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Abstract

Several methods have been developed for the
accurate reconstruction of gene trees. Some of
them use reconciliation with a species tree to
correct, a posteriori, errors in gene trees inferred
from multiple sequence alignments. However the
best fit to sequence information can be lost during
this process. We describe GATC, a new algorithm
for reconstructing a binary gene tree topology with
branch length, which returns optimal solutions
according to a measure combining both tree
likelihood (according to sequence evolution) and a
reconciliation score under the
Duplication-Transfer-Loss (DTL) model. GATC
can be used to either construct a gene tree from
scratch or correct existing trees. It can thus be
used independently or jointly with an existing
reconstruction method, making it highly flexible to
various input data types. GATC is based on a
genetic algorithm acting on a population of trees
at each step. It substantially increases the
efficiency of the phylogeny space exploration,
reducing the risk of falling into local minima, at a
reasonable computational time. We have applied
GATC to a dataset of simulated phylogenies with
variable rates of events (gene duplication, loss and
transfer) and showed that it is able to improve
gene tree reconstruction, compared with current
state-of-the-art algorithms. GATC is freely available
at https://github.com/UdeM-LBIT/GATC
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Introduction
Most biological discoveries can only be made in the
light of evolution. In particular, functional annota-
tion of genes is usually deduced from the orthology
and paralogy relation between genes, which is inferred
from the comparison of a gene tree with a species tree.
Therefore, phylogenetic tree reconstruction is an im-
portant component of most bioinformatic pipelines.
In this paper, we focus on the reconstruction of gene
trees.

Standard phylogenetic tools are based on maximum
likelihood (ML) or bayesian methods reconstructing a
tree from gene sequences (e.g. PhyML [1], RAxML [2],
MrBayes [3], PhyloBayes [4]). However, for a variety of
reasons due, not only to technical limitations but also
to the data itself (sequences too close to each other
or conversely too divergent), sequences-only methods
often do not allow to confidently discriminate one tree
from another.

To address this limitation, more recent gene tree re-
construction methods, designated here as integrative
methods, include information from the species tree.
The idea is to consider, in addition to a maximum
likelihood value measuring the fitness of a tree to
a sequence alignment (according to a model of se-
quence evolution), a measure reflecting the evolution
of a whole gene family through gene gain and loss. A
standard measure of fitness between a gene tree and a
species tree is computed in terms of a “reconciliation”
score. In a probabilistic framework, the reconciliation
score corresponds to the probability density of the gene
tree given some parameters (events and edge rates) un-
der a birth-death and gain model of evolution. For the
Most Parsimonious Reconciliation model (MPR), this
score corresponds to the optimal number of gene gain
and loss events, weighted by their costs, explaining the
incongruence between a gene tree and a species tree.

Most integrative methods for gene tree reconstruc-
tion assume a simplified model of gene family evolution
where gene gain events are reduced to gene duplica-
tion (e.g. TreeBeST [5], TreeFix [6], ProfileNJ [7], NO-
TUNG [8], SPIMAP [9], Giga [10]). In fact, the MPR
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problem for the Duplication-Loss (hereafter denoted
DL) model of gene family evolution is linear-time
solvable [11]. By introducing horizontal gene transfer
(HGT) events, the Duplication-Transfer-Loss (here-
afer DTL) model becomes NP-hard in general if time
consistency is required for inferred events (unless the
species tree is fully dated) [12, 13, 14]. However the
MPR problem for the DTL model, with an undated
species tree, can still be computed in polynomial time
if the time consistency requirement is relaxed [15, 16].
Due to this reasonable time-complexity, some recent
phylogenetic software allow extending the gene fam-
ily evolution model to transfers (MowgliNNI [17], ec-
ceTERA [18], TreeFix-DTL [19]). Continuous effort is
also made for developing fast probabilistic frameworks
capturing HGT events (see [20] for a review of these
models).

