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ABSTRACT
Motivation: Understanding haplotype evolution subject to mutation,
recombination and gene conversion is fundamental to understand
genetic specificities of human populations and hereditary bases of
complex disorders. The goal of this project is to develop new algo-
rithmic tools assisting the reconstruction of historical relationships
between haplotypes and the inference of haplotypes from genotypes.
Results: We present two new algorithms. The first one finds an
optimal pathway of mutations, recombinations and gene conversions
leading to a given haplotype of size m from a population of h haplo-
types. It runs in time O(mhs2), where s is the maximum number of
contiguous sites that can be exchanged in a single gene conversion.
The second one finds an optimal pathway of mutations and recombi-
nations leading to a given genotype, and runs in time O(mh2). Both
algorithms are based on a penalty score model and use a dynamic
programming approach. We apply the second one to the problem of
inferring haplotypes from genotypes, and show how it can be used
as an independent tool, or to improve the performance of existing
methods.
Availability: The algorithms have been implemented in JAVA, and
are available on request.
Contact: mabrouk@iro.umontreal.ca

1 INTRODUCTION
Since the sequencing of the human genome, a great effort has been
deployed to characterize allelic diversity at the nucleotide level,
represented by single nucleotide polymorphisms (SNPs). Having
access to these genetic markers is fundamental for epidemiologi-
cal studies in the quest of hereditary bases of complex disorders.
However, it is less the individual variants that counts than their over-
all organization along the chromosomes. A haplotype is a string of
polymorphic sites along a DNA sequence (Figure 1).

In addition to characterizing allelic diversity created by sponta-
neous mutations, understanding how individual variants are redistri-
buted across populations and organized in blocks has been shown
fundamental in the study of human diversity and disease infe-
rence (Zhang et al., 2003; Greenspan and Geiger, 2003; Gabriel
et al., 2002). Recombinations redistribute individual variants among
copies of homologous chromosomes (Greenwood et al., 2004;
Posada et al., 2002), and gene conversions occur when, during
crossing-over, the Holliday junction returns to the initial configu-
ration rather than being resolved such that chromatids cross and
thus accomplish the recombination (Figure 2). Gene-conversion can
be seen as two either concomitant or successive recombinations.
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However, at a short distance, a double crossing-over within a sin-
gle meiosis is sterically impossible, and it is gene-conversion that
can be invoked to explain the data (Wall, 2004; Jeffreys and May,
2004; Andolfatto and Nordborg, 1998; Przeworski and Wall, 2001).
To understand the genealogical relationships between haplotypes
and their “blocky” structures, it is thus important to study their
process of evolution subject to mutation, recombination and gene
conversion.

Prior work on recombination and gene conversion has largely
focused on statistical tests estimating the recombination events
(Hudson and Kaplan, 1985; Myers and Griffiths, 2002; Y.S.Song
and J.Hein, 2004), and on reconstructing the coalescent with
recombination and/or gene conversion, based on statistical models
assuming constant population length, random mating, and given
mutation and rearrangement rates per generation (Griffiths and Mar-
joram, 1996; Wiuf and Hein, 1999b,a, 2000). Other methods based
on algorithmic optimization have been considered for the recon-
struction of a plausible genealogy of haplotypes (Kececioglu and
Gusfield, 1998; Wang et al., 2001; Ukkonen, 2002; Schwartz et al.,
2002; Wu and Gu, 2001), but most of these reconstruction problems
have been shown NP-hard. Consequently, simplified evolutionary
models have been considered (Gusfield et al., 2004). In particular,
because of a relatively simple pattern of haplotype diversity in the
human genome with a domination of few common haplotypes (Jaru-
zelska et al., 1999; Labuda et al., 2000; Osier et al., 2002; Verrelli
et al., 2002), the complexity of the haplotype network can be redu-
ced by considering the most frequent haplotypes as the most likely
to recombine.

