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Abstract
Polytomies in gene trees are multifurcated nodes corresponding to unresolved parts of the tree,
usually due to insufficient differentiation between sequences. Resolving a multifurcated tree has
been considered by many authors, the objective function often being the number of duplications
and losses reflected by the reconciliation of the resolved gene tree with a given species tree.
Here, we present PolytomySolver, an algorithm accounting for a more general model allowing for
costs that can vary depending on the operation, but also on the considered genome. The time
complexity of PolytomySolver is linear for the unit cost and is quadratic for the general cost,
which outperforms the best known solutions so far by a linear factor. We show, on simulated
trees, that the gain in theoretical complexity has a real practical impact on running times.
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1 Introduction

Reconstructing gene trees is a fundamental task in bioinformatics and a prerequisite for
most biological studies on gene function. Consequently, a plethora of phylogenetic methods
have been developed, most of them integrating measures of statistical support (e.g. by
bootstrapping or jackknifing), reflecting the confidence we have on the prediction. Some
of them, such as bayesian methods [10, 12] lead to non-binary trees. Moreover, weakly
supported branches are often contracted and also lead to non-binary trees. Thus, although
unresolved nodes in a tree may reflect a true (or hard [13]) simultaneous speciation or
duplication event leading to more than two gene copies, they are usually artifacts (called
soft), due to methodological reasons or to a lack of resolution between sequences.

Information for the full resolution of a gene tree may rely on the weakly exploited link
between gene and species evolution. The question of resolving a non-binary gene tree by
minimizing the number of duplications and losses resulting from the reconciliation of the
gene tree with the species tree has first been considered in NOTUNG [2] and later by Chang
and Eulenstein [1]. In 2012 [9], we developed the first linear-time algorithm for resolving a
polytomy (a single unresolved node), leading to a quadratic-time algorithm for a whole tree.
Recently, algorithmic results extending linearity to a whole gene tree have been obtained by
Zheng and Zhang [16]. These linearity results are however restricted to the case of a unit
cost for duplications and losses. On the other hand, an algorithm allowing different costs for
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2 Efficient Non-binary Gene Tree Resolution

duplications and losses has been considered in NOTUNG [6], and further improved by Zheng
and Zhang [16], using a compressed species tree idea.

In this paper, we present a new algorithm called PolytomySolver, which handles unit costs
in linear time and improves the best complexity to date for more general duplication and
loss cost model by a linear factor (complexity results are given in Table 1). Additionally,
PolytomySolver is the first algorithm enabling to account for various evolutionary rates across
the branches of a species tree, as it allows assigning each taxa its specific duplication and
loss cost. This functionality may be used to reduce the effect of missing data by assigning a
lower loss cost to species that are more likely to be concerned by such loss of information. It
is also of practical use when biological evidence supports some particularly low or high gene
duplication or loss rates in some species of interest [11]. In particular, fractionation following
whole genome duplication (WGD) results in an excess of gene losses. In Section 6, we give
an example showing that assigning appropriate costs to post-WGD genomes is important for
an accurate inference.

The paper is subdivided as follows. First, in Section 3, we show how the linear-time
algorithm developed previously by our group [9] for resolving a polytomy with unit duplication
and loss cost can be extended to arbitrary costs, depending on the operation and on the
genome affected by the operation. This extension is however not linear anymore but
rather leads to a cubic-time algorithm. We then, in Section 4, show how using the ideas
introduced by Zheng and Zhang [16] allows to reduce this time complexity to quadratic,
which is the best obtained to date for the same problem. We also show how unit costs
can be handled in linear time, and how PolytomySolver can be used to output all optimal
resolutions, which is an advantage compared to Zheng and Zhang’s algorithms. In Section 5,
comparing our new algorithm with NOTUNG and Zheng and Zhang’s algorithm, we show
that the obtained gain in theoretical complexity actually leads to a significant gain in running
times. For space reason, all proofs are given in Appendix, which are made available online
at http://www-ens.iro.umontreal.ca/~lafonman/en/publications.php.

δ = λ = 1 (δ, λ) ∈ R>0 × R>0 {(δs, λs)}s∈V (S)

NOTUNG[6] O(|S||G|∆2) O(|S||G|∆2)
Lafond[9] O(|S||G|) O(|S||G|∆)
Zheng & Zhang[16] O(|G|) O(|G|∆2)
PolytomySolver O(|G|) O(|G|∆) O(|G||S|∆)

Table 1 Time-complexity results for reporting a single optimal resolution of a whole gene tree G
of size |G| with a species tree S of size |S|, where ∆ is the largest degree of a node in G, δ is the cost
of a duplication and λ the cost of a loss. The last column refers to the case in which each species s
has its own duplication cost δs and loss cost λs.

2 Preliminary

All trees are considered to be rooted. Given a set X, a tree T for X has its leafset L(T ) in
bijection with X. Denote by V (T ) its set of nodes, r(T ) its root, and write |T | = |V (T )|.
Given two nodes x and y of T , x is a descendant of y, and y is an ancestor of x, if y is on
the (inclusive) path between x and r(T ). The degree deg(x) of a node x is the number of
edges incident to x. The maximum degree of T is ∆(T ) = maxv∈V (T ) deg(v) (or just ∆ when
T is clear from the context). Given a set L of leaves, the lowest common ancestor of L in
T , denoted lcaT (L), is the common ancestor of L in T that is farthest from the root. A
polytomy (or star tree) over a set L is a tree with a single internal node, which is of degree

http://www-ens.iro.umontreal.ca/~lafonman/en/publications.php


M. Lafond, E. Noutahi and N. El-Mabrouk 3

|L|, adjacent to each leaf of L. Finally, if x is a node of T , denote by Tx the subtree of T
rooted at x, and by T (x) the polytomy obtained by keeping only x and its children in Tx.
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Figure 1 S is a species tree over Σ = {a, b, c, d}; G is a gene tree on the gene family Γ with two
copies in genome a, one in genome b and one in genome c; R(G,S) is a reconciliation of G with S
with two duplications and four losses. Each node x of G and R(G,S) is labeled by s(x).

2.1 Gene Tree, Species Tree and Reconciliation
A species tree S for a set Σ = {σ1, · · · , σt} of species represents an ordered set of speciation
events that have led to Σ. Inside the species’ genomes, genes undergo speciations when
the species to which they belong do, but also duplications and losses (other events such as
transfers can happen, but we ignore them here). A gene family is a set Γ of genes where
each gene x belongs to a given species s(x) of Σ. The evolutionary history of Γ can be
represented as a gene tree G where L(G) is in bijection with Γ, and each internal node refers
to an ancestral gene at the moment of an event (either speciation or duplication) belonging
to the species s(x) = lcaS({s(y) : y ∈ L(Gx)}). We denote S(G) = {s(y) : y ∈ L(G)} the set
of species represented by G.

In this paper, we make no distinction between paralogous gene copies. In other words, a
gene x is simply identified by the genome s(x) it belongs to. A gene tree is therefore a tree
where each leaf is labeled by an element of Σ, with possibly repeated leaf labels (Figure 1).