Integrative methods report gene trees with bet-
ter accuracy compared with sequence-only methods
[17, 21, 19, 22], but they still leave space for improve-
ment, both on tree quality and on computation time.
In fact, most of them rely on a two-steps approach, first
computing a tree with the best fit to the sequences,
and then exploring a tree space surrounding the ini-
tial tree to select one minimizing the considered rec-
onciliation distance. From an accuracy point of view,
this two step methodology does not guarantee that the
output tree optimizes both the likelihood given the se-
quence alignment, and the reconciliation measure, as
the best fit to the sequences may be lost at the second
step. In addition, by considering a single tree at a time,
the risk of ignoring a large part of the tree space and
falling into a local minimum is high. Other integrative
methods (see for example PhylDog [23] and PrIME-
DLTRS [22]) compute the joint likelihood associated
with a substitution model and DTL event rates, given
a fixed, dated and utrametric species tree and a gene
family alignment. They use tree exploration heuris-
tics similar to those found in sequence-only programs
for phylogenetic tree reconstruction to explore the so-
lution space, often in a bayesian-MCMC framework.
These methods come at a high computational cost, es-
pecially when HGT events are considered, and they
are still subject to the risk of being stuck in a local
minimum.

In this paper, we present GATC (Genetic Algorithm
for gene T ree C onstruction), a new software for gene
tree reconstruction under the DTL model that can take
as input completely unresolved, partially unresolved
or fully resolved trees, and outputs a tree minimizing
a measure combining both tree likelihood (according
to sequence evolution) and a reconciliation score. In
other words, we can still use it as a two-step correction
method, as input trees may be the output of a given

phylogenetic tool that are then corrected using GATC,
or as a one-step method resolving a full polytomy (star
tree) in a way optimizing fit to both the species tree
and the sequences.

With GATC, we explore a new methodological
framework based on a Genetic Algorithm (GA), a
global search metaheuristic that mimics biological evo-
lution [24]. The ability of GAs to find near-optimal
solutions quickly even for complex models and data
makes them suitable for the problem of phylogenetic
inference. In fact, the GA methodology has been ap-
plied to the phylogenetic problem several times, begin-
ing with Matsuda in 1996 [25] using a maximum like-
lihood criterion, Lewis [26] who introduced a subtree
swap crossover, and other more recent algorithms (e.g.
self-adaptive GA [27], Ga-mt [28], METAPIGA [29],
GARLI [30]). However, all these algorithms are solely
based on sequence information and, as discussed
above, are often error-prone in the case of gene tree re-
construction. To our best knowledge, GAs have never
been applied to species tree-aware gene tree recon-
struction, although the technique is suitable to the
resolution of Multi-Objective Optimization Problems
(MOOP).

To measure the performance of GATC, we compared
it to current state-of-the-art software on a dataset of
simulated cyanobacteria phylogenies. Our results show
that GATC is more accurate than existing methods,
suggesting that it substantially increases the efficiency
of the phylogeny space exploration. We also evaluated
GATC’s ability to infer accurate homology relation-
ships between genes on a standardized, manually cu-
rated, dataset of real trees. The predicted relationships
were mostly in agreement with the ones inferred from a
reference tree, highlighting the efficiency of the frame-
work.

1 Preliminaries
1.1 Notation on trees
All considered trees are rooted unless explicitely
stated. A tree is binary if all its internal nodes have ex-
actly two children, and non-binary otherwise. Unless
stated differently, all trees are considered binary.

We denote by V (T ) the nodeset, by E(T ) the edge-
set, by L(T ) the leafset and by r(T ) the root of a tree
T . An edge e of E(T ) is written as a pair (x, y) of
two adjacent nodes where e is an outgoing edge of x.
For e = (x, y), x is the parent p(y) of y, while y is a
child of x. A node x is an ancestor of y, which is de-
noted x <T y, if it is on the path from y to the root
(excluding y). In this case, y is called a descendant of
x. Similarly, an edge e′ = (x′, y′) is an ancestor of an
edge e = (x, y) if it is on the path from y to the root.
Given a node x, T [x] is the subtree of T rooted at x
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and L(x) the leafset of T [x]. Two subtrees T [x] and
T [y] are separated in T if x 6= y, x ≮T y and x ≯T y;
in this case, L(x) ∩ L(y) = ∅.

A species tree is a tree S with L(S) being a set of
species, and a gene tree is a tree G with L(G) being a
set of genes, each gene g belonging to a genome s(g).
We denote by G the tree obtained from G by replacing
each leaf label gi by its genome s(gi). Notice that the
mapping s : L(G) → L(S) does not have to be injec-
tive nor surjective. In particular, G may have several
equally labeled leaves.