In the first part of this paper, we address the problem of infer-
ring the most realistic pathway of mutations, recombinations and
gene conversions generating a given haplotype from a population of
h haplotypes of size m. This approach is informally considered in
various population genetics studies. In particular, Zietkiewicz et al.
(2003) analyzed haplotypes from the dys44 segment of the dystro-
phin gene, and proposed putative genealogical reconstructions of
these haplotypes by recombination of the most common ones. They
were able to derive non-African haplotypes through at most two
recombinations. In contrast, haplotypes of the sub-Saharan Africans
could not be related in a simple way to the set of common haploty-
pes. Previous systematic methods based on dynamic programming
have been developed in the absence of gene conversion (El-Mabrouk
and Labuda, 2004; Schwartz et al., 2002). Introducing gene conver-
sions requires a more involved dynamic programming algorithm,
as not only haplotype prefixes, but also haplotype subsequences,
should be analyzed in this case. In (El-Mabrouk, 2004), we formali-
zed the problem and described the whole set of pathways involving
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a minimum number of recombinations and gene conversions leading
to a haplotype. Here, we consider the more general case involving
a penalty score model, and describe a new dynamic programming
algorithm that runs in time O(mhs2), where s is the maximum size
of a gene conversion. This algorithm is described in Section 2.

In the second part of this paper, we present a new algorithm based
on a similar evolutionary model, to infer haplotypes from genotypes.
Preliminary to any human genetic project, is the acquirement of
a haplotype dataset. However, in diploid organisms, it is not fea-
sible to examine homologous chromosomes separately. Rather, it
is the (less informative) genotype, e.g. the combination of the two
chromosomes, that is obtained. The haplotyping problem is then
to extract, from this information, individual haplotypes. Several
approaches have been developed for this purpose, beginning with
the Clark’s inference approach (Clark, 1990) and maximum like-
lihood approaches (Excoffier and Slatkin, 1995). In the absence of
recombinations, more combinatorial approaches based on the per-
fect phylogeny model have been developed (Gusfield, 2002; Eskin
et al., 2003). In the general case, the most widely used approach is
PHASE, based on a Gibbs sampling method (Stephens et al., 2001;
Stephens and Donnelly, 2003). In most cases, the software reports a
set of accurate haplotype pairs. However some genotypes give rise
to ambiguous results, e.g. many possible haplotype pairs with low
probabilities. Moreover time before convergence may be long. In
section 3, we present an efficient method, which runs in time (mh2),
to resolve a given genotype with respect to a set of known haploty-
pes. In Section 4, we give some preliminary results demonstrating
the accuracy of this method for genotypes that have been revealed
problematic for PHASE.

2 RECOVERING RECOMBINATION AND GENE
CONVERSION PATHWAYS - ALGORITHM 1

We describe an algorithm that finds an optimal (least score) pathway
of mutations, recombinations and gene conversions generating a
given haplotype from a set HAP of known haplotypes.

Most classical methods for inferring historical relationships bet-
ween haplotypes assume an infinite site mutation model in which
recurrent and back mutations are forbidden. Here, we consider a
relaxed model which allows for recurrent and back mutations.

2.1 The model and notations
A haplotype of size m is a string of symbols which models m

single nucleotide polymorphisms (SNPs) on a chromosomal seg-
ment. SNPs are usually bi-allelic such that in a population, only two
nucleotides are observed at each site. Therefore, haplotypes can be
represented as binary strings of 0’s and 1’s (Figure 1). Ancestral
alleles are usually represented by 0’s when they are known.

A recombination between two haplotypes H1 and H2 can be
modeled as an operation that breaks up H1 and H2 between sites
i and i − 1, and exchanges the two terminal parts of H1 and H2

(Figure 2).
A gene conversion between H1 and H2 is an operation that

breaks up H1 and H2 in three parts each by choosing the same two
pairs of adjacent sites in the two haplotypes, i − 1, i and j, j + 1,
and exchanges the two middle parts of H1 and H2 (Figure 2). We
will say that such a gene conversion affects sites i to j.
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Fig. 1. (a) A genomic sequence with its polymorphic sites indicated by
bold squares; (b) Three possible haplotypes found in the population, with
their representations as binary strings, assuming that upper alleles represent
ancestral ones.

As only one of the resulting haplotypes is transmitted, a recombi-
nation or a gene conversion can be represented as H1, H2 −→ H3,
where H1, H2, H3 are three haplotypes.