A reconciliation is an extension of the gene tree, obtained by adding lost branches,
reflecting a history of duplications and losses in agreement with the species tree. Formally,
an extension of G is a tree obtained from G by a sequence of graftings, where a grafting
consists in subdividing an edge uv of G, thereby creating a new node w between u and v,
then adding a leaf x with parent w. The new leaf x is mapped to a species s(x) which is a
node of S (internal or leaf). A formal definition follows (see Figure 1 for an example).

I Definition 1 (Reconciled gene tree). Let G be a binary gene tree and S be a binary species
tree. A reconciliation R(G,S) of G with S is an extension of G verifying: for each internal
node x of R(G,S) with two children xl and xr, either s(xl) = s(xr) = s(x), or s(xl) and
s(xr) are the two children of s(x). The node x is a duplication in s(x) in the former case,
and a speciation node in s(x) in the latter case. A grafted leaf x corresponds to a loss in
s(x).

Define δs as the duplication cost and λs as the loss cost assigned to a given species s.
Then, the reconciliation cost of R(G,S) is the sum of costs of the induced duplications and
losses.

2.2 Problem statement:
We consider a binary species tree S and a non-binary gene tree G. The goal is to find a
binary refinement of G, as defined below.

I Definition 2 (binary refinement). A binary refinement B = B(G) of G is a binary tree
such that V (G) ⊆ V (B) and for every x ∈ V (G), L(Gx) = L(Bx).
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The objective function taken for choosing among all possible binary refinements is the
reconciliation cost.

I Definition 3 (Resolution). A resolution of G with respect to S is a reconciliation R(B,S)
between a binary refinement B of G and S. The set of all possible resolutions of a tree G is
denoted R(G).

We are now ready to state our optimization problem.

Minimum Resolution Problem:
Input: A binary species tree S and a non-binary gene tree G.
Output: A Minimum Resolution of G with respect to S (or simply Minimum Resolution of
G), e.g. a resolution of G of minimum reconciliation cost with respect to S.

It has been previously shown [1] that each polytomy of G can be considered independently.
In particular, a minimum resolution of G can be obtained by a depth-first procedure that
solves each polytomy G(x) iteratively, for each internal node x of G. Thus, in the following,
we focus on a single polytomy G = G(x).

Some parts of the species tree can be ignored in the process of refining G. Define the
species tree linked to G, denoted by SG, as the tree obtained from the subtree of S rooted
at the lowest common ancestor of S(G), by removing all nodes that have no descendant
in S(G) (Figure 2). The algorithms with the best known complexity results (Table 1) are
obtained by using a compressed version S∗G of this tree, which is defined in Section 4. We
first begin, in Section 3, by describing the refinement strategy by using an augmented species
tree linked to G, denoted S+

G , obtained from SG by adding to every node of degree two its
missing child in S. It is known (c.f. [9, 16]) that resolving G with either S or S+

G leads to
the same reconciliation cost. Intuitively, S+

G contains every node of S that may appear in a
resolution of G, whether as a loss, a duplication or a speciation.
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Figure 2 From left to right: a gene tree G; a species tree S; the species tree SG linked to G is
the tree illustrated by plain lines, and the augmented species tree S+

G linked to G is illustrated by
plain and dotted lines; the compressed tree S∗G linked to G as defined in Section 4. The leaf µ′ of
S∗G has a special loss cost λµ′ = 3, as it results from the contraction of a path of length 3.

3 A dynamic programming approach

We present a dynamic programming approach for the Minimum Resolution Problem
for a single polytomy G. It is a generalization of that presented in [9]. While the previous
algorithm was developed for a unit cost of duplications and losses, the one we present here
holds for a more general reconciliation cost, where each s ∈ Σ has its own duplication cost δs
and loss cost λs. In this section, we assume that S = S+

G .
The recursion is made on the subtrees of S. Define the multiplicity m(s) of s ∈ V (S)

in G as the number of times it appears in G, i.e. m(s) = |{x ∈ L(G) : s(x) = s}|. An
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(s, k)-resolution of G is a forest of k reconciled gene trees T = {T1, . . . , Tk} such that, for
each 1 ≤ i ≤ k, s(r(Ti)) = s, and each leaf x of G with s(x) being a descendant of s is
present as a leaf of some tree of T (see Figure 3 for an example). All leaves of trees in T
that are not in L(G) represent losses. Also, some trees of T may be restricted to a single
node which is either a child x of r(G) with s(x) = s, or a singleton loss in s. The cost of
T , denoted c(T ), is the sum of reconciliation costs of all Tis. Notice that since S = S+

G , a
resolution of G is an (r(S), 1)-resolution.

Denote by Ms,k the minimum cost of an (s, k)-resolution for a given node s of S and
a given integer k ≥ 1 (and Ms,k = ∞ for k < 1). The final cost of a minimum resolution
of G is given by Mr(S),1. The table M is computed, line by line, for all nodes of S, in a
bottom-up traversal. For now, k is unlimited, but we show in the complexity section that
there is no need to consider more than |G| − 1 columns.

The following lemma gives the base case for the leaves of S. It follows from the fact that,
if k is larger than the number of available leaves, then additional leaves have to be added
(called singleton losses); otherwise leaves have to be joined under duplication nodes. As an
illustration, in Figure 3, this lemma is used to compute the three first lines of M .

I Lemma 4 (Base case). For a leaf node s of S, if k > m(s) then Ms,k = λs · (k −m(s));
otherwise Ms,k = δs · (m(s)− k).

The rest of this section focuses on the computation of a line Ms of M for an internal node
s of S, from the linesMsl

andMsr
, where sl and sr are the two children of s in S. We require

an intermediate cost table Cs,k, defined for internal nodes of S, accounting only for speciation
events. That is, Cs,k represents the minimum cost of an (s, k)-resolution in which every tree
is rooted at a speciation node with two children (these two children may both be losses), or
consists of a singleton node that is a child of r(G) already mapped to s. For k > m(s), such
an (s, k)-resolution of cost Cs,k can only be obtained from an (sl, k−m(s))-resolution and an
(sr, k −m(s))-resolution by creating k −m(s) speciation nodes, each joining a pair of (sl, sr)
trees, then adding the m(s) singleton trees mapped to s. No other scenarios are possible,
since (s, k)-resolutions are reconciled trees, and each non-singleton root is a speciation in s
that must have genes mapped to sl and sr as children. See for example the (d, 1)-resolution
corresponding to Cd,1 in Figure 3. Note that if instead k ≤ m(s), such an (s, k)-resolution
cannot exist, since m(s) trees are required for the children of r(G) mapped to s, plus at least

ca b
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eS:

a a b b b

G:

c

M 1 2 3 4

a 1 0 1 2

b 2 1 0 1

c 0 1 2 3

d 2 1 1 2

e 2 2 3 4
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Ma,1 = δ

Ma,3 = λ
a a a

a b b b a

Cd,1= Ma,1+ Mb,1

a a b b b

Md,1= Md,2+ δ

d
d

Figure 3 A polytomy G and a species tree S. The corresponding table M is obtained for
δs = λs = 1 for all species. Squares on trees illustrate duplications. To the right of table M , the
forests corresponding to an (a, 1) and (a, 3)-resolution are given, where the circled a illustrates a
singleton loss. We illustrate the (d, 1)-resolution, rooted at a speciation node, corresponding to
Cd,1 = 3 (obtained from the vertical arrow in table M), and an optimal (d, 1)-resolution, obtained
from a (d, 2)-resolution (horizontal arrow in M).
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another tree containing the genes in a descendant of s. Thus we define:

Cs,k = Msl,k−m(s) +Msr,k−m(s) if k > m(s) and Cs,k = +∞ otherwise (1)

It is readily seen that Ms,k ≤ Cs,k. A recurrence for computing Ms,k follows.

