
Lafond and El-Mabrouk

RESEARCH

Orthology and paralogy constraints: satisfiability
and consistency
Manuel Lafond* and Nadia El-Mabrouk

*Correspondence:

lafonman@iro.umontreal.ca

Department of Computer Science

and Operational Research,

University of Montreal, Chemin de

la Tour, H3C3J7 Montreal,

Canada

Full list of author information is

available at the end of the article

Abstract

Background: A variety of methods based on sequence similarity, reconciliation,
synteny or functional characteristics, can be used to infer orthology and paralogy
relations between genes of a given gene family G. But is a given set C of
constraints possible, i.e., can they simultaneously co-exist in an evolutionary
history for G? While previous studies have focused on full sets of constraints, here
we consider the general case where C does not necessarily involve a constraint for
each pair of genes. The problem is subdivided in two parts: (1) Is C satisfiable,
i.e. can we find an event-labeled gene tree G inducing C? (2) Is there such a G
which is consistent, i.e., such that all displayed triplet phylogenies are included in
a species tree?

Results: We show how known results on the Graph sandwich problem can be
used to answer (1) and provide polynomial-time algorithms for satisfiability and
consistency with a given species tree. We also describe a new polynomial-time
algorithm for the case of consistency with an unknown species tree and full
knowledge of relations, as well as a branch-and-bound algorithm in the case when
unknown relations are present. We show that our algorithms can be used with
appropriate combinations of parameter settings of Proteinortho, a sequence
similarity-based orthology detection tool.

Availability: Software is available at http://www-ens.iro.umontreal.ca/
~lafonman/software.php.

Keywords: orthology; paralogy; gene tree; species tree; satisfiability; consistency

1 Introduction
Gene families, usually constructed from sequence similarity, group homologous

genes, i.e., genes sharing a common ancestry: starting from a single gene copy,

a history of speciations, duplications and losses is assumed to be at the origin of

the observed set of extant genes. Deciphering the orthology (divergence following

a speciation) and paralogy (divergence following a duplication) relations between

pairs of genes inside a gene family is important and lies at the heart of many ge-

nomics studies. The reconstruction of species trees for example is usually based on

the selection and alignment of orthologous gene copies. From a functional point of

view, orthologs are believed to be more likely similar in function than paralogs [1].

Orthology/paralogy information is often derived from a reconciliation approach

(first introduced by Goodman in 1979 [2]). A gene tree that best reflects the evo-

lution of the sequences is first constructed for the gene family. Assuming a known

phylogeny for the set of taxa, the non-agreement between the two trees is then

explained by a set of duplication and loss events (other events such as horizontal

mailto:lafonman@iro.umontreal.ca
http://www-ens.iro.umontreal.ca/~lafonman/software.php
http://www-ens.iro.umontreal.ca/~lafonman/software.php

Lafond and El-Mabrouk Page 2 of 15

gene transfer might also be inferred by reconciliation, although we will ignore them

here). Reconciliation leads to a labeling of internal nodes of the gene tree as dupli-

cation/speciation nodes, yielding a full orthology/paralogy interpretation for each

pair of genes (cf. e.g. TreeFam [3, 4] used for constructing the Ensembl Compara

gene trees [5], PHOG [6], MetaPHOrs [7]). This approach assumes that an accurate

gene tree can be constructed for the gene family. Although inferring phylogenies

is a field with a very long history, due to various limitations constructing good

gene trees is still challenging. A variety of other methods have been developed for

the purpose of orthology/paralogy detection. A well-known class of algorithms is

based on clustering genes according to their sequence similarity (cf. e.g. the COG

database [8], OrthoMCL [9], InParanoid [10], Proteinortho [11]). Recently, we in-

vestigated another way of detecting orthology/paralogy based on conserved synteny

(conservation in gene order) [12, 13]. Other initiatives, such as the Gene Ontology

project [14], provide functional annotation that can be used as another source of

orthology relations. In contrast to the reconciliation approach, only partial relations

can be expected from such tree-free methods.

The orthology/paralogy information suggested by gene tree reconciliation may be

contradictory with that suggested by an external source. As gene trees are known to

be error-prone, more confidence can be given to such homology information when it

is well-supported by various genomic observations. This raises the problem of gene

tree editing based on a known set C of pairwise orthology/paralogy constraints.

But prior to any algorithmic consideration, one should be able to state whether

the set C is possible, i.e. whether all constraints can simultaneously co-exist in an

evolutionary history of the gene family. In a recent work [12], we showed that a set of

orthlogy constraints is always possible and we gave a polynomial-time algorithm for

correcting a gene tree in a minimal way according to the Robinson-Foulds distance.

Recent studies have considered the connection of trees and orthology from the

angle of reconstructing phylogenies from orthology relations [15, 16, 17]: How much

information about the gene tree, the species tree and their reconciliation is already

contained in the orthology relation between genes? In other words, having a set

C of full pairwise orthology/paralogy relations (each pair of genes is constrained),

can one reconstruct the gene and species trees? Similarly to gene tree editing, the

first question to be asked is whether the orthology/paralogy constraints can simul-

taneously co-exist in a history of the gene family. Interestingly, by making the link

with symbolic ultrametrics and co-graphs, a simple characterization of satisfiability

(symbolic ultrametric) for full paralogy/orthology relations is given in [15], where

satisfiability relates to the existence of an event-labeled gene tree G (symbolic rep-

resentation) leading to C. Notice that satisfiability does not mean the possibility

for orthology/paralogy relations to co-exist in a true history, as the triplet phyloge-

nies contained in G are not necessarily consistent (included in a species tree). The

derivation of a species tree from an event-labeled gene tree is considered in [16].

