of a graph based on the eigenvalues and eigenvectors of the Laplacian matrix of the graph.

A Cverview of GNNs

Graph Neural Networks

- on the graph.

The core work of GNNs is to perform convolution operations on the Embedding of nodes in the Spatial Domain (i.e., aggregate neighbor Embedding information) • However, the difference between graph data and image data is that the number and order of node neighbors are indefinite, so the traditional convolution operation (Convolution Operator) in the CNN model used on images cannot be directly used

A Cverview of GNNs

Spectral domain

- - the other domain (e.g., frequency domain)
- classification.

We can define "convolution" operation based on Convolution Theorem

Convolution in one domain (e.g., time domain) equals point-wise multiplication in

In order to transform between the spectral domain and the spatial domain, we use the Fourier formula and define the Fourier transform on the graph (from the spatial domain to the spectral domain) and the inverse Fourier transform on the graph (from the spectral domain back to Spatial domain) transformation formula The specific operation is that we transform the Embedding of the node from the spatial domain to the spectral domain through forward Fourier transform, perform convolution operation with the convolution kernel in the spectral domain, and then transform the transformed node Embedding back into the inverse Fourier transform. Go to the spatial domain and participate in subsequent tasks such as

Now, let's learn some math: **Graph Signal Processing**

Graphs and Graph Signals

Graphs and Graph Signals

Graph signal: a function map each vertex to a scalar

Graph Signal:
$$f:\mathcal{V}
ightarrow \mathbb{R}^N$$

$$\mathcal{V} \longrightarrow \begin{bmatrix} f(1) \\ f(2) \\ f(3) \\ f(4) \\ f(5) \\ f(6) \\ f(7) \\ f(8) \end{bmatrix}$$

Graphs and Graph Signals

Can also make each vertex to a vector of d dimensional (node feature vector)

Graph Signal:
$$f: \mathcal{V} \to \mathbb{R}^{N \times d}$$

$$\mathcal{V} \longrightarrow \begin{bmatrix} f(1) \\ f(2) \\ f(3) \\ f(4) \\ f(5) \\ f(6) \\ f(7) \\ f(8) \end{bmatrix}$$

Interprete Laplacian Matrix

Laplacian Matrix

 Laplacian matrix is a matrix representation of a graph. • It can be used to find many useful properties of a graph: calculate the number of spanning trees, construct low dimensional embeddings, etc. • It can be interpreted as a matrix representation of a particular case of the discrete Laplace operator.

 $\mathbf{D} = \operatorname{diag}(\operatorname{degree}(v_1), \dots, \operatorname{degree}(v_N))$

https://en.wikipedia.org/wiki/Laplacian_matrix

A							L = D - A							
Adjacency matrix							Laplacian matrix							
(0)	1	0	0	1	0 \		$\begin{pmatrix} 2 \end{pmatrix}$	-1	0	0	-1	0 \		
1	0	1	0	1	0		-1	3	-1	0	-1	0		
0	1	0	1	0	0		0	-1	2	-1	0	0		
0	0	1	0	1	1		0	0	-1	3	-1	-1		
1	1	0	1	0	0		-1	-1	0	-1	3	0		
0	0	0	1	0	0/		0	0	0	-1	0	1/		
(<i>i</i> , <i>j</i>] = 1 if v_i is adjacent to v_j														
		A[i, j] = 0, otherwise												

Adjacency Matrix

R Thermal Conduction

Heat is transferred by thermal conduction

 $\phi_1 \phi_2 \cdots \phi_{i-1} \phi_i \phi_{i+1} \cdots$

Consider this steel bar as discrete units. The velocity of heat transfer is proportional to the second derivative

This defines the 1-dimensional laplacian:

R Thermal Conduction over Graphs

Laplacian Matrix acts as discrete Laplace operator over a graph.

$$\frac{d\phi_i}{dt} = -k \sum_j A_{ij}(\phi_i - \phi_j)$$

$$\frac{d\phi_i}{dt} = -k [\phi_i \sum_j A_{ij} - \sum_j A_{ij}\phi_j]$$

$$= -k [deg(i)\phi_i - \sum_j A_{ij}\phi_j]$$

$$\begin{bmatrix} \frac{d\phi_1}{dt} \\ \frac{d\phi_2}{dt} \\ \dots \\ \frac{d\phi_n}{dt} \end{bmatrix} = -k \begin{bmatrix} deg(1) \times \phi_1 \\ deg(2) \times \phi_2 \\ \dots \\ deg(n) \times \phi_n \end{bmatrix} + kA \begin{bmatrix} \phi_1 \\ \phi_2 \\ \dots \\ \phi_n \end{bmatrix}$$

$$\phi = [\phi_1, \phi_2, \dots, \phi_n]^T$$

$$D = diag(deg(1), deg(2), \phi_n)$$

$$\frac{d\phi}{dt} = -kD\phi + kA\phi = -k(D - A)\phi$$

$$rac{oldsymbol{\phi}}{lt}+kLoldsymbol{\phi}=0$$

$$rac{\partial \phi}{\partial t} - k \Delta \phi = 0$$

R Thermal Conduction over Graphs

This GIF shows the progression of diffusion, as solved by the graph laplacian technique. A graph is constructed over a grid, where each pixel in the graph is connected to its 8 bordering pixels. Values in the image then diffuse smoothly to their neighbors over time via these connections. This particular image starts off with three strong point values which spill over to their neighbors slowly. The whole system eventually settles out to the same value at equilibrium.

What We Want: Message Passing over Graphs

- What we have seen?
 - We have a **space**: 1D, 2D, 2D discrete, graph,
 - Something can **transfer in the space**: heat, ...
 - The intensity of the transfer between two adjacent points is proportional to the state difference between them.
- What we want now?
 - Space: a graph
 - Things to transfer: **feature / message**
 - Rule of transfer: the state change is proportional to the corresponding space (here is the Graph space) Laplacian operator acts on the current state.
- How to model it?
 - No need to follow Newton's law of cooling
 - E.g., you can use Neural Networks, kernal functions, etc., to calculate how things propagate based on adjacent node's states

Laplacian Matrix as an Operator

Laplacian matrix is a difference operator:

$$\mathbf{h} = \mathbf{L}\mathbf{f} = (\mathbf{D} - \mathbf{A})\mathbf{f} = \mathbf{D}\mathbf{f} - \mathbf{A}$$
$$\mathbf{h}(i) = \sum_{v_j \in \mathcal{N}(v_i)} (\mathbf{f}(i) - \mathbf{f}(j))$$

Laplacian quadratic form:

$$\mathbf{f}^T \mathbf{L} \mathbf{f} = \frac{1}{2} \sum_{i,j=1}^{N} \mathbf{A}[i,j](\mathbf{f}(i) - \mathbf{f}(i)]$$