I Lemma 5. For an internal node s of S, Ms,k = min(Ms,k−1 + λs,Ms,k+1 + δs, Cs,k).

This recurrence cannot be used as such to compute C and M , as it induces both a
left and right dependency. That is, Ms,k depends on Ms,k+1 and vice-versa, leading to
a chicken-and-egg problem as to which value should be computed first. In the case of a
unit cost δs = λs = 1 for all s, we have shown in [9] that this dependency can be avoided
by considering a strong property on lines of M . Indeed, each line Ms is characterized by
two values k1 and k2 such that, for any k1 ≤ k ≤ k2, Ms,k is minimum, for any k ≤ k1,
Ms,k−1 = Ms,k + 1, and for any k ≥ k2, Ms,k+1 = Ms,k + 1. In other words, Ms has a slope
of −1 until k1, a slope of 0 until k2, then a slope of 1. In particular, Ms can be treated as a
convex function fully determined by k1, k2 and its minimum value γ. We then say Ms has a
minimum plateau between k1 and k2. For example, line Md in Figure 3 is fully determined
by k1 = 2 and k2 = 3.

Here, we extend these results by first showing, in Lemma 7, that both C and M are still
convex, albeit having less predictable changes in the slopes. Nevertheless, this allows to first
compute the bounds k1 and k2 of the functions’ minimum plateau, and then extend to the
left and to the right from this plateau.

We first recall the formal definition of a discrete convex function, then state the convexity
result for C and M and finally give the recurrences of the dynamic programming algorithm
in Theorem 8.

I Definition 6 (Convex function). A discrete function f is convex if and only if, for any
integer n > 1, the two following statements, which are equivalent, are true.

f(n+ 1) + f(n− 1)− 2f(n) ≥ 0;
for any integers ε1, ε2 > 0 and any integer n > ε1, f(n− ε1) + f(n+ ε2)− 2f(n) ≥ 0.

I Lemma 7. Both Ms and Cs are convex.

I Theorem 8 (Recurrence 2). Let k1 and k2 be the smallest and largest values, respectively,
such that Cs,k1 = Cs,k2 = mink Cs,k. Then,

Ms,k =


Cs,k if k1 ≤ k ≤ k2

min(Cs,k,Ms,k+1 + δs) if k < k1

min(Cs,k,Ms,k−1 + λs) if k > k2

Theorem 8 provides the way for computing a row Ms for an internal node s of S: for each
k, compute Cs,k using recurrence (1) and keep the two columns k1 and k2 setting the bounds
of the convex function’s plateau. Extend to the left of k1 usingMs,k = min(Cs,k,Ms,k+1 +δs),
and to the right of k2 using Ms,k = min(Cs,k,Ms,k−1 +λs). These recurrences, with the base
case for S leaves given in Lemma 4, describe the dynamic programming algorithm, that we
call PolytomySolver, for computing the cost Mr(S),1 of a minimum resolution of the polytomy
G with respect to S. We refer the reader to [9] for the reconstruction of a solution from M

in linear time, which is accomplished using a standard backtracking procedure.
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Complexity
The following lemma states that there is no reason to explore more gene copies of a given
species than the size of the polytomy, in other words, the size of a line of M can be bounded
by |G|. This fact may seem obvious to the accustomed, but in [6] it was equally “obvious" that
only m∗ = maxs∈V (S) m(s) columns needed to be considered, which turns out to be wrong 1.
In fact, this Lemma requires a surprising amount of care in the details (see Appendix).

I Lemma 9. Only the values of M and C for columns k between 1 and |G| − 1 need to be
computed.

It follows from Lemma 4, Theorem 8 and Lemma 9 that each row of C and M can be
computed in time O(|G|), and the whole table in time O(|S||G|).

Now suppose that H is a general tree with p polytomies, where ∆ is the largest degree
of a polytomy. According to the depth-first procedure described at the end of Section 2,
G can be resolved in time O(p|S|∆), which is less than O(|H||S|∆). In the next section,
we improve this to O(|H|∆) in the case of distinct costs δ and λ that are shared across all
species, and O(|H|) in the case of equal costs δ = λ.

4 A faster algorithm using species tree compression

Assume that all species have the same duplication cost δ and the same loss cost λ. We call it
unit cost if δ = λ, and general cost otherwise. Again we assume that G is a polytomy.

In the previous section, results have been obtained using the augmented linked species
tree S+

G . As observed by Zheng and Zhang [16], S+
G contains many “useless" nodes that

do not provide any meaningful information with regards to the resolution of G. This idea
allowed them to optimize their refinement algorithm for the unit cost, leading to a linear-time
algorithm. However, their algorithm does not apply to the general cost. For such a cost, their
optimisation idea was rather applied to the NOTUNG’s algorithm, which is less efficient.
Here, we use a similar idea to optimize PolytomySolver. More precisely, we show how a
compressed version of the linked species tree SG can be used to reduce the complexity for
refining a general tree G to O(|G|∆) for the general cost, and to O(|G|) for the unit cost.

We first need some definitions. Let T be a tree. Call P a path in T if P is a sequence of
non-root adjacent vertices of degree two in T . Contracting P in T consists in replacing P
by a single node µ = µ(P ). Now, let U be the set of non-root vertices of degree two of SG
that are not in S(G). We call U the set of “useless nodes" of SG. Notice that SG[U ], the
graph obtained from SG by keeping only nodes of U and edges with both endpoints in U ,
corresponds to a set of disjoint paths in SG. The compressed tree S∗G is the tree obtained
from SG by contracting every path P of SG[U ] to µ = µ(P ), then adding a leaf child µ′ to
every such µ (see Figure 2 for an example). Moreover, we set a special loss cost λµ′ = λ|P |
to µ′ (and duplication cost δ as every other node). This special loss cost ensures that a loss
in µ′ is counted as a loss in every node in P . Notice that some internal nodes of SG that are
included in S(G) may still have only one child. Thus S∗G is finally obtained by adding to
each remaining node having only one child a new leaf child (duplication of cost δ and loss
cost λ). The following Theorem ensures that S∗G does not change the solution space.

1 The complexity reported in Table 1 is not the one reported by NOTUNG, as dependency is not given
on ∆ but instead on m∗. However, it can be shown that considering m∗ columns is not enough on some
examples.



8 Efficient Non-binary Gene Tree Resolution

I Theorem 10. Let T be a binary refinement of G. Then the reconciliation cost of T is the
same whether we reconcile it with S+

G or S∗G and their corresponding duplication/loss costs.

Thus, using S+
G or S∗G leads to the same minimum resolution for G. We show that using

S∗G leads to reduction in time complexity of the algorithm.

I Theorem 11. Given a gene tree H, PolytomySolver can run in time O(∆|H|).