Finally, the outline of a computational framework for the construction of a least

resolved species tree S from a set of orthology/paralogy relations, involving the

extraction of maximum satisfiable relations and maximum consistent triple set is

given in [17].

Here, we consider the general case for C: in contrast with [15, 16], we do not require

C to be full, i.e., to involve a constraint for each pair of genes. We introduce the

Lafond and El-Mabrouk Page 3 of 15

notations and problems in Section 2, and show in Section 3 how the Graph sandwich

problem solves the problem of satisfiability. In Section 4 we adapt this algorithm to

the problem of consistency with a given species tree. We then study in Section 5

the problem of finding a gene tree that is consistent with some species tree. Finally

in Section 6, we show how our methodology can be used with ProteinOrtho to

extract a set of robust orthology/paralogy relationships.

2 Notations and problem statement
In the rest of this paper, we consider a set Σ of species and a gene family G where

each gene x belongs to a species s(x) of Σ. We generalize the notation s to subsets

of genes: if U ⊂ G, s(U) = {s(x) : x ∈ U}.
As we only consider rooted trees, we will sometimes omit the word “rooted”. Let

T be a tree. We denote by r(T) its root and by L(T) its set of leaves. For any

internal node x of T , we denote by Tx the subtree of T rooted at x. We say that a

node y is an ancestor of x if the two nodes belong to the same path from a leaf to

the root of T , and y is closer to the root. Two nodes x and y are unrelated if x 6= y

and none is the ancestor of the other. For a set of leaves U ⊂ L(T), we denote by

lcaT (U) the least common ancestral node of U in T , i.e. the common ancestral node

of the elements of U which is the farthest from the root.

Let L′ be a subset of L(T). The restriction T |L′ of T to L′ is the tree with leaf set

L′ obtained from TlcaT (L′) by removing all leaves that are not in L′, and all internal

nodes of degree 2, except the root. Let T ′ be a tree such that L(T ′) = L′ ⊂ L(T).

We say that T displays T ′ iff T |L′ is label-isomorphic to T ′.

A triplet is a binary tree on a set L with |L| = 3. For L = {x, y, z}, we denote

by xy|z the unique triplet t on L with root r(t) for which lcat(x, y) 6= r(t) holds.

We denote by tr(T) = {T |L : L ∈
(
L(T)
3

)
and T |L is binary} the set of all rooted

triplets of a tree T .

Evolution of species and genes: A species tree S for Σ is a rooted tree whose

leaves are in bijection with Σ, representing the evolutionary relationships between

the species: an internal node is an ancestral species at the moment of a speciation

event, and its children are the descendants. Although species trees are generally

binary, we do not make this assumption here. Genes of G undergo speciation when

the species to which they belong do. Within a species, genes can be duplicated

or lost. A history H for G is a tree representing the evolution of the gene family

through speciations and duplications: each leaf of H is labeled by a gene of G, and

each internal node refers to an ancestral gene at the moment of an event (speciation

or duplication). Therefore each internal node of H can be labeled as a speciation

(Spec) or duplication (Dup) event.

As H is a history “embedded” in the species tree S of Σ, it must reflect a speciation

history consistent with S: any speciation node of H should reflect a clustering of

species in agreement with S. To formally define consistency, let first introduce a

more general set of labeled trees. We call a DS-tree for G a pair (G, `), where G is

a tree with L(G) = G, and ` is a function ` : V (G) \ L(G)→ {Dup, Spec} labeling

each internal node of G as a duplication or a speciation node. For simplicity, we

often refer to G as the DS-tree for G without explicitly stating `, and assume the

Lafond and El-Mabrouk Page 4 of 15

internal nodes of G are labeled Dup or Spec. For some X ⊆ L(G), we implicitly

assume that the internal nodes of G|X share the same label as in G.

Definition 1 Let G be a DS-tree for G and S be a species tree for Σ. We say that

G is consistent with S if and only if, for any speciation node x of G and any two

children y, z of x, lcaS(s(Ly)) and lcaS(s(Lz)) are unrelated in S, where Ly and

Lz are the leaf-sets of Gy and Gz respectively.

Now a history H for G is simply a DS-tree for G consistent with the species tree

S for Σ. Denote

trS(G) = {s(x)s(y)|s(z) : xy|z ∈ tr(G) is rooted at a speciation and s(x) 6= s(y)}

The triplets of trS(G) are called speciation triplets. The following theorem, which

is a reformulation of Theorem 6 in [16], relates consistency to speciation triplets.

Theorem 1 Let G be a DS-tree for G and S be a species tree for Σ. Then G is

consistent with S if and only if S displays all triplets of trS(G).

From the Fitch [18] terminology, two leaves x and y of a history are ortholo-

gous if lcaH(x, y) is a speciation node, and paralogous otherwise. We extend this

terminology to a more general DS-tree.

Definition 2 Let G be a DS-tree for G. Then two genes x, y of G are orthologous

with respect to (w.r.t.) G if lcaG(x, y) is a speciation node, and paralogous w.r.t. G

if lcaG(x, y) is a duplication node.

Therefore a DS-tree induces a set of orthology/paralogy relationships between

genes.

Constraint graph: A constraint is simply an unordered pair of genes {x, y} ∈
(G
2

)
.

A set of orthology/paralogy constraints on G (or simply a constraint set) is a pair

C = (CO, CP) of subsets CO, CP ⊂
(G
2

)
such that CO ∩ CP = ∅. CO represents

the orthology constraints and CP the paralogy constraints. We say that C is a full

constraint set if CO ∪ CP =
(G
2

)
. For example, a history H for G induces a full

constraint set.