"Smoothness" or "Frequency" of the signal f

Af

Low frequency graph signal

High frequency graph signal

A Laplacian Matrix as an Operator

Laplacian matrix is positive semi-definite:

$$egin{aligned} f^T L f &= f^T (D-A) f \ &= f^T D f - f^T A f \ &= f^T \, diag(d) \, f - f^T A f \ &= \sum_{i=1}^m d_i f_i^2 - \sum_{j=1}^m \left[\sum_{i=1}^m f_i a_{ij}
ight] f_j \ &= \sum_{i=1}^m d_i f_i^2 - \sum_{i,j=1}^m f_i f_j a_{ij} \ &= rac{1}{2} \left[\sum_{i=1}^m d_i f_i^2 - 2 \sum_{i,j=1}^m f_i f_j a_{ij} + \sum_{i=1}^m d_i f_i^2
ight] \ &= rac{1}{2} \sum_{i,j=1}^m a_{ij} \left(f_i - f_j
ight)^2 \ ext{note:} \ d_i = \sum_{j=1}^m a_{ij} \end{aligned}$$

$$f^T L f \geqslant 0$$

R Important Properties of Laplacian Matrix

- 1. It is a real symmetric matrix with n linearly independent eigenvectors
- 2. The eigenvectors of the matrix are orthogonal to each other, that is, the matrix composed of all eigenvectors is an orthogonal matrix
- 3. All eigenvalues of positive semi-definite matrix are nonnegative

Some Other Properties of Laplacian Matrix

• The number of occurrences of 0 in the eigenvalue is the number of connected regions in the graph. • The minimum eigenvalue is 0, because in the Laplacian matrix (common form: L=D-A), the sum of each row is 0, and the eigenvector corresponding to the smallest eigenvalue is a vector whose value is all 1. • The smallest non-zero eigenvalue is called the algebraic connectivity of the graph.

Eigen-decomposition of Laplacian Matrix

1.

Eigenvalues are sorted non-decreasingly: $0 = \lambda_0 < \lambda_1 < \cdots > \lambda_{N-1}$

 λ_i are eigen values.

2. matrix

$$UU^T = I$$

It is a real symmetric matrix with n linearly independent eigenvectors, so Laplacian matrix must be able to perform eigen-decomposition (spectral decomposition)

where $U = (u_0, \dots, u_{N-1})$ is the **unit eigenvector** matrix composed of column vector u_i ,

The eigenvectors of the matrix are orthogonal to each other, so **U** is an orthogonal

$$ightarrow \, U^T = U^{-1}$$

Fourier Transform on Graphs

Fourier Transform

The Fourier transform of the continuous domain is defined as:

$$F(w) = \mathcal{F}[f(t)] = \int f(t) e^{-iwt} dt$$

That is, the integral of the signal f(t) and the basis function e^{-iwt} .

Understand Fourier Transform: **3Blue1Brown**: https://www.youtube.com/watch?v=spUNpyF58BY&ab_channel=3Blue1Brown 2. <u>https://www.youtube.com/watch?v=r6sGWTCMz2k&t=83s&ab_channel=3Blue1Brown</u>

So how do we extend the Fourier transform of the continuous domain to the graph? The most important thing is how do we find the basis functions on the graph? (The basis function of the continuous domain is known as e^{-iwt} .

Fourier Transform on Graphs

- The core work for migrating the traditional Fourier transform and convolution to Graph, is actually to change the eigenfunction e^{-iwt} of the Laplacian operator into the eigenvector of the Laplacian matrix corresponding to Graph.
- The relationship between the Fourier transform and the Laplacian matrix: The base of the traditional Fourier transform is a set of eigenvectors of the Laplacian matrix.

Fourier Transform on Graphs

• We need a transformation:

- In the continuous domain, the basis function is e^{-iwt} .
- When this transformation is placed on the graph, if there are eigenvectors and are orthogonal to each other, the eigenvectors can be used as basis vectors, so as the basis function of the discrete Fourier transform on the graph

Laplacian is the Transform Operator

• The Laplacian Δ , whether in the continuous domain or the discrete domain on the

graph, just satisfies these properties

• In the continuous domain:

 Δe^{-iwt} =

- where A is a matrix (in linear algebra, the left multiplication of a matrix means linear transformation of a vector), u is an eigenvector or eigenfunction (vector of infinite dimensions), and λ is the eigenvalue corresponding to u. By analogy, we know that e^{-iwt} is the Eigenfunction of Δ , and ω is closely related to the corresponding eigenvalue.
- next step is to find the corresponding e^{-iwt}).

$$=rac{\partial^2}{\partial t^2}e^{-iwt}=-w^2e^{-iwt}$$

• Think of the definition of the generalized eigenvalue equation: $Au=\lambda u$

• Therefore, if we want to transfer the Fourier transform to the graph, we have the Laplacian matrix (the Laplacian matrix is a discrete Laplacian operator), the next step is naturally to find the eigenvectors of Laplacian matrix (Equivalent to we have Δ , the

To Summarize

Laplacian operator to the eigenvector of the graph Laplacian matrix. • As introduced, the graph Laplacian matrix is a positive semi-definite matrix So the eigenvectors can be obtained through eigen decomposition (spectral) decomposition), namely u_1, \ldots, u_n .

The Emerging Field of Signal Processing on Graphs: Extending High-Dimensional Data Analysis to Networks and Other Irregular Domains

• The core work of Fourier transform on graphs is to map the eigenfunction e^{-iwt} of the • Therefore, it is very important to solve the eigenvector of the graph Laplacian matrix.

ional Fourier ansform	Graph Fourier Transform
$-2\pi i x v$	U^T
$e^{2\pi i x v}$	U
∞	Number of vertices n

Eigenvectors as Graph Signals

The frequency of an eigenvector of Laplacian matrix is its corresponding eigenvalue:

 $\boldsymbol{u}_1^T \boldsymbol{L} \boldsymbol{u}_1 = \boldsymbol{\lambda}_1$

Frequency of the signal *u*_i

Low frequency

$$\boldsymbol{u}_0^T \boldsymbol{L} \boldsymbol{u}_0 = \boldsymbol{\lambda}_0 = \boldsymbol{0}$$

$$\mathbf{u}_i^T \lambda_i \mathbf{u}_i = \lambda_i$$

High frequency

$$u_7^T L u_7 = \lambda_7$$

R Visualize Eigen Vectors

Eigenfunction of the Laplacian for a square

Eigenfunction of the Laplacian for a random graph

https://towardsdatascience.com/graph-convolutional-networks-deep-99d7fee5706f

Graph Fourier Transform (GFT)

transform on the graph is:

$$F(\lambda_l) = \hat{f}(\lambda_l) =$$

is the inner product operation of the eigenvector u_l corresponding to λ_l . conjugation of $u_l(i)$, i.e., $u_l^*(i)$.

• With the eigen vectors (u_0, \dots, u_{N-1}) , we can define the Fourier transform on the graph. Imitating the definition of the Fourier transform in the continuous domain. The Fourier

$$\sum_{i=1}^N f(i) u_l^*(i)$$

• Where f is the representation of the nodes on the graph (such as node Embedding), f(i)

represents *i*-th node, and $u_l(i)$ represents the *i*-th component of the *l*-th eigen vector.