4.1 The case of a unit cost

In [9], we showed how, in the case of a unit cost δ = λ, each line Ms of M can be computed
in constant time. However, in order to take advantage of the compressed species tree S = S∗G,
we need to account for special leaves µ′ with loss cost λµ′ > 1, since they make the cost
not unitary anymore. The following theorem allows us to extend the result to this specific
case. It leads to the computation of M in time O(|S∗G|) = O(|G|) for a polytomy G. The
complexity for a gene tree H is thus reduced to O(|H|), which results in a reduction of the
previous complexity by a factor of ∆.

I Theorem 12. Suppose S = S∗G. Then for s ∈ V (S),

1. if s is a leaf with loss cost λ = 1, then Ms,k = |k −m(s)|;

2. if s is a leaf with loss cost λs > 1, then Ms,k = k · λs;

3. if s is an internal node, there exist 3 integers k1, k2 and γs such that

Ms,k =


γs if k1 ≤ k ≤ k2

γs + k1 − k if k < k1

γs + k − k2 if k > k2

Moreover, k1, k2 and γs can be computed in constant time.

4.2 Constructing all minimum resolutions

After computing table M , it remains to compute (r(S), 1)-resolutions, i.e. all resolutions of
minimum cost. Without any increase in the theoretical time complexity of the algorithm, a
simple pass through table M leads to one minimum resolution (see [9] for the details). Here
we rather show how to recover all minimum resolution.

Denote by Ps,k the set of all minimum (s, k)-resolutions of a polytomy G. By setting
s = r(S) and k = 1, we exhibit the following recursive algorithm that finds Pr(S),1. To
do so, we define three intermediate solution sets Pdups,k ,P losss,k and Pspecs,k , which respectively
correspond to (s, k)-resolutions containing a duplication root, a singleton loss and only
speciation roots (it turns out that these three cases are disjoint).
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procedure Compute Ps,k
if s is a leaf and m(s) = k then

return k singleton trees mapped to s
Let Pdups,k = ∅,P losss,k = ∅,Pspecs,k = ∅
if Ms,k = Ms,k+1 + δs then

Compute Ps,k+1
for every forest T in Ps,k+1, and for every pair of distinct trees T1, T2 ∈ T do

Add to Pdups,k the (s, k)-resolution obtained by joining r(T1) and r(T2)

if Ms,k = Ms,k−1 + λs then
Compute Ps,k−1
for every forest T in Ps,k−1 do

Add to P losss,k the (s, k)-resolution obtained adding a singleton loss in s in T
if s is an internal node with children s1, s2 and Ms,k = Ms1,k−m(s) + Ms2,k−m(s)

then
Compute Ps1,k−m(s) and Ps2,k−m(s)
for each pair (T1, T2) in Ps1,k−m(s)×Ps2,k−m(s), and for every bijection f : T1 −→

T2 do
Add to Pspecs,k the (s, k)-resolution T obtained by joining r(T1) with r(f(T1))

for every
T1 ∈ T1, then adding the m(s) children of G mapped to s as singleton trees

Let Ps,k = Pdups,k ∪ P losss,k ∪ P
spec
s,k , and return Ps,k

end procedure

We show in the Appendix that this algorithm eventually terminates, and does find every
solution. The essential reason that this algorithm finishes is because of the convexity of Ms,
which allows avoiding circular dependencies between say Ps,k and Ps′,k′ .

It can be shown that this algorithm takes time O(|S| · |Pr(S),1|), which may be exponential.
Methods for outputting solutions iteratively, each in polynomial time, seem possible, but are
not immediately obvious. Notice that Zheng and Zhang’s algorithms [16] can only output a
subset of Pr(S),1. As for NOTUNG, it takes time O(|S|∆ · (|Pr(S),1|+ ∆)) to construct every
optimal solution [2].

5 Results on simulated data

We compare the running time of our algorithm to Zheng and Zhang’s algorithms [16] and
NOTUNG, on simulated datasets for both cases of unit and general costs. We implemented
PolytomySolver and Zheng and Zhang’s algorithms in python and used the latest stable
version (v2.6)2 of NOTUNG. Our implementations are available at https://github.com/
UdeM-LBIT/profileNJ. Run times are reported for single outputs of the algorithms.

We first simulated species trees with n leaves using a birth-death process. For each
species tree, gene trees of fixed size (1.5× n) and branch support picked from a standard
uniform distribution, were simulated using a simple Yule process [14]. In order to mimic a
gene family history with a high number of events (duplications and losses), we labeled each
leaf of the gene tree with a uniformly chosen species from the set of leaves of the species
tree. Non-Binary gene trees were then obtained by contracting edges of the gene trees with

2 Notice that an improved version of NOTUNG v2.8 became available after these tests were performed.

https://github.com/UdeM-LBIT/profileNJ
https://github.com/UdeM-LBIT/profileNJ
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support lower than a fixed threshold r (0.2, 0.4, 0.6 and 0.8).
For each species tree and each algorithm, we measured the average running time on 40

non-binary trees (10 simulated gene trees for each contraction rate). All software were run
on the same computer and with the same costs for duplications and losses.
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Figure 4 Running times comparisons between all algorithms for species trees of increasing size n
and gene trees of size 1.5× n. (a) Running times of PolytomySolver, LZZ (linear Zheng and Zhang’s
algorithm) and NOTUNG, using unit cost, for species trees of increasing size ranging from 500 to
10000. (b) Running times of PolytomySolver and LZZ for unit cost on larger species trees (n in the
range of 10000 to 100000). (c) Running times of PolytomySolver, DZZ (Dynamic Zheng and Zhang’s
algorithm) and NOTUNG using δ = 3 and λ = 2.

We first considered the unit cost (λ = δ = 1), for which both PolytomySolver and Zheng
and Zhang’s algorithm (LZZ) are linear. Figure 4a shows the results for values of n ranging
from 500 to 10000, and Figure 4b shows results for n between 10000 and 100000. As expected,
the two linear algorithms exhibit very similar run time in all cases, and are significantly
faster than NOTUNG, which could not be included in Figure 4b. Indeed, on those trees,
NOTUNG took a considerable amount of time, and in some cases we could not get a result
after many hours.

We then considered a non-unit cost, using δ = 3 and λ = 2. Recall that PolytomySolver is
quadratic in this case. As for the algorithm proposed by Zheng and Zhang for these costs,
that we refer to by DZZ (for Dynamic Zheng and Zhang’s algorithm), it is (essentially)
cubic (see Table 1). Figure 4c gives the results for species trees of size ranging between 500
and 10000. As expected, PolytomySolver is faster than DZZ and NOTUNG. Surprisingly,
NOTUNG turns out to be faster than DZZ, which rather expected to improve over NOTUNG
as it uses the species tree compression idea. This could be due to the fact that NOTUNG is
a well optimized program. Moreover, the error in NOTUNG of using m∗ instead of ∆ (see
footnote in this Section 3), may accelerate the process, as m∗ is usually much smaller than
∆.

6 A practical use of PolytomySolver

As handling species specific costs is one of the major contribution of this paper, we conclude
our presentation by providing a biological example for which taking advantage of this
flexibility of PolytomySolver leads to better accuracy.