We represent a constraint set C = (CO, CP) by an edge-bicoloured undirected

graph R = (V,E,U), called a constraint graph, with vertex set V = G, and two

edge sets E = CO and U =
(G
2

)
\ (CO ∪ CP). Said differently, two genes are linked

by an edge of E if they are constrained by orthology, unlinked if they are constrained

by paralogy, and linked by a “special” edge of U if the relation between the two

genes is unknown. We refer to the edges of E as the orthology edges, to those in U

as the unknown edges and we refer to the unlinked pairs of genes as the paralogy

non-edges. An example of a partial constraint graph is given in Figure 1.

If C is a full constraint set then U = ∅. R is called a full constraint graph in this

case. The complement of R is the graph R obtained by the alternative choice of

linking paralogs instead of orthologs. Formally, R = (V,E \ U,U), where E is the

complement of E defined by e ∈ E iff e /∈ E. Notice that R and R share the same

Lafond and El-Mabrouk Page 5 of 15

a b c d e f

a1

b1

b2

c1

c2

d1

e1

f1

a1

b1

b2

c1

c2

d1

e1

f1

a1

b1

b2

c1

c2

d1

e1

f1

a1 b1 b2 c1 c2 d1 f1 e1a1 b1 b2 c1 d1 f1 e1c2

R R1 R2

S G1 G2

Figure 1: Constraint graph, satisfiability and consistency. A constraint graph

R = (V,E,U) with E and U depicted by solid and dotted edges, along with

with two satisfiable realizations R1 = R({d1e1}) and R2 = R({d1c2}). The gene

names correspond to their respective species in the species tree S. The tree G1 is

a DS-tree that satisfies R1 while G2 is a DS-tree that satisfies R2. Duplication

nodes in G1 and G2 are indicated by a green square. G1 is not consistent with

S because for instance, G1 has the speciation triplet s(a1)s(d1)|s(e1) = ad|e
while S has the de|a triplet. The tree G2 is consistent with S.

set U of unknown edges. We denote by R[X] the graph R induced by X ⊆ V , i.e.

R[X] = (X,E(X), U(X)) where E(X) (resp. U(X)) are the edges of E (resp. U)

having both endpoints in X. Note that if U = ∅, R[X] corresponds to the usual

definition of the graph induced by X.

Satisfiability and consistency Given a constraint set C (or similarly a constraint

graph R), is C possible, i.e. can we find a history for G inducing the orthology and

paralogy constraints of C? As an orthology constraint for two genes belonging to

the same genome cannot be induced by a history for G, we assume in the rest of

this paper that the set C̃P = {{x, y} ∈
(G
2

)
: s(x) = s(y)} is included in CP . A

trivial set of paralogy constraints is a set CP restricted to C̃P .

The question whether C is possible is in two parts: (1) is C satisfiable, i.e. can we

find a DS-tree G inducing C and (2) is there such a G which is consistent with a

species tree? Formal definitions follow.

Definition 3 Let R = (V,E,U) be a constraint graph and G be a DS-tree with

L(G) = V . We say that G satisfies R if for two genes x, y ∈ L(G), if xy ∈ E then

they are orthologous w.r.t. G, and if xy ∈ E \ U then they are paralogous w.r.t. G.

We say that R is satisfiable if there exist a DS-tree G that satisfies R.

If U 6= ∅, then R being satisfiable means that we can make a choice for the

unknown edges as orthology edges and paralogy non-edges to obtain a full constraint

graph that is satisfiable. For F ⊂ U , the realization of R by F corresponds to

choosing F as orthology edges, and U \F as paralogy non-edges, leading to the full

constraint graph R(F) = (V,E ∪ F, ∅). We call R(∅) and R(U) the empty and full

realizations, respectively.

As a history is a DS-tree, a set of constraints that is not satisfiable is clearly not

possible, i.e. there is no history that depicts the orthology/paralogy relationships

Lafond and El-Mabrouk Page 6 of 15

given by the constraints. Moreover, satisfiability is not sufficient to ensure the pos-

sibility of such an history, as a DS-tree is not always consistent with a species tree.

Figure 1 shows an example of a constraint graph R along with two satisfying real-

izations R1 and R2. However, R1 cannot be made consistent with a given species S

whereas R2 can.

Definition 4 Let R be a constraint graph for G. We say that R is consistent with

a species tree S if and only if there is a realization of R which is satisfiable by a

DS-tree G which is consistent with S. More generally, we say that R is consistent

if and only if there is a species tree S such that R is consistent with S.

The three following sections are respectively dedicated to the three following ques-

tions: (1) Given a constraint graph R = (V,E,U), is R satisfiable? (2) Given a

satisfiable constraint graph R = (V,E,U), and a species tree S, is R consistent

with S? (3) Given a satisfiable constraint graph R = (V,E,U), is R consistent, i.e.

can we find a species tree S such that R is consistent with S?

3 Satisfiability of a constraint graph
The problem of constraint graph satisfiability has been addressed in [15] in the

restricted case of a full set of constraints. The following theorem is a reformulation

of one of the main results of this paper.

Theorem 2 ([15]) A full constraint graph R is satisfiable if and only if R is P4-

free (or equivalently, iff R is P4-free since P4 is self-complementary), meaning that

no four vertices of R induce a path of length 4.

Consider now the general case of a constraint graph R = (V,E,U) with U 6= ∅.
Then the problem is to find a realization R(F) that is itself satisfiable, i.e. P4-

free. It turns out that this problem is a reformulation of the well-known Graph

sandwich problem for P4-free graphs. It can be stated as follows : given two graphs

G1 = (V,E1) and G2 = (V,E2), with E1 ⊆ E2, does there exist a P4-free graph

G = (V,E) such that E1 ⊆ E ⊆ E2. That is, G must contain every edge of G1 and

every non-edge of G2. It is then clear that this is equivalent to finding a P4-free

realization of R = (V,E1, U = E2 \ E1). A O(|V |3) algorithm was proposed in [19]

to solve this problem. In this section, we restate under our formalism some of the

useful results of this paper, and give a modified version of the proposed algorithm

that outputs a DS-tree that satisfies R whenever there is one. We will make use of

the following well-known characterization of P4-free graphs.

