
Inferring gene orders from gene maps using the

breakpoint distance

Guillaume Blin1, Eric Blais2, Pierre Guillon1, Mathieu Blanchette2, and Nadia
El-Mabrouk3

1 IGM-LabInfo - UMR CNRS 8049 - Université de Marne-la-Vallée - France
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Abstract. Preliminary to most comparative genomics studies is the an-
notation of chromosomes as ordered sequences of genes. Unfortunately,
different genetic mapping techniques usually give rise to different maps
with unequal gene content, and often containing sets of unordered neigh-
boring genes. Only partial orders can thus be obtained from combining
such maps. However, once a total order O is known for a given genome,
it can be used as a reference to order genes of a closely related species
characterized by a partial order P . In this paper, the problem is to find
a linearization of P that is as close as possible to O in term of the break-
point distance. We first prove an NP-complete complexity result for this
problem. We then give a dynamic programming algorithm whose run-
ning time is exponential for general partial orders, but polynomial when
the partial order is derived from a bounded number of genetic maps.
A time-efficient greedy heuristic is then given for the general case, with
a performance higher than 90% on simulated data. Applications to the
analysis of grass genomes are presented.

1 Introduction

Despite the increase in the number of sequencing projects, the choice of candi-
dates for complete genome sequencing is usually limited to a few model organisms
and species with major economical impact. For example, the rice genome is the
only crop genome that has been completely sequenced. Other grasses of major
agricultural importance such as maize and wheat are unlikely to be sequenced in
the short term, due to their large size and highly repetitive composition. In this
case, all we have are partial maps produced by recombination analysis, physical
imaging and other mapping techniques that are inevitably missing some genes
(or other markers) and fail to resolve the ordering of some sets of neighboring
genes. Only partial orders can thus be obtained from combining such maps. The
question is then to find an appropriate order for the unresolved sets of genes.
This is important not only for genome annotation, but also for the study of evo-
lutionary relationships between species. Once total orders have been identified,



the classical genome rearrangement approaches can be used to infer divergence
histories in terms of global mutations such as reversals [2, 9, 14].

In a recent study [16, 18], Sankoff et. al. generalized the rearrangement by
reversal problem to handle two partial orders. The idea was to resolve the partial
orders into two total orders having the minimal reversal distance with respect to
each other. The problem has been conjectured NP-hard, and a branch-and-bound
algorithm has been developed for this purpose. The difficulty of this approach is
partly due to the fact that both compared genomes have partially resolved gene
orders. However, once a total order is known for a given genome, it can be used
as a reference to order markers of closely related species. For example, as the
grass genomes maintain a high level of conserved synteny [11, 7], maps of the
completely sequenced rice genome can be used to deduce an order of markers in
other grass genomes such as maize.

In this paper, given a reference genome characterized by a total order O and
a related genome characterized by a partial order P , the problem is to find a
total order coherent with P minimizing the breakpoint distance with respect to
O. The underlying criterion is a parsimony one assuming a minimum number of
genomic rearrangements. After introducing the basic concepts in Section 2, we
show in Section 3 that the considered problem is NP-complete. We then give,
in Section 4, two dynamic programming algorithms. First is an algorithm that
solves exactly the problem on arbitrary partial orders, and whose worst-case
running time is exponential in the number of genes. However, when the partial
order considered is the intersection of a bounded number of genetic maps of
bounded width, the algorithm runs in polynomial time. We then present a fast
and accurate heuristic for the general problem in Section 5. We finally report
results on simulated data, and applications to grass genetic maps in Section 6.

2 A graph representation of gene maps

Hereafter, we refer to elementary units of a map as genes, although they could
in reality be any kind of markers. Moreover, as the transcriptional orientation
of genes is usually missing from genetic maps, we consider unsigned genes.

A genetic map is represented as an ordered sequence of gene subsets or blocks
B1, B2, . . . , Bq, where for each 1 ≤ i ≤ q, genes belonging to block Bi are
incomparable among themselves, but precede those in blocks Bi+1, . . . , Bq and
succeed those in blocks B1, . . . , Bi−1. For example, in Figure 1.a, {4, 5} is a
block, meaning that genes 4 and 5 are assigned to the same position, possibly
due to lack of recombination between them. A genetic map is thus a partial order
of genes.