A reconciliation of G (or similarly G) with S is an
extension of s from V (G) to V (S) with additional la-
bels on each internal node x of G, describing the type
of evolutionary event that has led to G[x] (duplication,
speciation or transfer). G can be expanded to include
lost genes.

Finally, we refer to the process of removing a leaf l
and its associated edge

(
p(l), l

)
from a tree T as the

deletion of l from T .

1.2 Vocabulary of Genetic Algorithms
A Genetic Algorithm (GA) is an algorithmic frame-
work mimicking biological evolution. The vocabulary
of a GA is filled with biological metaphors. It begins
with a population of individuals whose chromosomes or
genomes encode specific solutions to the problem of in-
terest. Performance of theses individuals in solving the
problem is measured by their fitness score. To avoid
confusion, throughout this paper the word “chromo-
some” will be used solely to designate the data struc-
ture of a genetic algorithm, and the word “genome”
will be used in its biological meaning to designate the
macromolecules containing the genes under study.

At each step, starting from an initial population, a
new population is generated using three operators: se-
lection, crossover and mutation [24], which are defined
according to the nature of the problem and the encod-
ing of the solution. During selection, the fitness score
is used to select individuals for reproduction. Selected
candidates are combined using the crossover opera-
tor to create new individuals that are then modified
by the mutation operator in order to introduce diver-
sity and avoid local optima. With elitism, the less fit
individuals of the newly obtained population are re-
placed by the best fit of the previous generation, in
order to conserve the best solutions found so far. The
process described above is repeated through multiple
generations, until an optimal solution (chromosome of
the best individual) is obtained or a stop criterion is
reached.

This natural selection process generally leads to the
improvement of the average population fitness over
generations. While GAs often converge to an optimal

or near optimal solution, their performance mainly
depends on the mechanism for balancing two poten-
tially contradictory objectives: keeping the best solu-
tions found so far, and at the same time efficiently
exploring the search space for promising solutions.

2 The GATC algorithm description
In the rest of the manuscript, we will loosely refer to
the tree likelihood given a multiple sequence alignment
as sequence likelihood.

Given a sequence alignment D and a species tree S,
our objective is to find the gene tree G or a set G of
gene trees, with branch length, that are (near) opti-
mal for both the sequence likelihood and the reconcili-
ation score. To solve this problem, our fitness function
should reflect both objectives. We will present differ-
ent ways for computing the fitness score, either by a
linear combination of the two scores, or by trying to
reach a pareto optimality . We start by presenting the
general framework of the GA.

2.1 Solution encoding
A chromosome σ is defined as (G, θ) where G is a
rooted binary gene tree and θ is the set of hyperpa-
rameters underlying the evolutionary model. Namely,
θ = (λ, δ, τ, e, l,m), representing respectively the du-
plication rate, the loss rate, the transfer rate, the edges
rate, branch lengths and the substitution model. Some
of these parameters might not be defined or might be
kept fixed during the evolutionary process. For ex-
ample, the substitution model m is usually fixed for
all generations, whereas duplication, loss, transfer and
edge rates can vary when a probabilistic model if used
to compute the reconciliation score. When parsimony
is preferred, they correspond to fixed event cost, ex-
cept edges rate which is undefined. Branch lengths are
usually optimized during sequence likelihood compu-
tation.

In the GATC implementation, when not provided,
the initial values of the hyperparameters are randomly
set from a uniform distribution. Unless specified oth-
erwise, the substitution model used is GTR + Gamma
for nucleotide sequences and JTT + Gamma for pro-
teins.

2.2 Initial population
When starting trees are available (from any other tree
construction method, integrative or not), they can be
used as the population of the first generation in our
GA. Otherwise the initial population is generated, ei-
ther randomly or according to a predefined proce-
dure. The GATC implementation allows generating
the initial trees from a star tree, using Polytomy-
Solver [31] which outputs optimal trees for the DL-
reconciliation score (but not necessary optimal for the
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DTL-reconciliation score or the sequence likelihood),
or using bootstrapped trees obtained with RAxML [2].
These two methods should be prefered to the initial-
ization with random trees, which can affect the algo-
rithm’s convergence.

Notice that two trees G1, G2 such that G1 = G2

have the same reconciliation score, and thus if G1

is a solution of PolytomySolver, minimizing the DL-
reconciliation score, then G2 is also a solution. There-
fore, in this case, to increase the initial population of
the GA, additional trees can be obtained by permuta-
tion of the genes at the leaves of G1 in a way respecting
the mapping function s.