Lemma 1 A graph Γ is P4-free if and only if, for any subset X of vertices of Γ

with |X| ≥ 2, either Γ[X] or Γ[X] is disconnected.

The next lemmata establish an important heritability property on satisfiable

graphs: every restriction R[X] of R must be satisfiable for R to be satisfiable.

Lemma 2 Let G be a DS-tree that satisfies a realization R(F), for some F ⊆ U .

Let X ⊆ V and let FX = {ab ∈ F : a, b ∈ X}. Then G|X is a realization of

R[X](FX).

Lafond and El-Mabrouk Page 7 of 15

Proof: Let a, b ∈ X. First observe that a and b have the same orthology/paralogy

relationship in R(F) and R[X](FX). Let c = lcaG(a, b). Now, c is also an internal

node of G|X , and moreover c = lcaG|X (a, b). As c has the same Dup or Spec label

as in G, c correctly displays the relationship between a and b. Thus G|X satisfies

every relationship in R[X](FX). 2

The heritability property is then immediate.

Lemma 3 A constraint graph R = (V,E,U) is satisfiable if and only if for any

X ⊆ V , R[X] is satisfiable.

Theorem 3 [19] A constraint graph R is satisfiable if and only if at least one of

the two following holds :

1 R(∅) is disconnected, and all of its connected components are satisfiable;

2 R(U) is disconnected, and all of its connected components are satisfiable.

Proof: ⇐ For 1.: Suppose R(∅) is disconnected. Let {R1, . . . , Rk} be the connected

components of R(∅) with k > 1, all being satisfiable. As each Ri is satisfiable,

there is a DS-tree Gi that satisfies a realization Ri(Fi) of Ri. Let F = ∪1≤i≤kFi.

Then the realization R(F) of R is a full constraint graph with k full constraint

components Ri(Fi) in which no two components share an edge. In other words, there

is a paralogy non-edge between each pair of genes from two different components.

Therefore, joining the roots of G1, . . . , Gk under a common duplication node yields

a DS-tree for R(F), which shows that R is satisfiable. The proof when 2. holds is

the same, except that we root G at a speciation node since the components of R(U)

are pairwise-complete in R(U).

⇒ Suppose that both conditions do not hold. If R(∅) or R(U) has a compo-

nent that is not satisfiable, then by Lemma 3, R is not satisfiable. So instead sup-

pose that each of R(∅) and R(U) has a single connected component. Let F ⊆ U .

The realization R(F) of R must be connected as R(∅) is already connected and

E(R(∅)) ⊆ E(R(F)). R(F) must also be connected, as choosing all edges of U

leaves R(U) connected and E(R(U)) ⊆ E(R(F)). Since both R(F) and R(F) are

connected, by Lemma 1 R(F) is not P4 free, and thus not satisfiable by Theorem 2.

As this is true for any realization R(F) of R, i.e. for any F ⊆ U , it follows that R

is not satisfiable. 2

Theorem 3 suggests the recursive algorithm BuildDSTree that begins by finding

out if one of R(∅) or R(U) is disconnected. If so, it creates a node of the appropriate

type, gives it the identified components as children and repeats the process on each

such component.

If n is the number of genes in G, the algorithm creates a DS-tree G with at most

n − 1 internal nodes (or stops before if R is unsatisfiable). For each such internal

node v, the time taken to go through the algorithm is dominated by (at most)

two depth-first searches that are performed on L(Gv), and the rest of the work is

handled by children nodes. So the time taken to handle v is bounded by the number

of edges/non-edges in R[L(Gv)], which is O(|L(Gv)|2) ⊆ O(n2). So in total is O(n3).

Lafond and El-Mabrouk Page 8 of 15

Algorithm BuildDSTree (R = (V,E, U), v)
where R is a (possibly induced) constraint graph and v is the current node of G we
are creating

IF |V | = 1; RETURN;
R(∅) = (V,E, ∅)
Find the connected components CC of R(∅) through a depth-first search
IF |CC| > 1;

type← Dup
ELSE

R(U) = (V,E, ∅)
type← Spec

Find the connected components CC of R(U) through a depth-first search
IF |CC| = 1; output ”Unsatisfiable”, and halt the recursion

END IF
v.type← type
FOR C ∈ CC;

Add child node vC to v
BuildDSTree(R[C], vC)

END FOR
RETURN

4 Consistency with a given species tree
Let R = (V,E,U) be a constraint graph for G and S be a species tree for Σ. We

want to know whether the orthology/paralogy constraints represented by R can be

induced by a history for G consistent with S. More precisely, is there a realization

R(F) of R that is satisfiable and such that the DS-tree satisfying R(F) is consistent

with S? If R is not satisfiable, then the answer is clearly no. Therefore hereafter we

assume that R is satisfiable. We first show that the problem at hand still has the

heritability property.

Lemma 4 R is consistent with S if and only if for any X ⊆ V , R[X] is consistent

with S.

Proof: The ’⇐’ part is trivial since we can choose X = V to show that R is con-

sistent with S. Conversely, assume R is consistent with S. Let G be a DS-tree for

some realization of R such that G is consistent with S, and let X ⊆ V . By Lemma 2,

G|X is a DS-tree for R[X]. Let ab|c ∈ trS(G|X). Since going from G|X to G only

involves adding subtrees on branches of G|X , it follows that ab|c ∈ trS(G). There-

fore, trS(G|X) ⊆ trS(G). Now, since S displays trS(G), G|X is a realization of R[X]

that is consistent with S. 2

We need to introduce one last notation before stating the main theorem for char-

acterizing consistency of a constraint graph R with a species tree S. Let R(F) be

a realization of R, and let CC = {R1, . . . , Rk} be the connected components of

R(F). Notice that the components of CC are pairwise complete in R(F). A specia-

tion partition P = {P1, . . . , P|P |} is a non-trivial partition of CC (i.e. |P | > 1) such

that lcaS(s(Pi)) is unrelated to lcaS(s(Pj)) whenever i 6= j.