Maps M1, . . . , Mm obtained from various protocols can be combined to form
a more complex partial order P on the union set of genes of all maps as follows:
a gene a precedes a gene b in P if there exists a map Mi where a precedes b.
However, combining maps can be a problem in itself, due to possible inconsis-
tencies, which would create precedence cycles (e.g. a precedes b in M1 but b
precedes a in M2). Breaking cycles can be done in different ways, the parsimo-



nious method consisting in eliminating a minimum number of precedence rules.
Another potential problem is the presence of multiple loci (markers that are as-
signed to different positions in the same map). These issues have been considered
in previous studies [17, 18, 16], and a software is available for combining genetic
maps [10]. In this paper, we assume that the partial order P is already known.
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Fig. 1. Data extracted from the comparison of maize and sorghum in the Gramene
database. The identity permutation (1 2 3 4 · · · ) represents the order of markers in the
“IBM2 neighbors 2004”[15] map for maize chromosome 5. The corresponding marker’s
partial orders in sorghum are deduced from (a) “Paterson 2003” [4] map of the chro-
mosome labelled C and (b) “Klein 2004” [13] map of the chromosome labelled LG-01;
(c) is the partial order obtained by combining (a) and (b); (d) is a linearization of (c)
minimizing the number of breakpoints.

As proposed in previous studies [17, 18], we represent such a partial order
P as a directed acyclic graph (or DAG) (VP , EP ), where the vertex set VP

represents the set of genes along the chromosome and the edge set EP represents
the available order information (Figure 1). We consider a minimum set of edges,
in the sense that any edge of EP can not be deduced by transitivity from other
edges. In particular, a total order of genes is represented by a DAG such that
each edge connects a pair of consecutive genes.

Let P be a partial order represented by a DAG (VP , EP ). We say that a
vertex a is P -adjacent to a vertex b and write a <P b iff there is an edge in EP

from a to b. We say that a precedes b in P and write a ≪P b iff there is a path
from a to b. We say that vertices a and b are incomparable if neither a ≪P b nor
b ≪P a, and denote this by a ∼P b. A linearization of P is a total order O′ on
the same set of genes, such that a ≪P b ⇒ a ≪O′ b.

Given a partial order P and a total order O, our goal is to find a linearization
O′ of P , in such a way that O′ is as “similar” as possible to O. The distance
measure used here is the number bkpts(O, O′) of breakpoints between O and
O′, where a breakpoint is a pair of consecutive vertices (a, b) of O′ that are not



consecutive in O (a <O′ b but a ≮O b). Equivalently, we may try to maximize
the number of O-adjacencies of O′, which is defined as the number of pairs of
consecutive genes in O′ that are also consecutive in O (Figure 1.d). Formally:

Minimum-Breakpoint Linearization (MBL) problem
Given: A partial order P and a total order O on the set of genes {1, 2, . . . , n},
Find: A linearization of P into a total order O′ so that bkpts(O, O′) is minimized.

Without loss of generality, we assume from now on that O is the identity
permutation (1, 2, . . . , n), that is i <O j ⇔ j = i + 1.

3 Hardness results

In this section, we prove that the decision version of the MBL problem is NP-
complete: given a complete order O and a partial order P defined on the same
set of genes and an integer k′, can one find a linearization O′ of P such that
bkpts(O, O′) ≤ k′?

We propose a reduction from the NP-complete problem Maximum Inde-
pendent Set [8]: given a graph G = (V, E) and an integer k, can one find an
independent set of vertices of G – i.e. a set V ′ ⊆ V such that no two vertices of
V ′ are connected by an edge in E – of cardinality greater than or equal to k ?

We initially note that the MBL problem is in NP since given a complete order
O and a linearization O′ of P , one can compute the number of breakpoints in
linear time. In order to prove that the MBL problem is NP-complete, we show
that from any instance of Maximum Independent Set with a parameter k,
we are able to construct – in polynomial time – an instance of the MBL problem
such that k′ depends on k. We detail this construction hereafter.

For convenience, we define a reduction from a slightly different set of instances
for the Maximum Independent Set problem: connected graphs. This can be
done w.l.o.g. since the problem is still NP-complete in that case. Let G =
(V, E) be a connected graph of n vertices. We define the complete and the
partial orders O and P of the MBL problem as follows. The complete order O
is defined as a string O = δ α1 β1 γ1 α2 β2 γ2 . . . αn βn γn ǫ, and the partial
order P as a DAG P = (VP , EP ) with VP = {δ, α1, α2 . . . αn, β1, β2 . . . βn, γ1,
γ2, . . . γn, ǫ} and EP = {(δ, γ1)} ∪ {(γi, γi+1)|1 ≤ i < n} ∪ {(γn, αi), (γn, βi)|
1 ≤ i ≤ n} ∪ {(βi, αj), (βj , αi)|∀(vi, vj) ∈ E} ∪ {(αi, ǫ), (βi, ǫ)|1 ≤ i ≤ n}.