Gene conversion:

Recombination:

H H

i i

i−1

i−1 i−1H  :1

H  :

1 2

3

H H1 12H

i H  :2

H  :

H  :1

3

j

i

ji

ji

2H  :

Fig. 2. The recombination and gene conversion mechanisms

Each SNP represents a mutation that has affected one haplotype
in the population. Therefore, if recurrent mutations are ignored, then
allelic changes can be explained solely by recombinations and gene
conversions. In this paper, recurrent mutations are allowed, and we
call a mutation an event that changes a 0 into a 1 or a 1 into a 0 in
a haplotype.

Schwartz et al. (2002) have considered a simplified probabilistic
model allowing to evaluate a recombination and mutation pathway
leading to a given haplotype. However, assigning the appropriate
probabilities is an open problem by itself. In this paper, we consider
an alternative approach, by attributing penalty scores for mutations,
recombinations and gene conversions.

The penalty score model is based on the following inputs:

1. MUT is the score of a mutation at any site in any haplotype.

2. REC(i, j) specifies the score of a recombination between sites i

and j. This value can be evaluated from the nucleotide distance
separating these sites.

3. GC(i, j) is the score of a gene conversion starting between sites
i − 1 and i and ending between sites j and j + 1. This value
depends on the length of the conversion tract, i.e. the nucleotide
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distance separating sites i and j plus one. We also define the
parameter s representing the maximum site length of a gene
conversion, l = (j − i) + 1, that is the maximum number
of sites that can be affected by a single gene conversion. This
value, which depends on the nucleotide distances between the
sites in the considered haplotypes, is usually small and serves
as a bound for a efficient algorithmic complexity.

4. FREQ(p) is the score for choosing a particular haplotype Hp

as part of the solution. We use the negative log-frequency of
Hp.

2.2 The algorithm
To simplify the ensuing algorithmic developments, we recode the
haplotypes in a way allowing to reformulate the problem as one of
generating the unitary haplotype, that is the haplotype H such that
H[i] = 1 for any 1 ≤ i ≤ m. Let HAP be the set of h haplotypes
of size m (Figure 3).

H 4 :

H 3 :

H 2 :

H 1 :

   

0    0    1    0    1    1    0    1    1    0    0    0    1    0    0    1

1    0    0    1    0    1    1    0    0    0    1    1    1    0    0    0

1    1    0    0    0    1    1    0    0    0    1    0    1    1    1    0

0    1    1    1    0    0    0    0    1    1    1    1    0    1    1    0
Gene−Conversion 

Gene−Conversion 
Recombination

Gene−Conversion 

                     1    2    3    4    5    6    7    8    9   10  11  12  13  14  15  16
Pos

Hap

Fig. 3. A possible pathway generating the unitary haplotype from the set
HAP = {H1, H2,H3,H4}, with three gene conversions and one recombi-
nation.

We denote Hp[i..j] = Hp[i] · · ·Hp[j], for 1 ≤ i ≤ j ≤ m.
In other words, Hp[i..j] is the subsequence of the haplotype Hp of
HAP beginning at position i and ending at position j.

We denote by HAP[i..j] the set {Hp[i..j], for 1 ≤ p ≤ h}.
A pathway generating H[i..j] is said to end at haplotype Hp if

the last suffix of H[i..j] comes from Hp.
To compute the minimal penalty score C of a pathway generating

H from HAP, we recursively compute the scores C(1, j) of the
optimal pathways giving rise to the unitary haplotypes H[1..j] from
the set HAP[1..j], for 1 ≤ j ≤ m.

Let Cp(i, j) be the score of an optimal pathway R giving rise to
H[i..j] and ending at haplotype Hp. Then

C(i, j) = min{Cp(i, j), for 1 ≤ p ≤ h}

We show how to compute Cp(i, j) for i < j. The case i > j is
symmetrical and obtained in the same way, but considering reverse
haplotypes (red from right to left).

Suppose first that Hp[j] = 1. Then Cp(i, j) is one of the
following (Figure 4) :

1. Cp(i, j) = Cp(i, j − 1): just extend the haplotype Hp one
position right.

2. If the last event of R is a recombination with Hq between sites
j − 1 and j, then Cp(i, j) = Cq(i, j − 1) + REC(j − 1, j) +
FREQ(p).