Theorem 4 R is consistent with S if and only if at least one of the following

conditions holds:

Lafond and El-Mabrouk Page 9 of 15

1 R(∅) is disconnected and each connected component is consistent with S;

2 R(U) is disconnected, its components admit a speciation partition and each

component in this partition is consistent with S.

Proof: ⇐ For 1., Let {R1, . . . , Rk} be the connected components of R(∅), each Ri

having a DS-tree Gi consistent with S. We can then join the roots of G1, . . . , Gk

under a common duplication parent. This yields a DS-tree G that satisfies R as

each pair of components of R(∅) are related by paralogy. Furthermore, all rooted

triplets of G that were not in any Gi are rooted at r(G), a Dup node. Therefore,

trS(G) = ∪1≤i≤ktrS(Gi), which S displays.

⇐ 2.: Let P = {P1, . . . , Pk} be a non-trivial speciation partition of the connected

components of R(U). By assumption every Pi ∈ P has a DS-tree Gi that is consis-

tent with S, implying that S displays ∪1≤i≤ktrS(Gi). Here all elements of P are com-

ponents of R that are pairwise-complete, and we obtain a DS-tree G for R by joining

G1, . . . , Gk under a common speciation parent. Let T = trS(G) \ ∪1≤i≤ktrS(Gi).

Every triplet of T is rooted at r(G). Thus if three genes a, b, c of L(G) form a speci-

ation triplet s(a)s(b)|s(c) ∈ T , then a and b are in some part Pi while c is in another

part Pj . But by the definition of speciation partitions, lcaS(s(Pi)) is unrelated to

lcaS(Pj), implying that s(a)s(b)|s(c) ∈ tr(S). It follows that S displays T .

⇒ : suppose both conditions are not met, but that R is consistent with S. If

R(∅) is disconnected but has an inconsistent component, then R is inconsistent

by Lemma 4. So we assume R(∅) is connected. If R(U) is also connected, then

we saw in Theorem 3 that R is not even satisfiable. If R(U) is disconnected and

admits a speciation partition, but a member of this partition is not consistent, then

again by Lemma 4, R is not consistent. So we assume that R(∅) is connected, and

R(U) is disconnected but admits no speciation partition. Let G be a DS-tree for R

consistent with S. Suppose r(G) is a duplication node and let r1, r2 be two children

of r(G). We have that every gene in L(Gr1) is paralogous with every gene in L(Gr2)

and vice-versa. This implies that L(Gr1) and L(Gr2) are two components of R(∅)
that share no edge, a contradiction since we assume R(∅) is connected. So r(G) is a

speciation node. Let r1, . . . , rk be the children of r(G). The sets L(Gr1), . . . , L(Grk)

form a partition P of the connected components of R(U). Since S displays trS(G), it

follows that for two distinct Pi, Pj ∈ P , lcaS(s(Pi)) and lcaS(s(Pj)) are unrelated.

Hence P is a speciation partition, a contradiction. 2

This theorem suggests a small modification to algorithm BuildDSTree. Con-

nected components of R(∅) are handled in the same manner, but in the case of

a disconnected R(U), we need to find a speciation partition P after having found

its connected components CC. To accomplish this, it suffices to observe that some

C1, C2 ∈ CC must be in the same part of P when lcaS(s(C1)) is on the path from

lcaS(s(C2)) to the root of S (or vice-versa). Thus for each Pi ∈ P , we can find the

member of C ∈ Pi that has lcaS(s(C)) the closest to the root of S, then any other

component C ′ having lcaS(s(C ′)) in the subtree rooted at lcaS(s(C)) will be in Pi.

FindSpeciationPartition uses that fact to find P through a pre-order traversal

of S.

Lafond and El-Mabrouk Page 10 of 15

Algorithm FindSpeciationPartition(CC, s, P, Pi)
where CC is the set of components to partition, s ∈ V (S) is the current node of S in
the pre-order traversal, P is the partition of CC, and Pi is the current part of P
we are adding components to

FOR C ∈ CC such that lcaS(C) = s;
IF Pi is not set; let Pi be a new empty set and add Pi to P
Add C to Pi

END FOR
FOR s′ ∈ children(s);

FindSpeciationPartition(CC, s′, P, Pi)
END FOR

Assuming constant time lca lookups, we can precompute lcaS(s(C)) in time |C|
for each C ∈ CC. If CC has a total of k nodes, by mapping each s ∈ S to the list

of C ∈ CC with lcaS(s(C)) = s, the whole algorithm takes time O(k + |S|). We

need to call this algorithm in up to n− 1 calls of BuildDSTree. We argued that

one call on a node v of G in BuildDSTree takes time O(|L(Gv)|2), so adding this

step makes it O(|L(Gv)|2 + |S| + k). Noting that k = |L(Gv)|, and assuming that

|L(Gv)| ≥ |S|, this modified algorithm still runs in time O(n3), where n = |G|.

5 Consistency of a satisfiable constraint graph
Now let R = (V,E,U) be a constraint graph for G and suppose the species tree

for Σ is unknown. The question is to know whether the graph R is consistent, and

if so to output a species tree S such that R is consistent with S. As above, we

assume that R is satisfiable. Note that unlike the two previous problems, we cannot

treat each connected component of R(∅) or R(U) independently, as two (or more)

components might give gene histories consistent by themselves but not together.