We first downloaded the orthogroup of the yeast gene REG1, a regulatory subunit of type
1 protein phosphatase Glc7p, involved in negative regulation of glucose-repressible genes, from
the Fungal Orthogroups Repository (http://www.broadinstitute.org/regev/orthogroups/).
We then reconstructed the gene tree with PolytomySolver, using the same species tree as [15]
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Figure 5 A. Phylogeny of ten Hemiascomycota fungi, including S. cerevisiae (Scer), S. paradoxus
(Spar), S. mikatae (Smik), S. bayanus (Sbay), C. glabrata (Cgla), S. castellii (Scas), K. waltii (Kwal),
K. lactis (Klac), S. kluyveri (Sklu) and A. gossypii (Agos). The whole-genome duplication (WGD)
event in yeast is indicated. The species that did not went through the WGD are shadowed in
light blue. B. and C. Two minimally resolved gene trees of the phosphatase Glc7p gene family.
Duplication nodes are depicted by a red square and lost genes are shown in orange.

and a unit cost for both λ and δ. Two equally parsimonious solutions with a reconciliation
cost of 2 were obtained (Figures 5B, 5C).

It has been shown that the yeast Saccharomyces cerevisiae arose from an ancient whole-
genome duplication (WGD) [4, 5, 8]. This WGD was immediately followed by a massive
gene loss period, during which most of the duplicated gene copies were lost [8]. There is
also evidence of lineage-specific loss of paralogous genes. In particular, C. glabrata and S.
castellii appear to have lost several hundred paralogs [3, 5]. This is reflected in their total
gene count, which are the lowest among the post-WGD genomes [15].

Whereas the solution shown in Figure 5C is in agreement with this WGD event, the
alternative gene family history in Figure 5B places the duplication much lower in the tree, with
and additional duplication in S. castellii instead. By assigning to C. glabrata and S. castellii
a loss cost lower than for all other species, the only solution returned by PolytomySolver
is the one shown in Figure 5C. Using appropriate species dependant costs might therefore
allow to filter the solution space with additional relevant information.

7 Conclusion

PolytomySolver is the most efficient algorithm to date for refining an unresolved gene tree. In
contrast to previous methods, this algorithm is flexible enough to handle general reconciliation
costs, allowing for instance to account for different costs over the branches of a species tree.
Moreover, all topologies of optimal trees can be output by PolytomySolver. Notice that
here we made no distinction between paralogous genes, which are simply referred to by
their genome of origin. If we rather consider the specificity of each gene copy then, for a
given topology obtained by PolytomySolver, an appropriate method shall be considered to
distribute gene copies on leaves. We are presently investigating the possibility of introducing
a Neighbor-Joining principle in the resolution process.

The gain in running time attained with PolytomySolver allows to perform exhaustive
corrections of all trees contained in a large gene tree dataset such as Ensembl. Moreover,
compared with NOTUNG, running time is independent upon the largest degree of a node,
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which makes the algorithm efficient enough to resolve highly unresolved trees. The next step
will be to perform such a large scale gene tree dataset correction.

References
1 W.C. Chang and O. Eulenstein. Reconciling gene trees with apparent polytomies. In

D.Z. Chen and D. T. Lee, editors, Proceedings of the 12th Conference on Computing and
Combinatorics (COCOON), volume 4112 of Lecture Notes in Computer Science, pages 235–
244, 2006.

2 K. Chen, D. Durand, and M. Farach-Colton. Notung: Dating gene duplications using gene
family trees. Journal of Computational Biology, 7:429–447, 2000.

3 Paul F Cliften, Robert S Fulton, Richard K Wilson, and Mark Johnston. After the du-
plication: gene loss and adaptation in saccharomyces genomes. Genetics, 172(2):863–872,
2006.

4 Fred S Dietrich, Sylvia Voegeli, Sophie Brachat, Anita Lerch, Krista Gates, Sabine Steiner,
Christine Mohr, Rainer Pöhlmann, Philippe Luedi, Sangdun Choi, et al. The ashbya
gossypii genome as a tool for mapping the ancient saccharomyces cerevisiae genome. Sci-
ence, 304(5668):304–307, 2004.

5 Bernard Dujon, David Sherman, Gilles Fischer, Pascal Durrens, Serge Casaregola, Ingrid
Lafontaine, Jacky De Montigny, Christian Marck, Cécile Neuvéglise, Emmanuel Talla, et al.
Genome evolution in yeasts. Nature, 430(6995):35–44, 2004.

6 D. Durand, B.V. Haldórsson, and B. Vernot. A hybrid micro-macroevolutionary approach
to gene tree reconstruction. Journal of Computational Biology, 13:320–335, 2006.

7 P. Górecki and J. Tiuryn. Dls-trees: a model of evolutionary scenarios. Theor. CS,
359(1):378–399, 2006.

8 Manolis Kellis, Bruce W Birren, and Eric S Lander. Proof and evolutionary analysis of
ancient genome duplication in the yeast saccharomyces cerevisiae. Nature, 428(6983):617–
624, 2004.

9 M. Lafond, K.M. Swenson, and N. El-Mabrouk. An optimal reconciliation algorithm for
gene trees with polytomies. In LNCS, volume 7534 of WABI, pages 106-122, 2012.

10 Nicolas Lartillot and Hervé Philippe. A bayesian mixture model for across-site het-
erogeneities in the amino-acid replacement process. Molecular Biology and Evolution,
21(6):1095–1109, Jun 2004.

11 Michael Lynch and John S Conery. The evolutionary demography of duplicate genes. Jour-
nal of structural and functional genomics, 3(1-4):35–44, 2003.

12 F. Ronquist and J.P. Huelsenbeck. MrBayes3: Bayesian phylogenetic inference under mixed
models. Bioinformatics, 19:1572- 1574, 2003.

13 J.B. Slowinski. Molecular polytomies. Molecular Phylogenetics and Evolution, 19(1):114-
120, 2001.

14 Mike Steel and Andy McKenzie. Properties of phylogenetic trees generated by yule-type
speciation models. Mathematical biosciences, 170(1):91–112, 2001.

15 Ilan Wapinski, Avi Pfeffer, Nir Friedman, and Aviv Regev. Natural history and evolutionary
principles of gene duplication in fungi. Nature, 449(7158):54–61, 2007.

16 Y. Zheng and L. Zhang. Reconciliation with non-binary gene trees revisited. In Lecture
Notes in Computer Science, volume 8394, pages 418-432, 2014. Proceedings of RECOMB.



M. Lafond, E. Noutahi and N. El-Mabrouk 13

Appendix

Proof of Lemma 5

Proof. Denote α = min(Ms,k−1 +λs,Ms,k+1 + δs, Cs,k), and let s1, s2 be the two children of
s in S. We have Ms,k ≤Ms,k−1 + λs, as an (s, k− 1)-resolution can be turned into an (s, k)-
resolution by adding a loss node. Similarly, Ms,k ≤Ms,k+1 + δs, as an (s, k + 1)-resolution
can be turned into an (s, k)-resolution joining two roots under a duplication parent. And
since Ms,k ≤ Cs,k, we have Ms,k ≤ α. It remains to show that Ms,k ≥ α.