Then the Fourier transform of the graph of node Embedding f(i) under the eigenvalue λ_i

• Note: the above inner product operation is defined in the **complex space**, so we use the
Graph Fourier Transform (GFT)

• Extend the Fourier transform on the graph to matrix form:

$$\begin{bmatrix} \hat{f}(\lambda_1) \\ \hat{f}(\lambda_2) \\ \vdots \\ \hat{f}(\lambda_N) \end{bmatrix} = \begin{bmatrix} u_1(1) & u_1(2) & \dots & u_1(N) \\ u_2(1) & u_2(2) & \dots & u_2(N) \\ \vdots & \vdots & \ddots & \vdots \\ u_N(1) & u_N(2) & \dots & u_N(N) \end{bmatrix} \begin{bmatrix} f(1) \\ f(2) \\ \vdots \\ f(N) \end{bmatrix}$$

 \odot That is, the matrix form of the Fourier transform of f on the graph is: \hat{f} =

• Solution \bullet Briefly speaking, given the input node Embedding f, multiply U^T to the left, then we can get the output Embedding \hat{f} of the Fourier transform of f on the graph

$$= U^T f$$

Graph Fourier Transform (GFT)

A signal f can be written as graph Fourier series:

u_i: graph Fourier mode

Spatial domain: *f*

The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. *IEEE signal processing magazine*

$$\hat{f_i} \cdot u_i$$
 $f^T u_i$

λ_i : frequency

\hat{f}_{i} : graph Fourier coefficients

A Inverse Graph Fourier Transform (IGFT)

do we transform it back into the spatial domain? • The traditional inverse Fourier transform is to integrate the frequency ω :

$$\mathcal{F}^{-1}[F(w)] = rac{1}{2\pi}\int \mathcal{F}(w) e^{-iwt} dw$$

• The analogy to the discrete domain (on the figure) is to sum the eigenvalue λ_i :

$$f(i) =$$

- So, after we transform the node from the spatial domain to the frequency domain, how

$$\sum_{l=1}^N \hat{f}(\lambda_l) u_l(i)$$

A Inverse Graph Fourier Transform (IGFT)

• Extend the inverse Fourier transform on the graph to matrix form by matrix multiplication:

$$\begin{bmatrix} f(1) \\ f(2) \\ \vdots \\ f(N) \end{bmatrix} = \begin{bmatrix} u_1(1) & u_2(1) & \dots & u_N(1) \\ u_1(2) & u_2(2) & \dots & u_N(2) \\ \vdots & \vdots & \ddots & \vdots \\ u_1(N) & u_2(N) & \dots & u_N(N) \end{bmatrix} \begin{bmatrix} \hat{f}(\lambda_1) \\ \hat{f}(\lambda_2) \\ \vdots \\ \hat{f}(\lambda_N) \end{bmatrix}$$

 \circ That is, the matrix form of the inverse Fourier transform of f on the graph is:

domain.

$$= U \hat{f}$$

 \odot In short, given the representation of the node Embedding in the frequency domain f, multiply U to the left to get the representation of the node Embedding in the space

A Inverse Graph Fourier Transform (IGFT)

A signal f can be written as graph Fourier series:

u_i: graph Fourier mode

Spatial domain: *f*

$$\hat{f_i} \cdot u_i$$

$$f^T u_i$$

λ_i : frequency

\hat{f}_{i} : graph Fourier coefficients

Spectral domain: \hat{f}

Suggested Readings: The Emerging Field of Signal Processing on Graphs: Extending High-Dimensional Data Analysis to Networks and Other Irregular Domains: <u>https://arxiv.org/pdf/1211.0053.pdf</u>

Next lecture: GNN and Graph-based NLP (II)

References

- http://cse.msu.edu/~mayao4/tutorials/aaai2021/ 1.
- 2. <u>https://luweikxy.gitbook.io/machine-learning-notes/graph-neural-networks/graph-</u> <u>convolutional-networks/gcn-comprehensive-understand</u>
- https://www.youtube.com/watch?v=spUNpyF58BY&ab_channel=3Blue1Brown 3.
- https://www.youtube.com/watch? 4. v=r6sGWTCMz2k&t=83s&ab channel=3Blue1Brown

Graph Neural Networks

Tasks on Graph-Structured Data

Node-level

Link Prediction

Node Classification

Graph-level

Graph Classification

Node Representations

For node level, we want to transform the original graph signals to get better node representations. For graph level, we want to perform pooling to get whole graph representation

R Two Main Operations in GNN

Graph Filtering

 $\mathbf{A} \in \{0,1\}^{n \times n}, \mathbf{X} \in \mathbb{R}^{n \times d}$

$\mathbf{A} \in \{0,1\}^{n \times n}, \mathbf{X}_f \in \mathbb{R}^{n \times d_{new}}$

Graph filtering refines the node features

A Two Main Operations in GNN Graph Pooling Graph Pooling

$\mathbf{A} \in \{0,1\}^{n \times n}, \mathbf{X} \in \mathbb{R}^{n \times d}$

$\mathbf{A}_p \in \{0,1\}^{n_p \times n_p}, \mathbf{X}_p \in \mathbb{R}^{n_p \times d_{new}}, n_p < n$ Graph pooling generates a smaller graph

General GNN Framework

For node-level tasks

General GNN Framework

For graph-level tasks

Filtering Layer

B₁

Activation

Pooling Layer

 B_n

Graph Neural Networks

Graph Convolutions

Recap Convolutional Neural Networks

Graph Neural Networks

Lecture outline

- 1. Why graphs for NLP?
- 2. Modeling text as graphs
- 3. Graph neural networks
- 4. Text clustering: Story Forest for fine-grained
 - events detection and organization graphical decomposition and convolutions
- 5. Text matching: matching article pairs with

Graph Filtering Operation

$\mathbf{A} \in \{0,1\}^{n \times n}, \mathbf{X} \in \mathbb{R}^{n \times d}$

$\mathbf{A} \in \{0,1\}^{n \times n}, \mathbf{X}_f \in \mathbb{R}^{n \times d_{new}}$

Two Types of Graph Filtering Operation

Spatial Based Filtering

Spectral Based Filtering

Graph Filtering in the First GNN Paper

Graph neural networks for ranking web pages. WI. IEEE, 2005.

h_i: The hidden features

l_i: The input features

Graph Filtering in the First GNN Paper

- *h_i*: The hidden features
- *l_i*: The input features

$$p_i^{(k+1)} = \sum_{v_j \in N(v_i)} f\left(l_i, h_j^{(k)}, l_j\right), \quad \forall \ v_i \in V.$$

- $N(v_i)$: Neighbors of the node v_i .
- $f(\cdot)$: Feedforward neural network.