Consider now a full constraint graph R. The results in [15, 16] suggest a

polynomial-time algorithm for solving the consistency problem that consists in

building a DS-tree G satisfying R, extracting all speciation triplets of G and check-

ing their consistency with a species tree. Here we propose an alternative polynomial-

time algorithm for the same problem, avoiding the first step of a DS-tree construc-

tion. We first introduce the following subset P3(R) of triplets of
(
V
3

)
inducing a path

of size 3 in R:

P3(R) = {s(x)s(y)|s(z) : {x, y, z} ∈
(
V

3

)
, zx, zy ∈ E and xy /∈ E ∪ U}

Notice that s(x)s(y)|s(z) ∈ P3(R) implies that any DS-tree G satisfying R has

s(x)s(y)|s(z) ∈ trS(G). Indeed, since xy /∈ E ∪ U , lcaG(x, y) is a duplication node.

And since both x and y are related to z by speciation, lcaG(x, z) = lcaG(y, z) and

xy|z must be a speciation triplet of G.

For example, consider the vertices b1, c2, e1 of the R graph in Figure 1, which form

a path of length 3 with e1 in the center. In the DS-tree G1, lcaG1
(b1, c2) is a duplica-

tion, and lcaG1({b1, c2, e1}) is a speciation. Restricting G1 to the three vertices yields

the triplet b1c2|e1 rooted at a speciation, and therefore, s(b1)s(c2)|s(e1) ∈ trS(G1).

The same holds for the s(c1)s(c2)|s(e1) triplet implied by the P3 induced by

c1, c2, e1. Notice however that in both DS-trees, s(b1)s(c1)|s(e1) is a speciation

triplet, though b1, c1, e1 do not induce a P3. We show that this kind of speciation

Lafond and El-Mabrouk Page 11 of 15

triplet is implied by the other two aforementioned P3, and that the P3 subgraphs

actually imply every mandatory speciation triplet.

Theorem 5 Let R = (V,E,U = ∅) be a satisfiable full constraint graph. Then R

is consistent if and only if there exists a species tree S displaying all the triplets of

P3(R).

Proof: ⇒ : since s(x)s(y)|s(z) ∈ P3(R) implies that s(x)s(y)|s(z) ∈ trS(G), it

follows that any species tree S consistent with R must display every triplet of

P3(R).

⇐ : we first obtain a least-resolved DS-tree G for R in terms of speciation. Let G′

be a consistent DS-tree satisfying R, and let S be a species tree displaying P3(R).

If G′ has any speciation node v that has a speciation child w, we obtain G′′ by

contracting v and w (delete w and give its children to v). Since v and w are both

speciations, this operation does not change the label of lcaG(x, y) for any two leaves

x and y and G′′ still satisfies R. Moreover, trS(G′′) ⊂ trS(G′), so there is no risk of

breaking consistency. We obtain a DS-tree G by repeating this operation until we

cannot find such a v and w.

Let xy|z be a triplet of G rooted at a speciation node. We have that lcaG(z, x) =

lcaG(z, y) is a speciation, and that zx, zy ∈ E. If lcaG(x, y) is a duplication node,

then xy /∈ E. So {x, y, z} induces a P3 in R, and S displays s(x)s(y)|s(z). Suppose

instead that lcaG(x, y) is a speciation node. Because G is a least resolved DS-tree,

there must be a duplication node u on the path between lcaG(x, y) and lcaG(x, z).

This implies there is a leaf d in Gu such that x and y are related to d by duplication,

but with d and z related by speciation. In R, we then have zd ∈ E, and xd, yd /∈ E.

Thus both {x, d, z} and {y, d, z} induce a P3 in R with z being the middle vertex, and

s(x)s(d)|s(z), s(y)s(d)|s(z) ∈ P3(R) are both displayed by S. This is only possible

if there is a node in S that has all of s(x), s(y), s(d) in one child subtree and s(z) in

another. Therefore, S must display s(x)s(y)|s(z). Having taken care of both types of

speciation triplets, we deduce that displaying P3(R) is sufficient to display trS(G).

2

Therefore the consistency problem for a full constraint graph reduces to the prob-

lem of verifying whether the set P3(R) of triples can be displayed in a species tree

for Σ. This is in fact a well know problem with a solution presented in [20]: given a

triplet set R, there is a polynomial-time algorithm, called BUILD [21], that, when

applied to R either outputs a species tree that displays R or recognizes that R is

inconsistent. Therefore, in the case of a full constraint graph, the consistency prob-

lem is resolved in polynomial time by first constructing the set P3(R), and then

applying the BUILD algorithm.

Consider now the general case of a constraint graph R = (V,E,U) with U 6= ∅.
The branch-and-bound algorithm CHECKCONS iterates over the edges of U , tries

to make them edges and non-edges but stops as soon as one decision creates a set

of P3 that is inconsistent. Since at worst, every possibility is tested, it follows that

this algorithm is exact, though exponential in the worst case.