Let T = {T1, . . . , Tk} be an (s, k)-resolution of cost c(T ) = Ms,k. If every root of T
is a speciation or a singleton tree that is a child of G, then c(T ) ≥ Cs,k ≥ α. Otherwise
suppose that a given Ti ∈ T is rooted at a duplication node. Consider T ′ obtained
by removing r(Ti), splitting Ti in two. Then, T ′ is an (s, k + 1)-resolution, and we get
c(T ) = c(T ′)+δs ≥Ms,k+1+δs ≥ α. Finally if some Ti ∈ T is a loss node, consider T ′ = T \Ti.
Then T ′ is an (s, k − 1)-resolution and we get c(T ) = c(T ′) + λs ≥Ms,k−1 + λs ≥ α. J

Before proving Theorem 8, two lemmas are first required to further tighten the link
between Cs,k and Ms,k.

I Lemma 13. Let s be an internal node of S. Then, for any k′ ≥ k, Ms,k ≤Ms,k′ +δs(k′−k)
and, for any 1 ≤ k′′ ≤ k, Ms,k ≤Ms,k′′ + λs(k − k′′).

Also, for any k′ ≥ k, Ms,k ≤ Cs,k′ + δs(k′ − k) and, for any k′′ ≤ k, Ms,k ≤ Cs,k′′ +
λs(k − k′′).

Proof. The first statement follows from the fact that Ms,k is the minimum cost of an (s, k)-
resolution, while Ms,k′ + δs(k′ − k), respectively Ms,k′′ + λs(k − k′′) give the costs of two
possible (s, k)-resolutions. The same reasoning applies to the bounds from Cs,k′ + δs(k′ − k)
and Cs,k′ + λs(k − k′′).

J

I Lemma 14. Let s be an internal node of S. Then, for any k ≥ 1, there is some k′ such
that at least one of the following holds:
1. k′ ≥ k and Ms,k = Cs,k′ + δs(k′ − k)
2. k′ ≤ k and Ms,k = Cs,k′ + λs(k − k′)

In particular, there is some k′ such that Cs,k′ ≤Ms,k.

Proof. By Lemma 13, we have Ms,k ≤ Cs,k′ + δs(k′ − k) for any k′ ≥ k and Ms,k ≤
Cs,k′ +λs(k−k′) for any k′ ≤ k. Thus we look for a value of k′ that completes a complementary
bound. Consider T = {T1, . . . , Tk} an (s, k)-resolution of cost Ms,k. Let X be the set of
nodes in T that are speciations mapped to s, or singleton trees mapped to s. Note that no
two elements of X are comparable, i.e. no node of X is the ancestor of another, because
they are all speciations. Obtain a new forest T ′ by keeping only the subtrees rooted at x for
each x ∈ X.

Let k′ = |T ′|. We must first argue that k′ ≥ 1. Suppose otherwise, and that no speciations
in s exist in T . Then because the trees in T are reconciled, there also cannot be duplications
in s either (unless all such duplications have only losses as children, which contradicts the
optimality of T ). Thus all nodes mapped to s are losses, and hence leaves. But since s is an
internal node of S+

G , there must be a descendant s′ of s such that s(g) = s′ for some child
g of G. Moreover, g must be a leaf in some tree Ti ∈ T . Hence, r(Ti) is mapped to s and
cannot be a leaf, as it has at least g as a descendant - a contradiction.
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Note now that c(T ′) ≥ Cs,k′ . If k′ = k, then Ms,k = c(T ) ≥ c(T ′) ≥ Cs,k′ = Cs,k′ +
δs(k′ − k) = Cs,k′ + λs(k′ − k), and both cases of the Lemma hold. If k′ < k, then add
least k − k′ losses in s must be inserted to go from T ′ to T , since no other operation can
create new trees. Therefore, c(T ) ≥ c(T ′) + λs(k − k′) ≥ Cs,k′ + λs(k − k′). Finally if
k′ > k, then at least k′ − k duplications must occur to go from k′ trees to k, and hence
c(T ) ≥ c(T ′) + δs(k′ − k) ≥ Cs,k′ + λs(k′ − k)

J

Proof of Lemma 7

Proof. Assume that the Lemma fails for some s, and choose s to be of maximum depth in S.
Then s cannot be a leaf, as Lemma 4 describes a convex function onMs. Thus s is an internal
node and we assume that for the children s1, s2 of s, Csi

,Msi
, i ∈ {1, 2} are convex. Since

the sum of two convex functions is convex, we may assume that Cs, obtained by a horizontal
shift by m(s) of Ms1 +Ms2 , is convex. It remains to show that Ms,k−1 +Ms,k+1− 2Ms,k ≥ 0
for any k > 1, by distinguishing the three cases prescribed by Lemma 5. To ease up notation,
we denote Mk = Ms,k and Ck = Cs,k for the rest of the proof.

1. Case 1) Mk = Ck. If both Mk−1 = Ck−1 and Mk+1 = Ck+1, then we are done since
Cs is convex. Suppose that Mk−1 6= Ck−1, and hence Mk−1 < Ck−1. We claim that
Mk−1 = Mk + δs = Ck + δs. Assume otherwise, and suppose first that there is some
α < k − 1 such that Mk−1 = Cα + λs(k − 1− α). Then we have α < k − 1 < k with

Cα + Ck − 2Ck−1 < Cα + Ck − 2Mk−1 (1)
= Cα + Ck − 2(Cα + λs(k − 1− α)) (2)
= Ck − Cα − 2λs(k − 1− α) (3)
≤ Cα + λs(k − α)− Cα − 2λs(k − 1− α) (4)
= λs(k − α− 2(k − 1− α) (5)
= λs(α+ 2− k) (6)
≤ 0 (7)

where (4) comes from Ck = Mk ≤ Cα+λs(k−α) by Lemma 13. This, however, contradicts
the convexity of Cs.
Then by Lemma 14, there must be some β > k−1 such that Mk−1 = Cβ + δs(β− (k−1)).
If β 6= k, then Cβ + δs(β − k + 1) = Mk−1 < Mk + δs ≤ Cβ + δs(β − k) by Lemma 13,
again reaching a contradiction. Therefore, either Mk−1 = Ck−1 or Mk−1 = Mk + δs. It
can be shown, through the same reasoning, that either Mk+1 = Ck+1 or Mk+1 = Mk +λs.
We examine the remaining subcases.
If Mk−1 = Ck−1 and Ck+1 > Mk+1 = Mk + λs = Ck + λs, we get that Mk−1 +Mk+1 −
2Mk = Ck−1 +Ck+λs−2Ck = Ck−1 +λs−Ck ≥ 0, because Ck = Mk ≤ Ck−1 +λs as per
Lemma 13. If instead Ck−1 > Mk−1 = Mk+δs = Ck+δs, the case whenMk+1 = Mk+δs
can easily be verified. So suppose that Mk+1 = Ck+1. Then Mk−1 + Mk+1 − 2Mk =
Ck + δs + Ck+1 − 2Ck ≥ 0, because Ck = Mk ≤ Ck+1 + δs, again by Lemma 13.