Recall:

Filter a graph signal *f*:

IGFT: f = Uf

Recall:

Filter a graph signal *f*:

Coefficients

IGFT: f = Uf

Recall:

 $GFT: f = U^T f$

Filter a graph signal *f*:

Filter $\hat{g}(\lambda_i)$: Modulating the frequency

 $IGFT: f = U\hat{f}$

 $\hat{g}(\lambda_i) \cdot u_i^T f$

Filtered coefficients

Recall:

 $GFT: \hat{f} = U^T f$

Filter a graph signal *f*:

Filter $\hat{g}(\lambda_i)$: Modulating the frequency

 $IGFT: f = U\hat{f}$

 $\hat{g}(\lambda_i) \cdot u_i^T f$

Filtered coefficients

Example:

Recall:

 $GFT: f = U^T f$

Filter a graph signal *f*:

Filter $\hat{g}(\lambda_i)$: Modulating the frequency

 $IGFT: f = U\hat{f}$

Example:

Recall:

 $GFT: \hat{f} = U^T f$

Filter a graph signal *f*:

$$\hat{g}(\Lambda) = \begin{bmatrix} \hat{g}(\lambda_0) & & 0 \\ & \ddots & \\ 0 & & \hat{g}(\lambda_{N-1}) \end{bmatrix}$$

 $IGFT: f = U\hat{f}$

Example:

Recall:

 $GFT: \hat{f} = U^T f$

Filter a graph signal *f*:

$$\hat{g}(\Lambda) = \begin{bmatrix} \hat{g}(\lambda_0) & & 0 \\ & \ddots & \\ 0 & & \hat{g}(\lambda_{N-1}) \end{bmatrix}$$

 $IGFT: f = U\hat{f}$

Recall:

 $GFT: \hat{f} = U^T f$

Filter a graph signal *f*:

$$\hat{g}(\Lambda) = \begin{bmatrix} \hat{g}(\lambda_0) & & 0 \\ & \ddots & \\ 0 & & \hat{g}(\lambda_{N-1}) \end{bmatrix}$$

 $IGFT: f = U\hat{f}$

Graph Spectral Filtering for GNN

How to design the filter? Data-driven! Learn $\hat{g}(\Lambda)$ from data! How to deal with multi-channel signals?

$$\boldsymbol{F}_{in} \in \mathbb{R}^{N \times d_1} \to \boldsymbol{F}_{out} \in \mathbb{Z}$$

Each input channel contributes to each output channel

$$F_{out}[:,i] = \sum_{j=1}^{d_1} \hat{g}_{ij}(\mathbf{L}) F_{in}[:,j] \quad i =$$
Filtor oach i

 $\mathbb{R}^{N \times d_2}$.

Learn $d_2 \times d_1$ filters $= 1, \dots d_2$

Filter each input channel

$\widehat{g}(\Lambda)$: Non-parametric

Let's first introduce a non-parametric method to implement g hat (filter over different frequencies lambda)

$\widehat{g}(\Lambda)$: Non-parametric

A intuitive idea is: learn it directly. which is the idea in this paper.

Spectral Networks and Locally Connected Networks on Graphs. ICLR 2014

$\widehat{g}(\Lambda)$: Non-parametric

$d_2 \times d_1 \times N$ parameters

Expensive eigen-decomposition

Too many, not scalable

$\widehat{g}(\Lambda)$: Polynomial Parametrized

$$\hat{g}(\Lambda) = \begin{bmatrix} \sum_{k=0}^{K} \theta_k \lambda_1^k \\ \end{bmatrix}$$

New form: polynomial parametrized. We learn a k-order polynomial expression. The idea is: we assume the transformation \hat{g} is a polynomial function, and all the λ (different frequencies) share the same function

Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering. NIPS 2016.
$\widehat{g}(\Lambda)$: Polynomial Parametrized

$$= \begin{bmatrix} \sum_{k=0}^{K} \theta_k \lambda_1^k \\ \\ \end{bmatrix}$$

$$d_2 \times d_1 \times K$$
 parameters Less parameters $U_2^{A}(\Lambda) U^T f = \sum_{k=0}^{K} \theta_k L^k f$

 $\hat{g}(\Lambda)$

 $\sum_{k=0}^{K} heta_k \lambda_2^k$

. . .

 $\sum_{k=0}^{K} heta_k \lambda_N^k$

eters.

No eigen-decomposition needed

A Polynomial Parametrized Filter: a Spatial View

$U\hat{g}(\Lambda)U^{T}f(i) =$

If the node v_i is more than K-hops away from node v_i , then, Kk=0

The filter is localized within *k*-hops neighbors in the spatial domain

$$\sum_{j=0}^{N} \sum_{k=0}^{K} \theta_k L_{i,j}^k f(j)$$

$$\theta_k L_{i,j}^k = 0$$

Chebyshev Polynomials

The polynomials adopted have non-orthogonal basis 1, x, x², x³,...

$$g(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \cdots$$

Unstable under perturbation of coefficients

Chebyshev polynomials:

Recursive definition:

- $T_0(x) = 1; T_1(x) = x$
- $T_k(x) = 2xT_{k-1}(x) T_{k-2}(x)$

 $g(x) = \theta_0 T_0(x) + \theta_1$

The Chebyshev polynomials $\{T_k\}$ form an orthogonal basis for the Hilbert space $L^2([-1,1], \frac{dy}{\sqrt{1-y^2}})$. https://en.wikipedia.org/wiki/Chebyshev polynomials

$$\theta_1 T_1(x) + \theta_2 T_2(x) + \cdots$$

ChebNet

Parametrize $\hat{g}(\Lambda)$ with Chebyshev polynomials

$$\hat{g}(\Lambda) = \sum_{k=0}^{K} \theta_k T_k(\tilde{\Lambda}), with \ \tilde{\Lambda} = \frac{2\Lambda}{\lambda_{max}} - 1 \qquad \text{(}\tilde{\Lambda} \text{ will be between -1 and 1)}$$

 $d_2 \times d_1 \times K$ parameters

$$U_{g}^{\Lambda}(\Lambda)U^{T}f = \sum_{k=0}^{K} \theta_{k}T_{k}(\tilde{L})f$$
, with $\tilde{L} = \frac{2L}{\lambda_{max}} - I$

No eigen-decomposition needed Stable under perturbation of coefficients

GCN: Simplified ChebNet

Use Chebyshev polynomials with K = 1 and assume $\lambda_{max} = 2$

 $\hat{g}(\Lambda) = \theta_0$

Further constrain $\theta = \theta_0 = -\theta_1$

 $\hat{g}(\Lambda) =$

 $U\hat{g}(\Lambda)U^Tf = \theta(2I - L)$

Apply a renormalization trick

 $U\hat{g}(\Lambda)U^Tf = \theta\left(\widetilde{D}^{-\frac{1}{2}}\right)$

Kipf and Welling ICLR 2017, Semi-Supervised Classification with Graph Convolutional Networks

$$+ \theta_1 (\Lambda - I)$$

$$= \theta \left(2I - \Lambda \right)$$
$$)f = \theta \left(I + D^{-\frac{1}{2}}AD^{-\frac{1}{2}} \right) f$$

$$\tilde{A}\tilde{D}^{-\frac{1}{2}}$$
) f, with $\hat{A} = A + I$

GCN for Multi-channel Signal

Recall:

$$\boldsymbol{F}_{out}[:,i] = \sum_{j=1}^{d_1} \hat{\boldsymbol{g}}_{ij}(\mathbf{L}) \boldsymbol{F}_{in}[:,j]$$