In order to complete the instance of the MBL problem, we define k′ =
(3n + 1)− k. In the following, we will refer to any such construction as a MBL-
construction.

Theorem 1. A connected graph G = (V, E) admits an independent set of ver-
tices V ′ ⊆ V of cardinality greater than or equal to k if and only if there exists
a linearization O′ of P such that bkpts(O, O′) ≤ (3n + 1) − k, where O and P
result from a MBL-construction of G.

Proof. See Appendix.



Corollary 1. The MBL problem is NP-complete.

4 Exact dynamic programming algorithms

Hereafter, we describe two exact dynamic programming algorithms for solving
the MBL problem. The first algorithm works on an arbitrary partial order P ,
but has a running time that can be exponential in |VP |. However, we show that
the algorithm’s running time is polynomial in the more realistic case where P is
built from a sbounded et of genetic maps. The second algorithm applies to the
case where P is built from a single genetic map, and runs in linear time.

We begin with some preliminary definitions. Let A be a subset of vertices
of VP . A is a border of P iff any pair of vertices of A are incomparable, and
a maximum border iff any other vertex of VP is comparable to at least one
vertex of A. We also define, for any subset B ⊆ VP , front(B) = {x ∈ B :
x has no successor in B}. Note that the front of any set B is a border. Finally,
we denote pred(A) = A ∪ {x ∈ VP : ∃y ∈ A s.t. x ≪P y}.

4.1 A dynamic algorithm for arbitrary partial orders

Let A be a maximum border. We denote by XA,i the maximum number of ad-
jacencies that can be obtained from a linearization of pred(A) that is consistent
with the partial order P , and that ends with vertex i (i.e., i is the rightmost ver-
tex in the total order of pred(A)). It is easy to see that the number of adjacencies
in the global optimal solution is maxi∈F XF,i adjacencies, where F = front(VP ).
The following theorem provides a recursive formula for the computation of XA,i.

Theorem 2. For any border A and any vertex i ∈ A,

XA,i = max
j∈A′

XA′,j +

{

1 if |j − i| = 1
0 otherwise

where

A′ = front(pred(A) \ {i})) = (A \ {i})∪ {k | (k, i) ∈ EP and k /∈ pred(A \ {i})}

.

begins with A = F = border(VP ) and stops as soon as A is the empty set.
Computing all the entries of the dynamic programming table only requires

operations which can be done in linear time. If the partial order P admits b(P )
possible borders, the running time is O(b(P ) · |VP |

2).
In the general case, the number of borders of P can be as much as 2|VP |,

if P consists of a single block of incomparable vertices. However, we are more
interested in the case where P is obtained by combining m genetic maps, where
each map contains a maximum of q blocks and the size of each block is at
most k. In this case, there are at most qm maximal borders in P . Furthermore,
two elements that are in the same border cannot be in different blocks on a



genetic map, so each maximal border is of size at most km, which allows 2km

possible subsets. Therefore, the total number of borders of P is bounded above
by b(P ) ∈ O(qm2km). Since, in practice, only two or three different genetic maps
are combined to form a partial order, the dynamic algorithm yields a practical
and exact solution to the MBL problem.

4.2 A linear-time algorithm for single genetic map

When P is a genetic map consisting of a list of blocks B1, B2, . . . , Bq, a much
faster linearization algorithm exists. Let Xi be the maximum linearization score
obtained in the partial subset B1 ∪ · · · ∪ Bi ⊆ VP . The maximum linearization
score of P is thus equal to Xq. Let Li represent the set of elements in Bi that
can be placed at the last position in a total ordering of B1∪· · ·∪Bi that achieves
the score Xi. Define the functions g1(X, Y ) = {x |x ∈ X and x + 1 ∈ Y } and
g2(X, Y ) = {y | y ∈ Y and y − 1 ∈ X}. Then, the values Xi and Li can be
determined recursively as follows.

Theorem 3. Define X0 = 0 and L0 = {}. Then, for any 1 ≤ i ≤ q,

Xi = Xi−1 + |g1(Bi, Bi)| +

{

1 , if |g2(Li−1, Bi)| ≥ 1
0 , otherwise

and

Li =

{

Bi \ g1(Bi, Bi) , if |g2(Li−1, Bi)| 6= 1 or |Bi| = 1
Bi \ (g1(Bi, Bi) ∪ g2(Li−1, Bi)) , otherwise

The intuition behind the recursive definition of Xi is as follows: to get the
maximum linearization score, we always want to join as many elements x, x + 1
within a same block. Furthermore, as much as possible, we want to join consec-
utive elements in neighboring blocks as well. The set Li is used to keep track of
which elements can be put last in the ordering of Bi and therefore possibly be
matched with an element in the block Bi+1. If the elements of Bi are stored in
an ordered list, then the recursive definition of Theorem 3 can be implemented
in a recursive algorithm for which each iteration requires O(|Bi| + |Li−1|) time
to run, for a total time complexity of O(n) in the case of a genetic map of n
genes.