2.3 Computing the sequence likelihood and
reconciliation score

To evaluate the fitness of each chromosome σi , 1 < i <
n, in a population of size n, we first compute a vec-
tor ~zi of two components, called the raw score vector ,
containing the sequence likelihood and the reconcilia-
tion score. Note that when the objective is to optimize
only sequence likelihood, the second component corre-
sponding to the reconciliation score is set to zero.

The sequence likelihood scores p(D|G, l,m) can be
computed using the Felsenstein algorithm [32] and
the further computationnal enhancement described by
Stamatakis et al. (2004) [33]. In fact, GATC use sub-
routines from RAxML to compute the sequence likeli-
hood, thus benefiting from both its high computational
speed and its large set of substitution models.

As for the reconciliation score, it can be computed
either under the probabilistic or MPR model. For the
MPR scoring model, we implemented the Bansal al-
gorithm [15] which computes the DTL reconciliation
cost between a binary gene tree G and a binary species
tree S in time O(|G||S|). Notice that, as explicit trans-
fer pathways are not specified, a DTL scenario is not
necessarily possible as it may violate temporal con-
straints [14]. In fact, a donating and a receiving species
must have co-existed at the time of the transfer. More-
over, in contrast to duplications and losses, HGT are
inter-dependent, as induced temporal constraints may
be contradictory. However, as the reconciliation prob-
lem for DTL using undated species tree with the con-
straint of respecting temporal constraints is NP-hard,
the Bansal algorithm remains a good alternative for
computing a reasonable DTL reconciliation score. In
absence of HGTs, we compute the DL reconciliation
score using a linear-time algorithm [11], to speed up
calculations.

For the probabilistic scoring model, we have imple-
mented the DTL model first described by Tofigh [34,
35] and used by PrIME-DLRS [22]. It is based on a
birth-death model of evolution including rates for gene

duplication, transfer and loss and requires discretiza-
tion of a dated species tree, and numerical resolution
of ordinary differential equations. We refer the reasder
to the Supplementary Material of [22] for a thorough
description of how the probability density of the rec-
onciliation is computed.

Rather than minimizing the reconciliation score and
maximizing likelihood, it is easier to simultaneously
minimize both measures. For this reason, we take the
negative log value when likelihood is used for any of the
two scores. Therefore, it has to be understood that the
best adapted individuals will be those with the lowest
fitness.

2.4 Computing the fitness score
Given a raw score vector ~zi for a genome σi, a weight
vector ~w and a scaling function φ, we define the fit-
ness score fi of σi as fi = ~w · φ(~zi). In other words,
fi corresponds to the weighted sum of the two com-
ponents of the raw score vector, scaled by a function
φ. The simplest definition of φ is the identity func-
tion φ(~z) = ~z. An alternative is to standardize each
score to a zero-minimum resulting in the following for-
mulation : φ(zki ) = zki −mini(zi)

k for 1 ≤ k ≤ 2 and
1 ≤ i ≤ n. However, for this latter scaling function, fit-
ness is not comparable between individuals of different
generations.

Using the method described above for computing fi
transforms our problem into a single objective mini-
mization problem and is suitable when both compo-
nents of zi are log likelihood values, since it is related
to the joint weighted probability density for reconcili-
ation and sequences data.

When the reconciliation score is computed using par-
simony, combining the two scores this way might not
be optimal. Instead, we compute a set of pareto optimal
solutions for this multi-objective optimization problem
(MOOP). Several evolutionary based techniques have
been developed for MOOP [36]. Here we will use a
technique similar to the widely known NSGA (Non-
dominated Sorting Genetic Algorithm) [37, 38].