For GCN:

$$F_{out}[:,i] = \sum_{j=1}^{d_1} \theta_{ji} (\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}}) F_{in}[:,j] \quad i = 1, \dots d_2$$

GCN filter

In matrix form:

$$\boldsymbol{F}_{out} = (\widetilde{\boldsymbol{D}}^{-\frac{1}{2}} \widetilde{\boldsymbol{A}} \widetilde{\boldsymbol{D}}^{-\frac{1}{2}}) \boldsymbol{F}_{in} \Theta \text{ with } \Theta \in \mathbb{R}^{d_1 \times d_2} \text{ and } \Theta [\boldsymbol{A}_{in} \otimes \boldsymbol{A}_{in} \otimes \boldsymbol{B}_{in} \otimes \boldsymbol{B}_{in$$

- $i = 1, ..., d_2$
- Filter each input channel

- $[j,i] = \theta_{ji}$

A Spatial View of GCN Filter

Denote $C = \tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}}$

• Then $F_{out} = CF_{in}\Theta$

For node v_i , $F_{out}[i, :] = \sum_{i} C[i, j] F_{in}[j, :] \Theta$ **Observe that:**

• C[i, j] = 0 for $v_j \notin N(v_i) \cup \{v_i\}$

Hence,

$$\mathbf{F}_{out}[i,:] = \sum_{\substack{v_j \in \mathcal{N}(v_i) \cup \{v_i\} \\ \mathbf{Aggregation}}} C[$$

 $F[i, j] \mathbf{F}_{in}[j, :] \Theta$ Feature transformation

Filter in GCN v.s. Filter in the First GNN

GCN: k-th layer

$$\mathbf{h}_{i}^{(k+1)} = \sum_{v_{j} \in \mathcal{N}(v_{i}) \cup \{v_{i}\}} C[i, j] \mathbf{h}_{j}^{(k)} \Theta, \forall v_{i} \in \mathcal{V}$$

The first GNN: k-th layer

$$\mathbf{h}_{i}^{(k+1)} = \sum_{v_{j} \in \mathcal{N}(v_{i})} f(l_{i}, \mathbf{h}_{j}^{(k)}, l_{j}), \forall v_{i} \in \mathcal{V}$$

GAP Filter in GCN VS Filter in the First GNN

Both do feature transformation and feature aggregation. They share similar form. Key difference: different transformation, different ways to use graph structure.

GCN: k-th layer

$$\mathbf{h}_{i}^{(k+1)} = \sum_{v_{j} \in \mathcal{N}(v_{i}) \cup \{v_{i}\}} C[i, j] \mathbf{h}_{j}^{(k)} \Theta, \forall v_{i} \in \mathcal{V}$$

The first GNN: k-th layer

$$\mathbf{h}_{i}^{(k+1)} = \sum_{v_{j} \in \mathcal{N}(v_{i})} f(l_{i}, \mathbf{h}_{j}^{(k)}, l_{j}), \forall v_{i} \in \mathcal{V}$$

Filter in GraphSage

Inductive Representation Learning on Large Graphs. NIPS 2017.

Neighbor Sampling

 $\mathcal{N}(v_i) \to \mathcal{N}_s(v_i)$

Aggregation

 $\mathbf{h}_{\mathcal{N}_s(v_i)}^{(k+1)} = \underline{AGG}(\{\mathbf{h}_i^{(k)}, v_j \in \mathcal{N}_s(v_i)\})$ $\mathbf{h}_{i}^{(k+1)} = \sigma(\Theta[\mathbf{h}_{i}^{(k)}, \mathbf{h}_{\mathcal{N}_{s}(v_{i})}^{(k+1)}])$

S 2017. 118

Filter in GAT

Previously we treat each neighbour equally. But not good. Different node can be different important.

GAT: weight!

$$\alpha_{ij} = \frac{\exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i \| \mathbf{W}\vec{h}_j]\right)\right)}{\sum_{k \in \mathcal{N}_i} \exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i \| \mathbf{W}\vec{h}_k]\right)\right)}$$

Filter in MPNN

Neural Message Passing for Quantum Chemistry. ICML 2017.

Message Passing

$$m_i^{(k+1)} = \sum_{v_j \in N(v_i)} M_k \left(h_i^{(k)}, h_j^{(k)}, e_{ij} \right)$$

Feature Updating

$$h_i^{(k+1)} = U_k\left(h_i^{(k)}, m_i^{(k+1)}\right)$$

 $M_k()$ and $U_k()$ are functions to be designed

UGNN: A Unified Framework Filtering Operations GCN GAT **Graph Signal Denoising** PPNP APPNP \bullet $\arg\min_{\mathbf{X}_{f}} \mathcal{L}\left(\mathbf{X}_{f}\right) = \left\|\mathbf{X}_{f} - \mathbf{X}'\right\|_{F}^{2} + c \cdot \frac{1}{2} \sum_{i \in \mathcal{V}} \frac{1}{|\mathcal{N}(i)|} \sum_{i \in \mathcal{N}(i)} \left\|\mathbf{X}_{f}[i,:] - \mathbf{X}_{f}[j,:]\right\|_{2}^{2}$

More recently, a work says that many filtering operations are all solving this graph signal denoting problem. For details, see the paper.

A Unified View on Graph Neural Networks as Graph Signal Denosing. arXiv, 2020. 121

Graph Pooling Operation

$\mathbf{A} \in \{0,1\}^{n \times n}, \mathbf{X} \in \mathbb{R}^{n \times d}$

$$\mathbf{A}_p \in \{0,1\}^{n_p \times n_p}, \mathbf{X}_p \in \mathbb{R}^{n_p \times d_{new}}, n_p < n$$

Graph pooling:

- 1. number of nodes change
- 2. feature dimension may also change.
- 123

Downsample by selecting the most importance nodes

 $\mathbf{A} \in \{0, 1\}^{n \times n}, \mathbf{H} \in \mathbb{R}^{n \times d}$ $\mathbf{A}_{p} \in \{0, 1\}^{n_{p} \times n_{p}}, \mathbf{H}_{p} \in \mathbb{R}^{n_{p} \times d_{new}}, n_{p} < n$

Graph U-Nets. ICML 2019.