5 An efficient heuristic

Since our exact dynamic programming has a worst-case running time that is
exponential in the number of genes, a faster heuristic is required to solve large
problem instances. In this section, a greedy heuristic is developed for general
partial orders obtained from the concatenation of an arbitrary number of maps.
It aims to find a maximum number of O-adjacencies coherent with a partial
order P . At each step, the partial order is updated by incorporating adjacencies



of the longest O-adjacency path that can be part of a linearization of P . The
algorithm does not necessarily end up with a total order. Rather, it stops as soon
as no more adjacencies can be found. All linearizations of the obtained partial
order are then equivalent in the sense that they all give rise to the same number
of adjacencies.

1 4
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82 3

6

11 5 7 12 14

13

Fig. 2. Dotted edges are all O-adjacencies that can, individually, be part of a lineariza-
tion of P . A bi-directional edge represents the concatenation of two edges, one in each
direction. An adjacency path of P is a directed sequence of consecutive dotted edges.

A direct (resp. indirect) adjacency path of P is a sequence of vertices of form
(i, i+1, i+2, · · · i+k) (resp. (i+k, · · · i+2, i+1, i)) such that for any 0 ≤ j < k,
either i + j <P i + j + 1 (resp. i + j + 1 <P i + j), or i + j and i + j + 1
are incomparable. For example, in Figure 2, (1, 2, 3, 4) (resp. (11, 10, 9, 8, 7)) is
a direct (resp. indirect) adjacency path. Notice that adjacencies of this indirect
path can not belong to any linearization of P , as gene 5 should be located after
11 but before 7.

We say that an adjacency path p of P is valid iff there is a linearization O′

of P such that p is a subsequence of O′. Lemma 1 gives the conditions for an
adjacency path to be valid. We need a preliminary definition.

Definition 1. Given two vertices i and j, we say that i is compatible with j iff
the two following conditions hold:

1. i and j are either incomparable or i ≪P j;
2. Any vertex v verifying i ≪P v ≪P j belongs to the interval [i, j] (or [j, i] if

j < i).

Lemma 1. A direct (resp. indirect) adjacency path of P from i to i + k (resp.
from i + k to i) is valid if and only if, for any j1, j2 such that 0 ≤ j1 < j2 ≤ k,
i + j1 is compatible with i + j2. (resp. i + j2 is compatible with i + j1).

A preliminary preprocessing of P = (VP , EP ) is required to efficiently com-
pute successive adjacency paths.

1. Create the matrix M of size |VP |×|VP | verifying, for any i, j ∈ VP , M(i, j) =
1 iff i <P j and M(i, j) = 0 otherwise.

2. Compute the transitive closure of M , that is the matrice MT of size |VP | ×
|VP | verifying, for any i, j ∈ VP ,

MT (i, j) =







1 iff i <P j
2 iff i ≪P j but i ≮P j
0 otherwise



After the preprocessing step, the following Steps 1 and 2 are iterated as long
as P contains an adjacency path.

– Step 1: Find a longest valid direct or indirect adjacency path. An algorithm
for this step is described in Figure 3.

– Step 2: Incorporate the new adjacencies in MT , and compute the transitive
closure of MT .

Algorithm Find-Valid-Path (Figure 3) only considers the case of direct paths,
though generalization to indirect paths is straightforward. Valid paths are com-
puted beginning with paths of size 2. For a fixed k, any path p = (i, i+1, · · · i+k)
of size k is obtained from a concatenation of two valid consecutive paths p1 =
(i, i + 1, · · · i + k − 1) and p2 = (i + 1, i + 2, · · · i + k) of size k − 1. As p1 and p2

are valid paths, the path p is valid iff i is compatible with i + k.

Algorithm Find-Valid-Path (P)
{Compute the list L of all adjacency paths of size 2}
For 1 ≤ i ≤ |V | do

If (i <P i + 1) or (i and i + 1 are incomparable) then
Add (i, i + 1) to L;

End For
k = 2;

{As long as L contains at least two elements, concatenate paths of size k to paths
of size k + 1}
While |L| ≥ 2 do

For j = 1 to |L| do
If Lj+1 and Lj are consecutive paths then

If Lj [1] is compatible with Lj+1[k] then
L′ = Concatenate(Lj , Lj+1);
Add L′ to LNew;

End For
If |LNew| > 0 then L = LNew; Clear(LNew);
k = k + 1;

End While
Return (L1);

Fig. 3. Finding a longest valid adjacency path of P . L is the list of adjacency paths of
size k, Lj denotes the jth path of L, and Lj [i] the ith vertex of Lj .