Lafond and El-Mabrouk Page 12 of 15

Algorithm CHECKCONS (R = (V,E, U))
Obtain a species tree S by running BUILD on P3(R)
IF S is not set (i.e. BUILD failed), RETURN FALSE
IF R is not satisfiable, RETURN FALSE
IF U = ∅, return (R,S)
Let e ∈ U and let Re = (V,E ∪ {e}, U \ {e})
(R′, S)← CHECKCONS(Re)
IF (R′, S) is set (i.e. CHECKCONS succeeded), RETURN (R′, S)
Otherwise let Re = (V,E, U \ {e})
(R′, S)← CHECKCONS(Re)
IF (R′, S) is set (i.e. CHECKCONS succeeded), RETURN (R′, S)
Otherwise RETURN FALSE

Possible improvements of this algorithm include removing as many edges from U

as possible, and choosing an ordering of the edges that may speed up the branch-

and-bound process. For instance, it may be worthwhile to first identify every induced

P4 of R(∅). The P4 subgraphs that admit only one possibility for removal, i.e. the

P4 can only be removed by making a unique edge e ∈ U an orthology edge, can be

corrected before entering the algorithm. Note that the same applies for the edges of

U that must be edges of R(U). We may then prioritize the handling of the other P4

by considering the edges that resolve them first. Similarly, it would also be possible

to identify edges of U that are mandatory in E by finding the P3 subgraphs of R(∅)
that are not in P3(R), but that disagree with a triplet of P3(R). For instance, R(∅)
might have a P3 with edges xz, zy, but this P3 is not in P3(R) because xy ∈ U . If

say s(y)s(z)|s(x) is in P3(R), then xy is forced in E as otherwise the contradictory

s(x)s(y)|s(z) triplet would be present.

6 Experiments
We show how the developed algorithms for checking satisfiability and consis-

tency can be used, in combination with an orthology detection tool such as Pro-

teinOrtho [11], to infer a robust set of orthology and paralogy constraints. Given

a set of protein sequences, Proteinortho infers homologous gene families as well as

orthology relationships within these families, based on various similarity scores.

Proteinortho does not infer paralogy relationships. However, if we choose a set of

parameters leading to a loose characterization of orthologs, then we can assume

that unpredicted constraints should represent paralogy. Different combinations of

parameters therefore lead to different constraint sets that can be analyzed for sat-

isfiability and consistency.

ProteinOrtho has been run on 265 gene families of vertebrates, each representing

the leaf-set of an Ensembl [5] gene tree. Trees were chosen randomly among the

Ensembl gene trees containing at least 20 leaves. For each family, five different

parameter settings, numbered from −2 to +2, were tested, 0 representing the default

parameter choice of ProteinOrtho, and the smaller the number, the looser is the

induced characterization of orthology. For each parameter setting i, we define the full

constraint graph Ri where all gene pairs not predicted as orthologs are interpreted

as paralogs. Typically, a graph R− for a negative number (−1 or −2) contains more

orthology (and thus less paralogy) constraints than R0, while the converse is true

for a graph R+. Combining two constraint graphs R− and R+ consists in keeping

Lafond and El-Mabrouk Page 13 of 15

only orthology and paralogy edges that are common to both, and completing the

graph with unknown edges.

Table 1 summarizes the results on satisfiability and consistency with the En-

sembl species tree S, obtained for each gene family and each parameter setting or

combination. Among the 265 gene families, only 112 (42%) produced at least one

satisfiable full constraint graph and only 44 (15%) produced such a graph which

is also consistent with the Ensembl species tree. However, combining loose and

strict parameter settings lead to much better results with at least 95% satisfiability

and 56% consistency with S. The partial orthology/paralogy constraints obtained

from combinations correspond to about half of the constraints of a full graph, as

illustrated by the last column of the table.

satisfiable families # consistent families % constraints when consistent
-2 82 (30.9%) 30 (11.3%)
-1 44 (16.6%) 13 (4.91%)
0 26 (9.81%) 9 (3.40%)
+1 48 (18.1%) 14 (5.28%)
+2 55 (20.8%) 18 (6.79%)
-2/+2 260 (98.1%) 172 (64.9%) 42.0%
-2/+1 258 (97.4%) 172 (64.9%) 44.8%
-1/+1 254 (95.8%) 149 (56.2%) 50.6%
-1/+2 255 (95.9%) 157 (59.2%) 47.5%

Table 1: The results over 265 gene families from Ensembl. The first five rows corre-

spond to the full constraint sets obtained from ProteinOrtho for the five classes

of parameters. The last four rows correspond to the partial constraint sets obtained

after combining two graphs over two types of parameters. The first column is the

number of families for which the settings of ProteinOrtho yielded a satisfiable

graph, the second that number consistent with the Ensembl species tree. The last

column shows the percentage of constraints that were not unknown when a consis-

tent solution was found (which is 100% for the first five rows).

In order to get a rough idea of the accuracy of the obtained partial orthol-

ogy/paralogy predictions for each gene family G, we compared them with those

resulting from the labeling of the Ensembl gene tree nodes as duplication and spe-

ciation nodes. An orthology disagreement refers to orthology predictions on the four

combined graphs depicted in Table 1, that are rather inferred as paralogs from the

Ensembl gene tree labeling. A paralogy disagreement refers to the reverse situation.

Overall, the orthology disagreement percentage is between 15.1% and 15.9% de-

pending on the two classes of parameters combined. For paralogy disagreement, it

varies between 11% and 17%, depending on the 2 parameters combined (-2/+1 and

-2/+2 were around 11.2% while -1/+1 and -1/+2 were around 17.4%).

Notice that Ensembl annotates many duplication nodes as “dubious”. If we ig-

nore orthology disagreements caused by a dubious duplication node, the orthology

disagreement percentage drops to an average of 5.0%, strengthening the doubts on

those duplication nodes.

7 Conclusion
In this work we have developed methods to assess the plausibility of a partial

set of orthology and paralogy relationships between pairs of homologous genes. In

Lafond and El-Mabrouk Page 14 of 15

particular, we showed how extending algorithms for the Graph sandwich problem

can solve, in time O(|V (R)|3), the problems of satisfiability and consistency with a

species tree. The complexity of verifying whether it is possible to construct G such

that it is consistent with some species tree S remains open. We have elaborated on

the P3 property of R that lead to a branch-and-bound algorithm, but it remains

possible that this property could be used to create a more efficient method. While

previous work consisted in verifying whether a full set of relationships was satisfiable

or consistent, admitting uncertainty within these relationships makes it possible to

bring the theory from [16] into practice, as current orthology (or paralogy) inference

methods based on sequences cannot guarantee 100% accuracy in their predictions.