Downsample by selecting the most importance nodes

 $\mathbf{A} \in \{0,1\}^{n \times n}, \mathbf{H} \in \mathbb{R}^{n \times d}$ $\mathbf{A}_p \in \{0,1\}^{n_p \times n_p}, \mathbf{H}_p \in \mathbb{R}^{n_p \times d_{new}}, n_p < n$

Importance Measure h: node feature p: learn a project $h_i^I p$ **y:** the importance of vertex v. $v_i \rightarrow y_i$ $y_i = \left| \frac{p}{p} \right|$

Downsample by selecting the most importance nodes **Importance** Measure h_{3}, l_{3} $y_i = \frac{h_i^T p}{||p||}$ $v_i \rightarrow y_i$ h_{4}, l_{4} h_{1}, l_{1} Select top the *n*_p nodes rank nodes by importance h_{5}, l_{5} h_{2}, l_{2} select top np nodes $idx = rank(\mathbf{y}, n_p)$

 $\mathbf{A} \in \{0,1\}^{n \times n}, \mathbf{H} \in \mathbb{R}^{n \times d}$ $\mathbf{A}_{p} \in \{0,1\}^{n_{p} \times n_{p}}, \mathbf{H}_{p} \in \mathbb{R}^{n_{p} \times d_{new}}, n_{p} < n$

Downsample by selecting the most importance nodes

 $\mathbf{A} \in \{0,1\}^{n \times n}, \mathbf{H} \in \mathbb{R}^{n \times d}$ $\mathbf{A}_p \in \{0,1\}^{n_p \times n_p}, \mathbf{H}_p \in \mathbb{R}^{n_p \times d_{new}}, n_p < n$

Importance Measure $v_i \rightarrow y_i$ $y_i = \frac{h_i^T p}{||p||}$ Select top the *n*_p nodes $idx = rank(\mathbf{y}, n_p)$

Generate A_p and intermediate H_{inter}

select adjacent matrix's and features' subset

 $A_p = A[idx, idx]$

$$H_{inter} = H[idx,:]$$

Downsample by selecting the most importance nodes

$$\mathbf{A} \in \{0,1\}^{n imes n}, \mathbf{H} \in \mathbb{R}^{n imes d}$$
 get \mathbf{J}
 $\mathbf{A}_p \in \{0,1\}^{n_p imes n_p}, \mathbf{H}_p \in \mathbb{R}^{n_p imes d_{new}}, n_p < n$ and

Importance Measure $v_i \rightarrow y_i$ $y_i = \frac{h_i^T p}{||p||}$ Select top the n_p nodes $idx = rank(\mathbf{y}, n_p)$ Generate A_p and intermediate H_{inter}

 $A_p = A[idx, idx]$

 $H_{inter} = H[idx,:]$

t new node features by portance related weight d original features Generate H_p $\tilde{y} = sigmoid(y[idx])$ $H_p = H_{inter} \odot \tilde{y}$

$$\mathbf{A} \in \{0,1\}^{n \times n}, \mathbf{H} \in \mathbb{R}^{n \times d}$$

$$\mathbf{A}_p \in \{0,1\}^{n_p \times n_p}, \mathbf{H}_p \in \mathbb{R}^{n_p \times d_{new}}, n_p < n$$

$$\mathbf{H}_p \in \{0,1\}^{n_p \times n_p}, \mathbf{H}_p \in \mathbb{R}^{n_p \times d_{new}}, n_p < n$$

lierarchical Graph Representation Learning with Differentiable Pooling. NeurIPS 2018.

$\mathbf{A} \in \{0,1\}^{n \times n}, \mathbf{H} \in \mathbb{R}^{n \times d}$ $\mathbf{A}_p \in \{0,1\}^{n_p \times n_p}, \mathbf{H}_p \in \mathbb{R}^{n_p \times d_{new}}, n_p < n$

2 filters

Filter1: Generate a soft-assign matrix

 $\mathbf{A} \in \{0,1\}^{n \times n}, \mathbf{H} \in \mathbb{R}^{n \times d}$ $\mathbf{A}_p \in \{0,1\}^{n_p \times n_p}, \mathbf{H}_p \in \mathbb{R}^{n_p \times d_{new}}, n_p < n$

Filter1: Generate a soft-assign matrix

$$\mathbf{A} \in \{0, 1\}^{n \times n}, \mathbf{H} \in \mathbb{R}^{n \times d}$$
$$\mathbf{A} \in \{0, 1\}^{n \times n}, \mathbf{H}_a \in \mathbb{R}^{n \times n_p}$$

2 filters

Filter2: Generate new features

 $\mathbf{H}_a \in \mathbb{R}^{n imes n_p}$ Generated soft-assign matrix

Generated new features

 $\mathbf{H}_{f} \in \mathbb{R}^{n \times d_{new}}$

Generate A_p

After we get H_a , H_f , we calculate new adjacent matrix $\mathbf{A}_p = \mathbf{H}_a^T \mathbf{A} \mathbf{H}_a$ A_p and new features H_p Generate H_p (basically for each community, it is a weighted sum of the nodes' features assigned to it) $\mathbf{H}_p = \mathbf{H}_a^T \mathbf{H}_f$

Eigenpoling

Learn A_p using clustering methods

Focus on learning better H_p

Capture both feature and graph structure

Recall:

Spatial domain: f

$$\mathbf{f} = \hat{f}_0 u_0 + \hat{f}_1 u$$

Spectral domain: \hat{f}

 $f_{N-1}u_{N-1}$

Do we need all the coefficients to reconstruct a "good" signal?

Do we need all the coefficients to reconstruct a "good" signal?

Do we need all the coefficients to reconstruct a "good" signal?

Eigenpooling: Truncated Fourier Coefficients

Eigenvectors (Fourier Modes) of the subgraph

Fourier coefficients **Truncated Fourier coefficients** New features for the subgraph (a node in the smaller graph)

A Eigenpooling: Truncated Fourier Coefficients

An illustrative example of the general framework

Text Clustering: Story Forest System

2016-11-06 **FBI director:** No charges after new review of Hilary emails

R Information Explosion

Reading vs. Browsing

News Reading: Search Engines

「「「」」 「」 「」 「」 「」 「」 「」 「」 「」
や 明 普 希 拉 里 美 国 大 选 の 捜 索 新 闻
⊙新闻全文 ○新闻标题
全部 含图片 含视频 按时间 按相关度 按点击量
找到相关新闻7,211篇
<mark>这件中国人忍了美国很久的事情,轮到美国人被俄国人搞就受不了了</mark> ^{环球时报 2017-11-03} 23:03:22 比如在美国大选期间,有疑似俄罗斯的"水军"假冒美国人,就在Facebook上花钱刊登了下面这张广告,其内容是:给 希拉里投票就是在支持恶魔,只有支持特朗普才是在帮助上帝。
<mark>"通俄门"调查范围扩大? 美国"第一女婿"交出文件</mark> 海外网 2017-11-03 15:36:10 据CNN报道,消息人士说,在调查俄罗斯干涉美 <mark>国大选</mark> …小 <mark>特朗普</mark> 得知俄罗斯政府可能提供民主党总统候选人希拉里 的黑料之后,安排了那些会晤。 <mark>特朗普</mark> 前竞选经理马纳福特也参加了会晤 …
<mark>硅谷科技公司高管:俄罗斯利用其平台干涉美国大选</mark> 新浪科技 2017-11-01 10:12:49 将"现代技术转变为他们的优势"。在谈到造谣攻击前民主党候选人希拉里·克林顿,以及在特朗普赢得大选后,有针对 性地对其加以攻击时,Facebook总法律顾问科林·斯特雷奇(Colin Stretch …
"通俄门"调查升级! 特朗普"亲信"被指收巨款+撒谎
一夜惊魂!美元连遭三重打击, <mark>特朗普又成汇市"惨案制造者"?</mark> 环球外汇网 2017-10-31 10:05:41 穆勒一直在调查俄罗斯是否插手2016年美国大选以使选情有利于特朗普,以及特朗普助手是否存在勾结行为 …FBI调