2. Case 2) Mk = Mk−1 + λs. We prove that Mk+1 = Mk + λs, which leads to the convexity
requirement since Mk−1 + Mk+1 − 2Mk = Mk−1 + Mk−1 + 2λs − 2(Mk−1 + λs) ≥ 0.
Since case 1) has been handled, we assume that Mk < Ck. Consider the value of Mk−1.
By Lemma 14, there exists a value α such that either Mk−1 = Cα + δs(α− (k − 1)), or
Mk−1 = Cα+λs(k−1−α). If the former applies with α > k−1, thenMk = Mk−1 +λs =
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Cα+δs(α−(k−1))+λs. But by Lemma 13,Mk ≤ Cα+δs(α−k) < Cα+δs(α−(k−1))+λs,
a contradiction. So we may assume that the latter applies with some α ≤ k − 1. From
this, we get that Ck > Mk = Mk−1 + λs = Cα + λs(k − 1− α) + λs = Cα + λs(k − α).
Now, suppose that our initial claim does not hold, i.e. Mk+1 6= Mk + λs and thus
Mk+1 < Mk + λs. Again using Lemma 14, there is some integer β such that either
Mk+1 = Cβ+δs(β−(k+1)), orMk−1 = Cβ+λs(k+1−β). If the latter applies with some
β < k+1, then Cβ+λs(k+1−β) = Mk+1 < Mk+λs ≤ Cβ+λs(k−β)+λs, a contradiction
(where Lemma 13 was used for the last inequality). So we assume that the former case
applies with some β ≥ k+1, and we getMk+1 = Cβ+δ(β−(k+1)) ≥ Cβ . We then obtain
Cβ ≤Mk+1 < Mk+λs = Cα+λs(k−α)+λs < Ck−λs(k−α)+λs(k−α)+λs = Ck+λs.
In the end, we have α < k < β such that Cα + Cβ − 2Ck < Ck − λs(k − α) + Ck + λs −
2Ck = λs − (k − α)λs ≤ 0, which contradicts the convexity of Cs. We conclude that
Mk+1 = Mk + λs, as required.

3. Case 3) Mk = Mk+1 + δs. We omit the full details for this case, as its proof is almost
identical to the previous case.

J

Proof of Theorem 8

Proof. Assume that the value of Ms,k differs from the one stated. If k1 ≤ k ≤ k2, we have
Cs,k1 = Cs,k2 , and by the convexity of Cs, Cs,k = Cs,k1 is also a minimum. If Ms,k 6= Cs,k as
stated, then Ms,k < Cs,k. But by Lemma 14 there is some k′ such that Cs,k′ ≤Ms,k, which
contradicts the minimality of Cs,k.

So instead suppose k < k1 but Ms,k 6= min(Cs,k,Mk+1 + δs). Then by Lemma 5,
Ms,k = Ms,k−1 + λs. We must have Ms,k1 ≥ Ms,k, since otherwise Ms,k1 < Ms,k and
Ms,k−1 < Ms,k contradict the convexity of Ms. Thus Ms,k−1 < Ms,k ≤ Ms,k1 = Cs,k1 . By
Lemma 14, there is some k′ such that Cs,k′ ≤Ms,k−1, which contradicts the minimality of
Cs,k1 .

The remaining case to examine is for k > k2 but Ms,k 6= min(Cs,k,Ms,k−1 +λs). Then as
before, we must have Ms,k = Ms,k+1 + δs. Then Ms,k2 ≥Ms,k, or otherwise Ms,k2 < Ms,k

and Ms,k+1 < Ms,k contradict the convexity of Ms. But again, there is some k′ such that
Cs,k′ ≤Ms,k+1 < Ms,k ≤Ms,k2 = Cs,k2 , contradicting the minimality of Cs,k2 .

J

Proof of Lemma 9

Proof. Suppose that for some d > |G| − 1, not computing the d-th column leads to a wrong
solution. Then any optimal reconciled binary refinement T contains an (s, d)-resolution for
some species s. That is, T has d nodes mapped to s, all pairwise incomparable, i.e. none
of which is an ancestor of the other. Choose d such that it is maximum across all possible
choices of such d and s. We may then assume that no root of the (s, d)-resolution is a
duplication. Indeed, if a root x is a duplication of a tree Ti of the (s, d)-resolution, removing
r(Ti) and splitting Ti in two yields a (s, d+ 1)-resolution, and d is not maximum.

We first need the following claim:

Claim: if T = {T1, . . . , Td} is an optimal (s, d)-resolution with no r(Ti) being a dupli-
cation, and obtained from a polytomy G with d > |G| − 1, then T has a singleton loss in
s.
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We use induction on the height of s. If s is a leaf, then this is obvious asm(s) ≤ |G|−1 < d.
If s is an internal node, we may assume that all r(Ti) are either speciations or children
of G mapped to s, as if r(Ti) is a singleton loss, we are done. Thus T must have exactly
m(s) non-loss singleton trees. Remove them from T to obtain T ′ = {T ′1, . . . , T ′d′}, letting
d′ = d−m(s). Let G′ be the polytomy obtained by also removing the children of G mapped
to s. Then, T ′ is an optimal (s, d′)-resolution of G′, d′ = d−m(s) > |G|−1−m(s) = |G′|−1.
Let s1, s2 be the children of s. Now, since every r(T ′i ) is a speciation, each such root has a
s1 child and a s2 child. Thus T ′ is built from an (s1, d

′)-resolution, and a (s2, d
′)-resolution.

By the induction hypothesis, and since d′ > |G′| − 1, one r(T ′i ) has a loss child in s1, and
one r(T ′j) has a loss child in s2. It is not hard to see that these two losses can be replaced by
a single loss in s, contradicting the optimality of T . This proves the desired claim.

Given the above fact, choose an (s, d)-resolution T = {T1, . . . , Td} contained in T ,
maximizing d as before, and now choose s such that that s is the deepest (i.e. farthest from
the root) given this value of d. We know that T has a singleton loss node ls.

The existence of ls in T implies that no x = r(Ti) has a parent p(x) in T that is a
duplication, as replacing ls by Tx and removing x from T rids it of one duplication and one
loss, contradicting its optimality. Thus every x = r(Ti) has a parent that is a speciation in
p(s), the parent of s. Let s′ be the child of p(s) other than s. Then in T , every x = r(Ti)
has a sibling x′ with s(x′) = s′. Note that the sibling l′s of ls cannot be a loss. Moreover, for
x 6= ls, x′ cannot be a loss, as swapping x′ for l′s can rid T of a loss (the (x′, l′s) loss pair can
be replaced by a single loss in p(s)). Therefore, there is an (s′, d)-resolution T ′ = {T ′1, . . . , T ′d}
in T , and no x′ = r(T ′i ) is a loss. One of these roots must then be a duplication, as otherwise
this would contradict the above claim. But this implies the existence of of d′ > d such that
T contains a (s′, d′)-resolution, which contradicts our initial choice of d.

J

Proof of Theorem 10

Proof. It is known that from the definitions, in any minimum reconciliation, a node x of T is
a duplication iff s(x) = s(x′) for some child x′ of x. As for losses, let xy be a branch of T , x
being the parent of y. If x is a speciation, one loss is grafted for each node of S lying on the
s(y)− s(x) path (excluding s(x), s(y)). If x is a duplication, no loss is grafted if s(y) = s(x),
otherwise we graft one loss in for each node on the s(y)− s(x) path (excluding s(y) only) [7].