A raw score vector ~zi = (z1i , z
2
i ) is said to dominate

another vector ~zj = (z1j , z
2
j ), denoted as ~zi ≺ ~zj , iff

~zi 6= ~zj and z1i < z1j , z2i < z2j . We are interested
in finding the set of non-dominated solutions called
pareto set (PS) and denoted as :

PS = {σi | @ σj , ~zj ≺ ~zi}

At the end of the GA’s evolutionary process, the
pareto set represents the set of pareto optimal solu-
tions. In contrast with classical genetic algorithms,
computing the pareto set requires to consider simul-
taneously a parent population Pi and its offspring P ′i ,



Noutahi and El-Mabrouk Page 5 of 18

Algorithm 1 Compute next generation population Pk+1

from Pk

1: procedure computeNextPop(Pk)
2: Compute P ′k, the offspring population of Pk

3: P ∗k ← Pk ∪ P ′k
4: Evaluate zi for all σi ∈ P ∗k
5: Compute the dominance rank di for each σi ∈ P ∗k
6: w ← 1
7: while ∃ σi ∈ P ∗k | di = 0 do
8: Wavew ← {σi | di = 0}
9: Set a shared fitness for all σi ∈Wavew as w

10: P ∗k ← P ∗k \Wavew
11: Compute the dominance rank di for each σi ∈ P ∗k
12: w ← w + 1
13: end while
14: for σi ∈ P ∗k do
15: set the fitness of σi as w + di
16: end for
17: Pk+1 ←

⋃
w
Wavew ∪ P ∗k

18: return the first |Pk| of Pk+1 according to fitness
19: end procedure

as optimal solutions from Pi can be lost if we use P ′i
as the population Pi+1 of the next generation.

Algorithm 1 illustrates the way fitness is computed
for all individuals of a generation. It proceeds in a wave
fashion, selecting the non-dominated individuals from
the population P ∗ = Pi ∪ P ′i , assigning them a shared
fitness score, and then removing them from P ∗. This
process is repeated while increasing the fitness score for
the individuals in the new waves, until the expected
population size per generation is met or there is no
non-dominated individuals anymore. In the latter case,
the fitness of the remaining individuals is computed as
the sum of their dominance rank (number of individ-
uals that dominates an individual) and the fitness of
the last wave. This process ensures that individuals be-
longing to the same wave have the same fitness and as
such the same probability to reproduce. The n individ-
uals with the best fitness constitutes Pi+1. Selection,
crossover and mutation operators can be applied to
Pi+1 resulting in offspring P ′i+1.

2.5 Selection

GATC implements multiple classical selection meth-
ods. Individuals can either be selected for crossover
using the tournament selector [39] or using the roulette
wheel selector which chooses individuals with probabil-
ity inversely proportionnal to their fitness values (re-
call that the best indivuals have the smallest fitness
value). Alternatively, the random uniform selector can
be used, which gives equal reproduction probability to
all individuals regardless of their fitness. Selected in-
divuals are used in the crossover operator to produce
the individuals of the next generation.

2.6 Crossover
In the crossover operators implemented in GATC, two
offsprings are created from two parent genomes. Each
offspring inherits its hyperparameter θ from one of its
parents, while its gene tree is obtained from the com-
bination of the two parental trees.

Given trees Gi and Gj respectively from parent σi
and σj , the first offspring is obtained with the subtree
swap crossover operator [26], achieved by the following
actions:
1 Select a subtree Gi[x] from Gi (the root is ex-

cluded)
2 Delete all leaves from Gj that are also in L(x);
3 Regraft Gi[x] to a random edge of Gj to obtain

the offspring tree G′j .
The second offspring tree G′i, is obtained in a similar

way by selecting a subtree from Gj and regrafting it in
Gi. The crossover operator is illustrated on Figure 1A.

In the special case where the objective is to only
optimize the sequence likelihood, under the hypoth-
esis that the reconciliation score is already optimal,
this crossover operator is not applicable as it does not
preserve the reconciliation score. Instead, the offspring
trees are created by exchanging two subtrees G1[x] and
G2[y] such that G1[x] and G2[y] are isomorphic with
respect to the labels at their leaves (see Figure 1B).

2.7 Mutation
For a chromosome σi = (Gi, θi), a mutation is per-
formed either on the tree Gi or on the rates λ, δ, τ, e
unless their values are fixed. Mutations on the rate
parameters consist in drawing a new value from their
distribution. On the other hand, a mutation operates
on Gi by applying a topological modification. GATC
uses SPR (Subtree Pruning and Regrafting) and re-
rooting operations (see Figure 2A-B) to generate a new
tree topology. As with the crossover operator, when
only sequence likelihood has to be optimized, reconcil-
iation score should be preserved after mutations. For
this purpose, mutation are performed by permuting
the genes assignment to the leaves of Gi in such a way
that only genes belonging to the same species are al-
lowed to switch places (see Figure 2C).