3. If the last event of R is a gene conversion affecting sites k to j,
and if R passes through Cp(k − 1), then Cp(i, j) = Cp(i, k −
1) + GC(k, j) + C(k, j). This case can happen only for i <

k ≤ j and j − k < s. .

4. If the last event of R is a gene conversion affecting sites k to
j, and if R passes through Cq(k − 1), q 6= p, then Cp(i, j) =
Cq(i, k−1)+GC(k, j)+C(k, j)+REC(k−1, j)+FREQ(p).
Here the gene conversion overlaps an implicit recombination.
This case can happen only for i < k ≤ j and j − k < s.

H h

H p

H q

jj−1 m
Hap

Pos k−1

recombination (2)

extension (1)

gene conversion (4)

gene conversion (3)

i=1

Fig. 4. The main dynamic programming table and four possible cases for
the last event of an optimal path giving rise to H[1..j], with score Cp(1, j).
The dashed lines correspond to optimal sub-paths stored in an auxiliary table

If Hp[j] = 0, an additional mutational event is necessary to trans-
form Hp[j] to 1 with the cases (1) and (2). It doesn’t apply to cases
(3) and (4) since in those cases the value of Hp[j] is transformed
by the gene conversion.

Therefore, if we denote: Mp(j) =



0 if Hp[j] = 1
MUT otherwise

Cp(i, j) = min {Cp(i, j − 1) + Mp(j),

C(i, j − 1) + REC(j − 1, j) + FREQ(p) + Mp(j),

mink{Cp(i, k − 1) + GC(k, j) + C(k, j)},

mink{C(i, k − 1) + FREQ(p) + REC(k − 1, j)

+GC(k, j) + C(k, j)}}

The basic cases are Cp(i, i) = FREQ(p)+Mp(i) for 1 ≤ i ≤ m

and the final pathway is the one leading to the score C = C(1, m).
The resulting algorithm is described in Figure 5.

Complexity: For each column j of the main dynamic programming
table, 1 ≤ j ≤ m, the algorithm is subdivided into two parts:

• The computation of C(j, j′) that is min1≤p≤h Cp(j, j
′), for

j−s < j′ ≤ j. For each haplotype p, 1 ≤ p ≤ h, the computa-
tion of Cp(j, j

′) requires to consider all the values C(j′, k), for
j′ ≤ k < j. Therefore, the complexity of this part is O(hs2).

• The computation of C(1, j), that is min1≤p≤h Cp(1, j). For
each haplotype p, 1 ≤ p ≤ h, computing the value of Cp(1, j)
requires to consider the values Cp(k, j), for j − s < k ≤ j.
Therefore, the complexity of this part is O(hs).
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Initialization:
For i = 1 to m do

For j = 1 to m do
C(i, j) = ∞;

For p = 1 to h do
Cp(i, i) = FREQ(p) + Mp(i);
C(i, i) = min(C(i, i), Cp(i, i));

For each column of the main dynamic programming table:
For j = 2 to m do

For each line:
For p = 1 to h do

Cp(1, j) = min(C(1, j − 1) + REC(j), Cp(1, j − 1));
For each of the s columns preceding column j :
For k = j − 2 down-to j − 1 − s do if k > 0

CG = Cp(1, k) + CG(k, j) + C(j − 1, k + 1);
Cp(1, j) = min(Cp(1, j), CG);

End For (k)
Cp(1, j) = Cp(1, j) + Mp(j);
C(1, j) = min(C(1, j), Cp(1, j));

End For (p)

Consider “reverse” reconstruction, beginning at position j

and a different table for storing the C∗(j, ∗) values;
For j′ = j − 1 down to j − s + 1 do

For p = 1 to h do
Cp(j, j′) = min(C(1, j − 1) + REC(j), Cp(1, j − 1));

For k = j′ + 2 to j do if k ≤ j

CG = Cp(j, k) + CG(j, k) + C(j′ + 1, k − 1)
Cp(j, j′) = min(Cp(j, j′), CG);

End For (k)
Cp(j, j′) = Cp(j, j′) + Mp(j′);
C(j, j′) = min(C(j, j′), Cp(j, j′));

End For (p)
End For (j’)

End For (j)

Fig. 5. Dynamic algorithm for the computation of C(i, j), 1 ≤ i, j ≤ m.
The value of the optimal path leading to H is given by C(1, m).