News Reading: Feed Stream

- Disadvantages of existing systems
- Messed document lists
- Extremely fine-grained (articles)
- Redundant useless information
- Output Unstructured information

Remember Information

Event: something revolve around one or a group of specific persons (or entities) and happen at certain place during specific time . *Examples: Trump becomes a candidate, The first game between Kejie and AlphaGo*

Story: multiple events that interdependent and evolve by time form a story. *Examples: 2016 U.S. Presidential Election, Kejie VS AlphaGo*
How We Remember Information

Event: something revolve around one or a group of specific persons (or entities) and happen at certain place during specific time . *Examples: Trump becomes a candidate, The first game between Kejie and AlphaGo*

Story: multiple events that interdependent and evolve by time form a story. *Examples: 2016 U.S. Presidential Election, Kejie VS AlphaGo*

The smallest granularity of memory: event

Why Event Matters

Tags we have

Category tags **# Automotive Technology**

Tags we don't have

Event tags # Tesla launches new model X

小电驴哦!

RTX ••••• ?	上午11:57 sohu.com	۲	• 7 * 💼 • 4
特斯拉:最良 竟然是它?	 礼心定价	的进口	品牌
敦望 2016-08-15			+关注
电动车清洁环保、 诸多特性,嗝嗝7	舒适静音 F仅了解,	以及动力 也亲身体)强劲等 \$验过很

Title translation

Tesla: The most conscientious pricing of imported brands turned out to be it?

多回。比如宝马i3、启辰晨风,还有自主品 牌的腾势跟北汽EU260等等,这些车虽然价 格相差悬殊,但它们作为电动车所体现出的 共性真的很讨嗝嗝欢喜, 嗝嗝也不止一次的 跟朋友说,自己的下一辆车很可能就是四轮

7.5% articles with event tags account for 40% of the user traffic

A Better Way to Organize Information

A Better Way to Organize Information

Reinvent information platform that matches human habits

Story Forest

Trees denotes stories, nodes denotes events

Detect events automatically from massive news articles

Edges in the tree denotes events evolving relationship

Story Forest System

Reprocessing

Preprocessing

Document filtering
 Word segmentation
 Keyword extraction

Table 1: Features for the classifier to extract keywords.

Туре	Features
Word feature	Named entity or not, location name or not, contains angle brackets or not.
Structural feature	TFIDF, whether appear in title, first occur- rence position in document, average occur- rence position in document, distance be- tween first and last occurrence positions, average distance between word adjacent oc- currences, percentage of sentences that con-
Semantic feature	LDA

Reyword Graph

- 1. Construct keyword graph
- 2. Community detection
- 3. Filtering out small sub-graphs

Cluster Events

Cluster Events

- 1. Cluster by keyword sub-graphs
- 2. Doc-pair relation classification
- 3. Cluster by document graphs

• Cluster by Keyword Graph.

- Extract doc-pair features: title similarity measures, content similarity measures, news category.
- Train an SVM classifier: input two documents features, output same event or not.
- Community detection on
 Document Graph

Cluster Stories

Cluster Stories

- Find the story to which each event belongs
- 2. Add events to existing stories, or create new stories

Story: multiple events that interdependent and evolve by time form a story.

Story Structure Generation

Choose best location to insert.

Applied to Tencent QQ browser hot topic list

●●●●○中国联通 令 11:10 AM	1 * ••••	○ 中国联谊
Q 热点× 搜索热点	取消	
热搜榜	Pageet	Sen of expanding universes Outon Memory 1 (200) Memory 12 Period
1 女子坐飞机唯一乘客	Mars (Page ■ Sin Arr ■ Sin Arr	Tites T
2 楼市出"王炸"		Rog Herical Art
3 C罗蝉联足球先生	与i 与i 的E	吾:你是 时候,他 案了。
4 逛菜市怕弄脏萨摩		
5 左右脑年龄测试不靠谱		▲ 澎湃前 10月24
6 女子带宝宝自考		■ 催 並 众 对 星 雪 不 早 地 2
7 霍金公开博士论文	(候, Propertic	他是如1 8 of expanding univers
8 迪拜警察新座驾	View / Open P	Citation Housing 5:12 Material Conception The President Material Heres The Street Street Street Street
᠑ 90后毕业写小说	to Themas Performance Themas Performance Provide State Themas Performance Provide State Themas Performance Themas Perfo	New DIP, 1346) Order 1 2 at they are appendix to the second secon
10 蒂勒森突访阿富汗		[分享

Hawking public PhD thesis

Text Matching: Graph Neural Networks and Long Document Matching

A Text Matching Tasks

Long Target

Short Target

R Why Long Document Matching

Google	Trump Hillary U.S. Presidential Selection							
	All	News	Images	Videos	a Maps	More	Setting	
	About	1,060,000	results (0.	43 seconds)			
			George Bush Senior voted for Hillary Clinton in 2016 US Financial Express - 22 hours ago Former US president George HW Bush voted for Hillary Clinton in the 20 election and called Donald Trump a "blowhard" who was driven by George Bush Sr reveals he voted for Hillary Clinton over 'blowhard ABC Online - 19 hours ago Bush 41 calls Trump a 'blowhard'; White House strikes back Highly Cited - CNN - 4 Nov 2017					
	George Interna	e Bush Sr ational - BE	calls Trun 3C News -	p a 'blowha 4 Nov 2017	rd' and voted	for Clinton		
	White House attacks Bush presidents ' legacies after reports they In-Depth - Stuff.co.nz - 9 hours ago White House attacks legacies of both Bush presidents after reports International - Washington Post - 4 Nov 2017							
							ts	
	BRO			Stuff co nz	Washington P		BIE ie	
	View a	all AL	JO ONING	51011.00.112	waaningwit P	. GNN	NTE.IG	

Donna Brazile tells critics of Hillary Clinton revelations to 'go to hell' The Guardian - 5 hours ago

Donna Brazile tells critics of **Hillary** Clinton revelations to 'go to hell' ... could "go to hell", and insisted she would tell her story of the 2016 **election**. ... "Because this is a story of a young girl who started in **American** politics at the the popular vote against **Trump**, losing the **presidency** in the electoral college.