2.8 Stop criteria
We proposed several criteria to stop the GA evolu-
tion. The simplest ones are to terminate when a maxi-
mum number of generations or a time limit are met, or
when all individuals converge to a single fitness value.
Aside from these criteria, we propose another simple
termination criterion based on the use of a reference
ML tree. Under the Population-AU criterion, evolu-
tion is stopped when none of the individuals in the
current population is statiscally worse than the known
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ML tree according to the AU test [40]. This stop crite-
rion allows for a good performance when the objective
is restricted to the optimization of sequence likelihood.

3 Experimental results
To measure the efficiency of GATC in reconstructing
accurate gene trees, we compared its performance, on
a simulated dataset, to four different gene tree recon-
struction methods: ecceTERA [18], TreeFix-DTL [19],
ProfileNJ [7], MowgliNNI [17] and RAxML [2]. In con-
trast to RAxML which is a sequence-only method, the
former four methods use both sequences and species
tree information. We also used GATC to reconstruct
the gene trees of three gene families for which refer-
ence trees have been proposed [41]. We will entirely
focus on evaluating GATC’s performance under the
MPR model, as it is our main contribution and also
because DTL-reconciliation scores can be computed
significantly faster under this model.

Evaluation on a simulated Cyanobacteria histories
dataset
We used the public simulated cynobacteria dataset
of Szöllősi et al. (2013) [21] available at http://

datadryad.org/resource/doi:10.5061/dryad.pv6df.
This dataset consists of 1099 gene families from 39
cyanobacteria species along with a well-resolved dated
species tree. To construct the dataset, the gene fam-
ilies were retrieved from HOGENOM [42] and multi-
ple alignments were performed on these families with
Muscle [43]. For each alignment, an MCMC sample of
at least 3000 trees was obtained with PhyloBayes [44]
and used to reconstruct an amalgamated tree with
ALE [21]. These trees were used to simulate new mul-
tiple alignments of artifical sequences under the LG
model with a gamma distribution. We refer to [21] for
a more detailed description on the construction of the
dataset.

From each of the 1099 simulated artificial sequence
alignments, we reconstructed an inital tree using
RAxML (LG + Gamma, 100 bootstraps). The RAxML
trees (with bootstrap values) were used as input for all
programs being compared against GATC.

For all programs, we used fixed DTL rates (λ = 2,
τ = 3, δ = 1) except for ProfileNJ which supports
only a DL model of reconciliation and for which we
took τ = inf. We ran TreeFix-DTL with default pa-
rameters and LG + Gamma as model of evolution.
As it requires rooted trees, the input RAxML trees
were rooted using the mid-point rooting method [45].
MowgliNNI, ecceTERA and ProfileNJ were run with
a threshold of 0.7 for weak edges contraction. We ran
GATC with the following parameters : a maximum of
50 generations, a time limit of 90 minutes per gene

family, LG + Gamma as the model of evolution and
parcimony for DTL-reconciliation. The crossover and
mutation rates were respectively set to 0.8 and 0.5 and
we used the tournament selector as the selection op-
erator. To construct the initial population of the GA,
we used PolytomySolver’s resolutions of RAxML trees
after contraction of edges with support less than 0.7.
In order to keep the GA population size fixed at 30,
we randomly removed or duplicated chromosomes from
the initial population until its size became 30. We also
used the population-AU as additional stopping crite-
rion with the RAxMl tree being the known best ML
tree and a significance level α = 0.05. When there were
more than one tree in the pareto optimal set, the tree
with the lowest DTL-reconciliation score was returned
as GATC final solution.

We measured the accuracy, defined as the normal-
ized Robinson-Foulds distance between each recon-
structed tree and the true tree. As shown in Figure 3,
trees reconstructed with species tree-aware algorithms
were more accurate than RAxML’s trees. This result
was expected, since it has been shown several times
that integration of species tree information usually im-
proves gene trees reconstruction. GATC, in particular,
achieves a better accuracy than other methods, due to
its improved tree space search efficiency. However, it
should be noted that to obtain accurate results, there
is a need to allocate a considerable time for the evolu-
tion of the GA. As such, the algorithm is much slower,
in comparison to ProfileNJ and ecceTERA which can
output solutions in a few seconds. To our surprise,
ProfileNJ was almost as accurate as the second best
method (Treefix-DTL), although it only supports a
DL model of reconciliation and HGT were present in
the dataset. It is possible that most edges with weak
support were not involved in HGT events, which can
explain the observed performance of ProfileNJ.