We show how a confidence set of such predictions can be inferred using our methods

and Proteinortho. One possible application of finding solid predictions is to compare

them with the relationships present on actual gene trees, then correct these trees

in case of disagreement.

Competing interests

The authors declare they have no competing interests.

Author’s contributions

ML, NE devised the proofs and algorithms and wrote the paper. ML implemented the software.

Declarations

This work is funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) and Fonds de

Recherche Nature et Technologies of Quebec (FQRNT).

References
1. Ohno S: Evolution by gene duplication. Berlin: Springer 1970.

2. Goodman M, Czelusniak J, Moore G, Romero-Herrera A, Matsuda G: Fitting the gene lineage into its species
lineage, a parsimony strategy illustrated by cladograms constructed from globin sequences. Systematic

Zoology 1979, 28:132–163.

3. HLi, Coghlan A, Coin JRL, Heriche J, Osmotherly L, Li R, T TL, Zhang Z, Bolund L, Wong G, Zheng W,

Dehal P, J JW, Durbin R: TreeFam: a curated database of phylogenetic trees of animal gene families.

Nucleic Acids Research 2006, 34:D572- 580.

4. Schreiber F, Patricio M, Muffato M, Pignatelli M, Bateman A: TreeFam v9: a new website, more species and
orthology-on-the-fly. Nucleic Acids Res 2013, 42:D922-D925.

5. Flicek P, Amode M, Barrell D, Beal K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fairley S, Fitzgerald

S, Gil L, Gordon L, Hendrix M, Hourlier T, Johnson N, Kahari A, Keefe D, Keenan S, Kinsella R, Komorowska

M, Koscielny G, Kulesha E, Larsson P, Longden I, McLaren W, Muffato M, Overduin B, Pignatelli M, Pritchard

B, Riat H, Ritchie G, Ruffier M, Schuster M, Sobral D, Tang Y, Taylor K, Trevanion S, Vandrovcova J, White

S, Wilson M, Wilder S, Aken B, Birney E, Cunningham F, Dunham I, Durbin R, FernÃ¡ndez-Suarez X, Harrow

J, Herrero J, Hubbard T, Parker A, Proctor G, Spudich G, Vogel J, Yates A, Zadissa A, Searle S: Ensembl
2012. Nucleic Acids Res. 2012, 40:D84- D90.

6. Datta R, Meacham C, Samad B, Neyer C, Sjölander K: Berkeley PHOG: PhyloFacts orthology group
prediction web server. Nucleic Acids Res. 2009, 37:W84-W89.

7. Pryszcz L, Huerta-Cepas J, Gabaldón T: MetaPhOrs: orthology nd paralogy predictions from multiple
phylogenetic evidence using a consistency-based confidence score. Nucleic Acids Research 2011, 39:e32.

8. Tatusov R, Galperin M, Natale D, Koonin E: The COG database: a tool for genome-scale analysis of protein
functions and evolution. Nucleic Acids Research 2000, 28:33- 36.

9. Li L, Stoeckert CJ, Roos D: OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome

Research 2003, 13:2178- 2189.

10. Berglund A, Sjolund E, Ostlund G, Sonnhammer E: InParanoid 6: eukaryotic ortholog clusters with
inparalogs. Nucleic Acids Research 2008, 36:D263 - D266.

11. Lechner M, Findeib S, Steiner L, Marz1 M, Stadler P, Prohaska S: Proteinortho: detection of (co-)orthologs
in large-scale analysis. BMC Bioinformatics 2011, 12:124.

12. Lafond M, Semeria M, Swenson K, Tannier E, El-Mabrouk N: Gene tree correction guided by orthology. BMC

Bioinformatics 2013, 14 (supp 15)(S5).

13. Lafond M, Swenson K, El-Mabrouk N: Models and algorithms for genome evolution, Springer 2013 chap. Error

detection and correction of gene trees.

14. Consortium TGO: Gene ontology: tool for the unification of biology. Nat. Genet. 2000, 25:25 - 29.

15. Hellmuth M, Hernandez-Rosales M, Huber K, Moulton V, Stadler P, Wieseke N: Orthology relations, symbolic
ultrametrics, and cographs. J. Math. Biol. 2013, 66(1–2):399–420.

16. Hernandez-Rosales M, Hellmuth M, Wieseke N, Huber K, Moulton V, Stadler P: From event-labeled gene
trees to species trees. BMC Bioinformatics 2012, 13 (Suppl. 19):56.

Lafond and El-Mabrouk Page 15 of 15

17. Hellmuth M, Wieseke N, Lechner M, Lenhof H, Middledorf M: Phylogenetics from paralogs 2014.

[Unpublished manuscript].

18. Fitch WM: Homology. A personal view on some of the problems. TIG 2000, 16(5):227- 231.

19. Golumbic M, Kaplan H, Shamir R: Graph Sandwich Problems. J. Algorithms 1995, 19(3):449–473,

[http://dx.doi.org/10.1006/jagm.1995.1047].

20. Semple C, Steel M: Phylogenetics. Oxford Lecture Series in Mathematics and in Applications 2003, 24:119-

120. [Oxford, UK: Oxford University Press].

21. Aho A, Sagiv Y, Szymanski T, Ullman J: Inferring a tree from lowest common ancestors with an application
to the optimization of relational expressions. SIAM J. Comput. 1981, 10:405- 421.

[http://dx.doi.org/10.1006/jagm.1995.1047]

	Abstract
	Introduction
	Notations and problem statement
	Satisfiability of a constraint graph
	Consistency with a given species tree
	Consistency of a satisfiable constraint graph
	Experiments
	Conclusion