The total complexity of the algorithm is thus O(m(hs+hs2)) =
O(mhs2).

3 RECONSTRUCTING HAPLOTYPES FROM
GENOTYPES - ALGORITHM 2

A genotype is commonly represented as a sequence of 0, 1 and
2, where 0 and 1 correspond to homozygous sites (both haploty-
pes have the same allele, i.e. two 0s or two 1s), and 2 represents
heterozygous sites (a 0 on one haplotype and a 1 on the other). The
haplotyping problem is to phase the heterozygous sites, that is to
determine on which of the two haplotypes is the 0 allele and the 1
allele (Figure 6).

  2   1   2   0   1   2   0   1   2

  0   1   1   0   1   1   0   1   1
  1   1   0   0   1   0   0   1   0

H1
H2

Genotype:

Resolution:

Fig. 6. A genotype G and two haplotypes representing a possible resolution
of G.

The most accurate haplotyping methods follow (at least impli-
citly) these principles:

1. If an unresolved genotype can be explained by a pair of already
known haplotypes, then this pair is likely to be the right one.
In case of many possible pairs, the most likely one depends on
the frequencies of the haplotypes in the population.

2. Otherwise, at least one new haplotype is inferred. Any new
haplotype should be as close as possible, with respect to the
genetic model, to the other ones in the population.

In many cases, an initial set of haplotypes is directly obtained
from the data. For example, Zietkiewicz et al. (2003) analyzed
haplotypes composed of 35 polymorphisms from the dys44 segment
of the dystrophin gene. This gene is located on the X chromosome,
which allows to directly observe the male haplotypes. The female
haplotypes where then derived by using an ad-hoc method based on
the above principles.

Haplotyping tools have been developed in the absence of a set
of initial haplotypes. In particular, PHASE uses a Gibbs samp-
ling method, beginning with an arbitrary resolution of the set of
genotypes, and successively updating each pair of haplotypes with
respect to the set of all other inferred haplotypes. The whole pro-
cess is repeated for a fixed number of times, or until convergence.
Pairs of haplotypes are then reported with their associated proba-
bilities. However, in some cases convergence is not reached, and
some genotypes give rise to many possible haplotype pairs with low
probabilities. In those cases, alternative methods allowing to solve
ambiguous genotypes may be valuable.

Here, we present a formal method to resolve a single genotype in
light of a set of known (or inferred) haplotypes. The first step is to
find an optimal pathway of mutations and recombinations leading
from the known haplotypes to the target genotype. This pathway in
then used to infer the haplotype pair.

The penalty model is based on the same three inputs MUT,
REC(i) and FREQ(Hp) defined in the preceding section.

3.1 Finding an optimal pathway
We generate the set G of all possible genotypes that can be obtai-
ned from two haplotypes of HAP. More precisely, G = {Gp,q =
(Hp, Hq), for 1 ≤ p ≤ q ≤ h}. The problem is then to find the
recombination and mutation pathway of minimal score C genera-
ting the unresolved genotype G from G. For 1 ≤ j ≤ m, let C(j)
be the score of an optimal pathway giving rise to G[1..j] from the
set G[1..j], and Cp,q(j) the score of such a path ending at genotype
Gp,q . Then

C(j) = min{Cp,q(j), for 1 ≤ p, q ≤ h}

Let R be an optimal pathway generating G[1..j] with score
Cp,q(j). Suppose first that Gp,q [j] = G[j]. Then Cp,q(j) is
computed from some Cp′,q′(j − 1) as follows:

1. If p = p′ and q = q′ (or similarly p = q′ and q = p′),
then we just extend the genotype Gp,q one position right. Thus,
Cp,q(j) = Cp,q(j − 1).