Evaluation on an empirical dataset.
In an attempt to establish a benchmark for compar-
ing orthology prediction methods, Boeckmann et al.
(2011) [41] proposed manually curated “gold stan-
dard” gene trees for three well-conserved gene fami-
lies : the Popeye-domain containing family (POP), the
NOX ‘ancestral-type’ subfamily of NADPH oxidases
(NOX) and the V-type ATPase beta subunit (VATP).

These gene families have been re-analyzed here to as-
sess the performance of GATC on an empirical dataset.
The reference species tree used was obtained from
SwissTree [46]. Protein sequences from genomes not
found in the species tree were removed and the remain-
ing sequences aligned with Muscle [43]. GATC was
used to reconstruct the corresponding trees for each
gene family with initial population of trees obtained

http://datadryad.org/resource/doi:10.5061/dryad.pv6df
http://datadryad.org/resource/doi:10.5061/dryad.pv6df


Noutahi and El-Mabrouk Page 7 of 18

from bootstrap replicates. We used the same param-
eters as above except the following modfications: the
DTL events cost has been changed to: (λ = 1, τ =
0, δ = 1); the maximum number of generations has
been set to 300 and the maximum time of evolution
set to 3h per gene family. For comparison, the average
time needed by RAxML to obtain the best ML trees
is 2.6h.

In order to measure the accuracy of GATC, we in-
vestigated how close the reference trees were to the set
of pareto optimal trees. Figure 4 shows the distribu-
tion of individuals’ scores, over generations, during the
GA evolution for each gene family. We were able to re-
trieve the reference tree for the NOX and VATP gene
families, whereas the reference tree for the POP family
was located close to a cluster of pareto optimal trees.
From the same figure, it can also be seen that even
though the ML and MPR trees theoretically belong to
the pareto optimal set of the complete tree space, they
are often located far from the desired optimal result.

For the POP family, we report the precision and re-
call of orthologous and parologous genes inference for
the solutions returned by GATC, compared to the pro-
posed reference POP gene family tree (Table 1). Note
that GATC only outputs ten trees from the 30 indi-
viduals of the final population resulting in four unique
trees (see additional files 2-5). We computed precision
and recall for the two types of gene relationships as
follows:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN

where TP corresponds to the number of shared pairs
of orthologs/paralogs with the reference tree, FP cor-
responds to the number of predicted pairs of or-
thologs/paralogs not present in the reference tree, and
FN to the number of missed orthologs/paralogs. As
shown on Table 1, the precision and recall for the in-
ferred gene relationships were high for all four solu-
tions. Difference between GATC’s solutions and the
reference POP gene family tree can mostly be ex-
plained by the fact that duplication nodes were often
placed lower in the solutions, resulting in fewer number
of losses and consequently lower reconciliation scores.

It is hard to argue whether the proposed reference
tree represents the true evolutionary history of the
gene family over our pareto optimal solutions. In fact,
from Figure 4, it can be seen that some pareto op-
timal solutions were better than the reference POP
gene tree for both scores, suggesting that they could
be of higher quality. As the true evolutionary histories
of gene families are hardly known, relying on high-
quality phylogenetic gene trees for biological analyses
is preferable.

In summary, our results on the empirical dataset
demonstrate how a GA framework can be used for the
inference of gene trees with high accuracy.

Conclusion
Algorithms for constructing gene trees from multi-
ple sequence alignments are widely used. However
when a reliable species tree is available, it is prefer-
able to use species tree-aware methods which are of-
ten more accurate. In this work, we have presented a
GA framework for the reconstruction of gene trees us-
ing both sequences and species tree information. From
the comparison with existing methods, we have shown
that this framework, implemented in a software called
GATC, outputs more accurate gene trees.

As the true evolutionary history of a gene family
does not always correspond to the most parsimonious
one, GATC assumes instead that the true gene tree
can most likely be found in the pareto optimal set of
the search space. Therefore, given enough time, the al-
gorithm will converge to a set of candidates containing
that tree. Although this hypothesis was supported by
our results on the empirical dataset, it does not nec-
essary hold tor all gene families. For example, since
our reconciliation model does not consider Incomplete
Lineage Sorting (ILS), the efficiency of GATC is ex-
pected to decrease in presence of ILS. Indeed, signals
of deep coalescence leading to incongruence between
species and gene tree would be explained by DTL
events, possibly resulting in incorrect trees. Moreover,
another problem still persists when there are several
trees in the final pareto set, as alternative criteria for
discriminating between these equivalent candidates are
required. As implemented, GATC outputs solutions
sorted by either the sequence likelihood or the rec-
onciliation score.