For every g ∈ V (T ), s(g) is in SG, and therefore maps to the same node in both S+
G and

S∗G. This implies that if g′ is a child of g, then s(g′) = s(g) when reconciling with S+
G if and

only if s(g′) = s(g) when reconciling with S∗G. Therefore, T exhibits the same duplications
and speciations whether we reconcile it with S+

G or S∗G. As for losses, let uv be a branch
of T , with u the parent of v. Suppose that u is a speciation. Let Q be the set of nodes on
the s(u) − s(v) path in S+

G , excluding s(u), s(v). The total cost of losses inferred on the
uv branch, when reconciling T with S+

G , is λ|Q|. Now, let Q′ be the set of nodes on the
s(u)−s(v) path in S∗G, excluding s(u), s(v). Each node q′ ∈ Q′ is obtained by the contraction
of a path P , and thus q′ enforces a loss of cost λ|P |. Hence, the loss cost inferred on the
uv branch is obtained by multiplying λ by the number of nodes that were present before
contracting, which is exactly |Q| (since s(u) and s(v) point to the same nodes). The losses
inferred on the uv branch are then the same using both species trees. The case when u is
a duplication can be handled similarly (we simply do not exclude s(u)). We conclude that
both admit the same reconciliation cost. J

Proof of Theorem 11
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Proof. Take a polytomy G of H. We first argue that S∗G can be constructed in linear time
according to the size of G. Call SZG the tree obtained from S∗G by removing the nodes that
correspond to contracted paths, along with their inserted leaf child. In [16], Zheng and Zhang
show how to compute SZG in time O(|G|). This can easily be extended to build S∗G in the
same amount of time. It suffices to conserve, for each node s of SZG, its original depth d(s) in
S. Then, for each internal node s of SZG and each child s′, if d(s′) > d(s) + 1, we add a node
on the ss′ edge, along with a grafted leaf of loss cost d(s)− d(s′)− 1.

Now S∗G can be seen as a binary tree with at most |S(G)| leaves, to which we graft at
most one node per edge (corresponding to contracted paths). As the number of such edges is
less than 2|S(G)|, S∗G has less than 3|S(G)| ≤ 3|G| leaves and thus |S∗G| ≤ 6|G| ∈ O(|G|).

Thus G can be resolved in time O(|S∗G||G| + |G|) = O(|G|2), say in time smaller than
c|G|2 for some constant c > 0. Using the fact that each polytomy G(x) has size deg(x) ≤ ∆,
we get a total time smaller than

∑
h∈V (H) c ·deg(h)2 ≤ c ·∆

∑
h∈V (H) deg(h) ∈ O(∆|H|). J

The next two results serve to prove Theorem 12. The following is borrowed from [9].

I Theorem 15. Suppose that δs = λs = 1 for every s ∈ V (S). Then for any s ∈ V (S), there
exist integers γs, αs and βs such that

Ms,k =


γs if αs ≤ k ≤ βs
γs + αs − k if k < αs

γs + k − βs if k > βs

Moreover, if s is an internal node with children s1, s2, then γs, αs and βs can be found in
time O(1) given γs1 , αs1 , βs1 and γs2 , αs2 , βs2 .

By Theorem 15, in the the case of δ = λ, only three values can be used to represent all
the values of Ms. We call the triplet (γs, αs, βs) the representatives of Ms. These values can
be computed in constant time, from which it follows that computing the whole M table can
be done in time O(|S|) - independently of |G|.

However, we are working with S = S∗G, and some special leaf s might have a loss cost λs
higher than one. Let p(s) be the parent of s. It remains to show that in this case, the Ms

line can still be computed in constant time, and Mp(s) still admits representatives that can
be computed in constant time. If so, the other nodes, i.e. the internal nodes with regular
duplication/loss costs whose two children admit representatives, can also have their line
computed in constant time using Theorem 15. This will imply that every row of M can be
computed in constant time, as desired.

I Theorem 16. Let s1 be a leaf of S∗G with cost λs1 > 1, let s be its parent and s2 be the
other child of s. Then Ms1,k = k · λs1 for all values of k, and Ms,k = Cs,1 + k − 1 if k > 1.

Proof. The fact that Ms1,k = k · λs1 follows from Lemma 4 since m(s1) = 0. Since s1 is
an inserted leaf of loss cost higher than one, s is the result of a compressed path of useless
nodes, which implies that m(s) = 0. Also, s2 is not the result of a compressed path, since
otherwise s and s2 would have been compressed together. Therefore δs2 = λs2 = 1 and thus
by Lemma 13 we have Ms2,k ≤Ms2,k′ + |k′ − k| for all values of k, k′.

Now by Lemma 14, there is a k′ such that Ms,k = Cs,k′ + |k′ − k|. Then since m(s) = 0,
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Cs,1 + k − 1 = Ms1,1 +Ms2,1 + k − 1 (8)
≤Ms1,1 +Ms2,k′ + |k′ − 1|+ k − 1 (9)
= Ms1,k′ − λs1(k′ − 1) +Ms2,k′ + k′ + k − 2 (10)
≤Ms1,k′ − 2(k′ − 1) +Ms2,k′ + k′ + k − 2 (11)
= Ms1,k′ +Ms2,k′ − k′ + k (12)
≤Ms1,k′ +Ms2,k′ + |k′ − k| (13)
= Cs,k′ + |k′ − k| = Ms,k (14)

which shows that Cs,1 + k − 1 is the smallest value for Ms,k for all possible values of k.
J

Theorem 16 shows that the M values of compressed nodes and inserted leaves have
the same pattern as described in Theorem 15. If s1 has loss cost λs1 > 1, with parent s
and sibling s2, it is not hard to see that (γs, αs, βs) = (Cs,1, 1, 1) = (Ms2 + λs1 , 1, 1) is the
representative of Ms and can be computed in constant time. Also, note that the computation
of Ms1 can be skipped. It thus suffices to refine the algorithm of [9] by treating the special
case of leaves with higher loss cost.

I Theorem 17. The algorithm Compute Ps,k returns every minimum (s, k)-resolution.

Proof. We first show that the algorithm finishes. If not, there are s, k, s′ and k′ such that
P(s, k) requires the computation of some P(s′, k′), which in turn requires the computation of
P(s, k). Since P(s, k) does not depend on resolutions containing strict ancestors of s, s′ must
be a descendant of s. Similarly, s is a descendant of s′, and so s = s′. But, by the first two
cases of the algorithm, this implies that Ms′,k′ = Ms,k′ < Ms,k and Ms,k < Ms′,k′ = Ms,k′ ,
a contradiction. Therefore the algorithm must terminate.

We now show that Ps,k is correct. We proceed inductively on the depth of the recursion
tree defined by Compute P(s, k). The leaves of this tree correspond to cases with s being a leaf
and k = m(s). It is clear that in this case, there is only one solution and thus Ps,k is correct.
Suppose now that every Ps′,k′ that Compute Ps,k depends on is computed correctly. Let
T = {T1, . . . , Tk} ∈ P(s, k). We show that the algorithm finds T . Suppose first that one of
Ti is rooted at a duplication. Let T ′ be the new forest obtained by removing r(Ti). Then T ′
is an minimum (s, k+ 1)-resolution (for otherwise T is not minimum). Thus T ′ ∈ P(s, k+ 1)
and the algorithm finds T . Similarly, if some Ti is a singleton loss, T can be obtained from
a resolution in P(s, k − 1). If every root of T is a speciation (and s is not a leaf), let s1, s2
be the children of s. Then T can be obtained by joining pairs of trees in P(s1, k −m(s))
and P(s2, k −m(s)) and adding the singleton genes mapping to s.

J
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