2. Otherwise, if p = q and p′ = q′, then there is one recombina-
tion between Hp and Hp′ (or similarly between Hq and Hq′ ),
and Cp,p(j) = Cp′,p′(j − 1) + REC(j) + FREQ(p).
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3. Otherwise, if {p, q}∩{p′, q′} = ∅, then two recombinations at
site j are necessary, and Cp,q(j) = Cp′,q′(j−1)+2.REC(j)+
FREQ(p) + FREQ(q).

4. Otherwise, |{p, q} ∩ {p′, q′}| = 1. W.l.o.g., assume p =
p′. Then there is a recombination between Hq and Hq′ , and
Cp,q(j) = Cp′,q′ (j − 1) + REC(j) + FREQ(q).

Let C′
p′,q′ (j) be the value obtained from the preceding formula. If

Gp,q[j] 6= G[j], then mutation penalties should be added as follows:

a. If the values of Gp,q[j] and G[j] are in {0, 1} and p 6= q,
then two mutations are necessary and Cp′,q′(j) = C′

p′,q′ (j) +
2.MUT.

b. If the values of Gp,q[j] and G[j] are in {0, 1}, but p = q, then
only one mutation is necessary and Cp′,q′(j) = C′

p′,q′(j) +
MUT.

c. If Gp,q(j) or G(j) has value 2, then just one mutation is
required, and C(j) = C ′(j) + MUT.

The final result is C = C(m) with the associate path. Extension
of the algorithm to include treatment of missing data is straight-
forward, since we simply need to consider that the value of the
genotype at missing sites can be 1,0 or 2 without any additional
cost.

Complexity: It is possible to compute each value Cp,q(j) in con-
stant time, since REC(j), MUT, FREQ(p) and FREQ(q) do not
depend on p′, neither on q′. All we need is to compute (at no additio-
nal cost) the following values, which correspond to the best choices
of genotypes for the three possible scenarios of recombination:

• minp′,q′(Cp′,q′(j − 1))

• minp′ (Cp′,q(j − 1))

• minq′ (Cp,q′(j − 1))

Since 1 ≤ p ≤ q ≤ h and 1 ≤ j ≤ m, the global complexity of
the algorithm is in O(mh2).

3.2 Inferring haplotype pairs
In the case of a single recombination at one site (cases 2 and 4
above), there is no ambiguity to deduce the corresponding haplo-
type pair. For example, suppose we have a genotype G = 0221, the
haplotypes H1 = 1111, H2 = 0000, H3 = 0101 and the following
optimal path:

R =
H3

H2

H3

H2

H3

H1

H3

H1

In this case, inferring the underlying pair of haplotypes is straight-
forward:

G =
0101

0011

However, in the case of two recombinations at the same site (case
3 above), the phase can not be deduced for SNPs located apart this

site. For example:

H4

H3

H4

H3

H1

H2

H1

H2

≡
H4

H3

H4

H3

H2

H1

H2

H1

In this case, additional information should be considered to
choose between the two different scenarios. Additional penalties can
also be added to favor informative pathways.

The situation with mutations is similar. Cases (a) and (b) leave
no ambiguities, where as case (c) do not allow to decide on which
of the two haplotype the mutation should be placed. Here also, it
is possible to prevent this case by adding an extra penalty to this
scenario. If ambiguous mutations persist, we chose to place them on
the new haplotype that is the farthest one from known haplotypes.

4 EXPERIMENTS
We tested the haplotyping method (algorithm 2) on simulated and
biological data.

4.1 Simulated data
We simulated various independent data sets under the infinite-sites
model by using the Hudson’s program (Hudson, 2002). Each set
consisted of 50 genotypes obtained by random pairing of 100 haplo-
types, assuming a panmictic constant size population. For each set,
we used PHASE version 2.1 with default parameters. The soft-
ware returns the best possible pairs of haplotypes explaining each
genotype, with a probability associated to each pair. We conside-
red a genotype as ambiguous when all its best haplotype pairs were
reported with probabilities of 0.3 or less. For other genotypes, we
stored all pairs of haplotypes reported with probabilities ≥ 0.3 in
the set HAP of known haplotypes. We finally applied our method
to the ambiguous genotypes. We then compared the predicted pairs
with the true ones, and reported the number of correctly resolved
genotypes for each method. All tests were done with penalty 11 for
mutations and 10 for recombinations.