Ex-Democratic leader who mulled dropping Hillary Clinton spurns ... The Straits Times - 5 hours ago

Hillary Clinton 'rigged' presidential nomination process, prominent ... The Independent - 2 Nov 2017

Information Explosion

Why Long Document Matching

Identify the relationship between documents

R Existing Approaches for Text Matching

Representation-based (ARC-I)

Y. Bengio. Learning deep architectures for ai. Found. Trends Mach. Learn., 2(1):1–127, 2009.

A Existing Approaches for Text Matching Interaction-based Layer-n MLP (MatchPyramid) More 2D-Convoluton and Pooling Layer-2 2D-Pooling . . . Layer-1 2D-Convolution Layer-0 Matching Matrix **Similarity Operator** $W_7 W_8$ $V_1 V_2$ $V_6 V_7$ V_5

An overview of MatchPyramid on Text Matching.

Recognition." AAAI. 2016.

Pang, Liang, et al. "Text Matching as Image

A Not Suitable for Long Document Matching

Y. Bengio. Learning deep architectures for ai. Found. Trends Mach. Learn., 2(1):1-127, 2009.

An overview of MatchPyramid on Text Matching.

Pang, Liang, et al. "Text Matching as Image Recognition." AAAI. 2016.

Interaction-based (MatchPyramid)

Limitations

 \bullet Hard to encode

✦ Flexible order

Time complexity

Divide-and-Conquer

Our strategies

165

R Decompose a Document

- [1] Rick asks Morty to travel with him in the universe.
- [2] Morty doesn't want to go as Rick always brings him dangerous experiences.
- [3] However, the destination of this journey is the Candy Planet, which is a fascinating place that attracts Morty.
- [4] The planet is full of delicious candies.
- [5] Summer wishes to travel with Rick.
- [6] However, Rick doesn't like to travel with Summer.

Concept Interaction Graph

- [1] Rick asks Morty to travel with him in the universe.
- [2] Morty doesn't want to go as Rick always brings him dangerous experiences.
- [3] However, the destination of this journey is the Candy Planet, which is a fascinating place that attracts Morty.
- [4] The planet is full of delicious candies.
- [5] Summer wishes to travel with Rick.
- [6] However, Rick doesn't like to travel with Summer.

STEP 1: Extract keywords STEP 2: Group keywords **STEP 3: Assign sentences STEP 4: Construct edges**

Graph Decomposition for Document Matching

[Liu et al., ACL 2019]

Graph Convolutional Network

Message Passing: a General Framework

$$\begin{split} m_v^{l+1} &= \sum_{w \in N(v)} M_l(h_v^l, h_w^l, e_{vw}), \\ h_v^{l+1} &= U_l(h_v^l, m_v^{l+1}), \\ \hat{y} &= R(\{h_v^T | v \in G\}). \end{split} \overset{\textbf{0}}{\xrightarrow{M(h_0, h_2, e_{02})}} \overset{\textbf{0}}{\xrightarrow{M(h_0, h_2, e_{02})}} \end{split}$$

- M_l : Message function,
- U_l : Update function,
- e_{vw} : Edge features,
 - R: Readout function.

Graph Convolutional Network

3

Experiments

Baselines	CNSE		CNSS		Our models	CNSE		CNSS	
	Acc	F1	Acc	F1	Our models	Acc	F1	Acc	F1
I. ARC-I	53.84	48.68	50.10	66.58	XI. CIG-Siam	74.47	73.03	75.32	78.58
II. ARC-II	54.37	36.77	52.00	53.83	XII. CIG-Siam-GCN	74.58	73.69	78.91	80.72
III. DUET	55.63	51.94	52.33	60.67	XIII. CIG _{cd} -Siam-GCN	73.25	73.10	76.23	76.94
IV. DSSM	58.08	64.68	61.09	70.58	XIV. CIG-Sim	72.58	71.91	75.16	77.27
V. C-DSSM	60.17	48.57	52.96	56.75	XV. CIG-Sim-GCN	83.35	80.96	87.12	87.57
VI. MatchPyramid	66.36	54.01	62.52	64.56	XVI. CIG _{cd} -Sim-GCN	81.33	78.88	86.67	87.00
VII . BM25	69.63	66.60	67.77	70.40	XVII. CIG-Sim&Siam-GCN	84.64	82.75	89.77	90.07
VIII. LDA	63.81	62.44	62.98	69.11	XVIII. CIG-Sim&Siam-GCN-Sim ^g	84.21	82.46	90.03	90.2 9
IX. SimNet	71.05	69.26	70.78	74.50	XIX. CIG-Sim&Siam-GCN-BERT ^g	84.68	82.60	89.56	89.97
X. BERT fine-tuning	81.30	79.20	86.64	87.08	XX . CIG-Sim&Siam-GCN-Sim ^g &BERT ^g	84.61	82.59	89.47	89.71

◆ Graph Representation: greatly improves performance. (IX vs. XI) (+4% Acc, F1)

♦ Graph Convolution: greatly improves performance. (XIV vs. XV) (+10% Acc, F1) -

.

)

Other Works on Text Matching

Sentence Pair Matching Short-Short **WWW18**

Matching Natural Language Sentences with Hierarchical Sentence Factorization

Bang Liu¹, Ting Zhang¹, Fred X. Han¹, Di Niu¹, Kunfeng Lai², Yu Xu² ¹University of Alberta, Edmonton, AB, Canada ²Mobile Internet Group, Tencent, Shenzhen, China

Query-Doc Matching Short-Long CIKM18

Multiresolution Graph Attention Networks for Relevance Matching

Ting Zhang¹, Bang Liu¹, Di Niu¹, Kunfeng Lai², Yu Xu² ¹University of Alberta, Edmonton, AB, Canada ²Mobile Internet Group, Tencent, Shenzhen, China

Keyword graph

Match and aggregate

• Reading assignment:

Neural Message Passing for Quantum Chemistry

- Suggested readings:
 - Story Forest: Extracting Events and Telling Stories from Breaking News: <u>https://</u> <u>dl.acm.org/doi/10.1145/3377939</u>
 - Semi-Supervised Classification with Graph Convolutional Networks: <u>https://</u> arxiv.org/abs/1609.02907
 - Modeling Relational Data with Graph Convolutional Networks: <u>https://arxiv.org/</u> pdf/1703.06103.pdf

Next lecture: Invited talk

<u>https://arxiv.org/pdf/1704.01212.pdf</u> (March 25th, 2022 23:59pm EST timezone)

1. http://cse.msu.edu/~mayao4/tutorials/aaai2021/

Thanks! Q&A

Bang Liu Email: <u>bang.liu@umontreal.ca</u>

Homepage: http://www-labs.iro.umontreal.ca/~liubang/