Despite the good results we obtained by using
GATC, one fundamental aspect that should be adressed
in order to improve efficiency is the required evolution
time. Indeed, running time cannot be accurately es-
timated especially when the starting trees have poor
quality. When ML or bayesian trees have been inferred
beforehand, it may be appropriate to set the maximum
evolution time to the time required to find the best
ML tree. As the underlying idea behind GAs allows
for easy parallelism, running time can be dramatically
reduced. Balance between scalability to large datasets
and search efficiency would likely be achieved by care-
fully selecting the different genetic operators and the
stopping criteria. Finally, to avoid being trapped in
local optima, multiple replicate searches, using differ-
ent settings (such as crossover and mutations rates,
population size and initialization) can be performed
in parallel with exchange of information through a mi-
gration operator.
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Figures

Figure 1 Crossover operator. A. Subtree swap. A subtree
G1[x] (in red) is pruned from G1 then regrafted to a random
branch of G2 after deleting from G2 its leaves that also
appear in G1[x] (shown in dotted lines). To obtain the second
child, a similar operation is performed from G2 to G1 B.
Subtree swap preserving reconciliation. Two subtrees G1[x]
and G2[y], respectively from G1 and G2, such that

G1[x] = G2[y] are swapped and the remaining leaves are
corrected to conserve the same leafset as the parent.

Figure 2 Mutation operator. A. Re-rooting. The tree is
rerooted at a random edge. B. SPR move. A subtree is pruned
from the tree and regrafted to another edge. C. Mutation
preserving reconciliation cost. Two leaves l1 and l2 such that
s(l1) = s(l2) are swapped. This mutation only alter the
sequence likelihood.

Figure 3 Accuracy of RAxML, ProfileNJ, ecceTERA,
Treefix-DTL, Mowgli and GATC on a dataset of simulated
Cyanobacteria histories: we measure the normalized
Robinson-Foulds distance of the reconstructed trees to the true
gene tree for all 1099 gene families. GATC achieves the best
accuracy on the simulated dataset, followed by Treefix-DTL.

Figure 4 Distribution of individuals’ raw scores during
evolution on three “gold standard” gene families. The scores
of the ML tree obtained with RAxML, the MPR tree for the
DL score, and the reference gene tree of [41] are also shown.
Note that for fair compairson, the RAxML tree reconciliation
score correspond to the best rooting score, whereas the MPR
tree sequence likelihood correspond to the tree with the
minimum negative log likelihood in the set of equivalent MPR
trees. For the sake of visibility, we increased the size of each
data point. The “best tree” is expected to be located in the
lower left corner. For the ATPase and Nox families, the
reference tree was present in the set of pareto optimal trees
returned by GATC. For the Popeye gene families, the reference
tree was located in the proximity of a cluster of pareto optimal
solutions.

Tables

Table 1 Comparison between the reference tree of the Popeye
family and the pareto optimal trees returned by GATC

normRF distance
Orthologs Paralogs

Prec. Rec. Prec. Rec.

Tree 1 0.260 0.763 0.942 0.971 0.871

Tree 2 0.260 0.765 0.941 0.971 0.873

Tree 3 0.087 0.902 0.983 0.992 0.894

Tree 4 0.109 0.829 0.866 0.940 0.922

Additional Files 1 to 5
Additional file 1 — Reference tree for the Popeye family

Topology of the reference tree for the Popeye family. Branch lengths are

not shown. The gene tree was reconcilied with the species tree. Duplication

nodes (leading to paralogs) are indicated by a red square, while speciation

nodes(leading to orthologs) are indicated by a green circle. The total

number of duplications and losses are shown at the bottom. Lost branches

were not shown for clarity.

Additional file 2 — Tree 1 return by GATC

Additional file 3 — Tree 2 return by GATC

Additional file 4 — Tree 3 return by GATC

Additional file 5 — Tree 4 return by GATC
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Figure 1
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Figure 2
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Figure 3
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Figure 4
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