Ambiguous genotypes
Correctly resolved

4Ner Total by PHASE by Algo. 2
16 49 12 24
24 48 20 21
32 55 15 23
40 54 16 18

Table 1. Results summed over 30 independent simulated data sets of size
50 for different values of the recombination parameter R = 4Ner (120
independent data sets in total). We fixed the mutation parameter to θ =
4Neµ = 16. The size of the resulting haplotypes varies from 60 to 100
polymorphic sites.

Table 1 shows the results obtained on data sets generated with
different recombination parameters. In each case, the number of
ambiguous genotypes correctly resolved by our algorithm is hig-
her. However, the impact on the overall performance remains small.
Moreover, these preliminary results do not allow to evaluate the
effect of recombination rates on the accuracy of our method.
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Ambiguous genotypes
Correctly resolved

Data Set Total by PHASE by Algo. 2
1 3 0 2
2 2 1 2
3 3 0 1
4 3 0 2
5 7 1 7
6 3 0 0
7 4 1 1
8 3 0 1
9 4 1 2
10 7 4 5
11 6 1 4
12 5 1 2
13 5 1 1
14 4 0 3
15 2 0 0
16 3 1 3
17 4 0 1
18 6 2 4
19 3 0 1
20 7 0 2
Total 84 14 44

Table 2. Results obtained for 20 independent simulated data sets of size
50 generated with the parameters 4Neµ = 4Ner = 32. The size of the
resulting haplotypes varies from 125 to 185 polymorphic sites.

We then performed similar tests with longer haplotypes (Table 2).
In this case, the number of ambiguous genotypes correctly resol-
ved by our algorithm is significantly higher. Moreover, solving each
ambiguous genotypes required no more than few seconds.

4.2 APOE locus data
Sequence haplotype variation in 5.5 kb of genomic DNA encompas-
sing the APOE locus was identified in 96 individuals by Fullerton
et al. (2000). They found 30 distinct haplotypes (considering the 21
SNPs only). We applied the approach described in section 4.1 to
sets of genotypes generated from these haplotypes. Each genotype
comes from a pair sampled according to the haplotypes frequencies.
We repeated 100 independent experiments, for three different sizes
of data set (number of genotypes). Results are shown in Table 3. Our
method performs better on large data sets. This could be due to the
fact that it requires a sufficient number of haplotypes, and the more
genotypes in the data set, the larger is the set of haplotypes reported
by PHASE with probability ≥ 0.3.

5 CONCLUSION
We have developed formal tools to find probable evolutionary
pathways giving rise to a given haplotype or genotype, under a
realistic model involving mutations, recombinations and gene con-
versions. This is the first step toward a more general heuristic
allowing to reconstruct the complete evolutionary network connec-
ting all haplotypes. Another important application would be to

Ambiguous genotypes
Data Set Correctly resolved
Size Total by PHASE by Algo. 2
25 99 38 29
50 87 22 32
75 99 21 49

Table 3. Results for data sets of different size generated from haplotypes of
the APOE locus. Results are summed over 100 independent experiments.

estimate the rates of recombinations compared to those of gene
conversions of different types, based on population data.

A direct application to the haplotyping problem has been presen-
ted. The preliminary results are encouraging and reveal a good per-
formance on both simulated and biological data. The time efficiency
of the algorithm makes it interesting to use as a complementary tool,
especially for long haplotypes and large data sets. Moreover, our
method can also be used as an independent tool when a previous set
of haplotypes has been determined. In both cases, it has the advan-
tage of providing an evolutionary pathway wich helps to assess the
reliability of the inferred haplotypes.

However, more experiments have to be performed to determine
the best way of choosing the penalty scores. The ones we used for
our experiments slightly favor recombinations over mutations, and
haplotype frequencies mostly serve the selection of the optimal path
among those with the same number of recombination and mutation.

At this stage, gene conversions were not explicitly included in our
evolutionary model for haplotyping, as our method do not naturally
extend to that case. However, this should have a limited effect as
gene conversions usually involve one or two polymorphic sites and
thus can be treated as mutations.
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