Complexity: Computing the transitive closure of the adjacency matrix in the
preprocessing phase, as well as in Step 2, is done using the Floyd-Warshall al-
gorithm [6] in time complexity O(n3) where n is the number of vertices of the
corresponding graph. As each condition of Algorithm Find-Valid-Path can be
checked in constant time and L contains at most |V | − 1 elements, the time
complexity of Step 1 is in O(n). Moreover, Steps 1 and 2 are iterated at most



|V | times. Therefore, the worst time complexity of the greedy algorithm is in
O(n4).

6 Experimental results

We first test the efficiency of the heuristic compared to the dynamic program-
ming algorithm for general partial orders on simulated data, and then illustrate
the method on grass maps obtained from Gramene (http://www.gramene.org/).

Simulated data: We simulate DAGs of fixed size n that can be represented as
a linear expression involving the operators ‘→’ and ‘,’ where P-adjacent genes
are separated by a ‘→’ and incomparable genes by a ‘,’. Such a representation is
similar to the one used in [12, 17]. For example, the DAG in Figure 1.c has the
following string representation:

{2 → 6, 1 → 3 → {4, 5} → 7} → 8 · · · 14 → {9, 15, 16, 17, 21}→ {18, 19} → 20

Fig. 4. CPU time expended by (a) the dynamic programming algorithm and (b) the
heuristic, for DAGs of a given size and width. Each result is obtained from 10 runs (10
different simulated DAGs). The Y axis is logarithmic.

DAGs are generated according to two parameters: the order rate p that deter-
mines the number of ‘,’ in the expression, and the gene distribution rule q corre-
sponding to the probability of possible O-adjacencies. We simulated twenty dif-
ferent instances for each triplet of parameters (n, p, q) with k ∈ {30, 50, 80, 100},
p ∈ {0.7, 0.9} and q ∈ {0.4, 0.6, 0.8}. We did not consider p values lower than
0.7, as the dynamic programming algorithm exponential-time prevented us from
testing such instances.

Figure 4 shows that the running time of the dynamic programming algorithm
grows exponentially with the DAG’s largest border size, while the heuristic is



not affected by it (this was expected, as the time-complexity only depends on the
DAG’s size). We note that the greedy heuristic can easily handle partial orders
consisting of thousands of genes.

We now evaluate the heuristic’s optimality, namely the number of O-adjacen-
cies resulting from the obtained linearization compared to the optimal solution
(obtained with the dynamic programming algorithm). As illustrated by Table 1,
the performance of the greedy algorithm is almost always higher than 90%, and
usually close to 100%.

\ DAG Width
2 3 4 5 6 7 8 9 10 11

Genome size \

30 100 100 98,15 97,41 94,33 96,18 93,18 95,54 100 100
50 100 98,04 96,43 97,62 95,25 98,61 100 86,96 95,26 94,94
80 100 98,21 97,90 87,54 96,79 93,89 100 95,83 98,33 100
100 100 98,81 95,65 96,83 89,70 93,95 90,38 95,30 94,63 94,95

Table 1. Percentage of O-adjacencies resulting from the heuristic’s linearization com-
pared to the optimal solution (obtained with the dynamic programming algorithm).
Results are obtained by running the heuristic and dynamic programming algorithm on
10 different simulated DAGs for a given size and width.

Illustration on grass genomes: The Gramene database contains a large
variety of maps of different grass genomes such as rice, maize and oats, and pro-
vides tools for comparing individual maps. A visualization tool allows to identify
regions of ‘homeology’ between species, that is a linear series of markers in one
genome that maps to a similar series of loci on another genome. Integrating
marker orders between different studies remains a challenge to geneticists. How-
ever, as total orders are already obtained for widely studied species such as rice
which has been completely sequenced, one can use this information to order
markers on another species by using the adjacency maximization criterion.

Extracting the linear orders of markers using the Gramene visualization tool
remains unpractical for hundreds of markers, as no automatic tool is provided for
this purpose. We therefore illustrate the method on maps that are small enough
to be extracted manually. Maize has been chosen instead of rice as it has shorter
maps, though non-trivial, that can be represented graphically.

We used the “IBM2 Neighbors 2004” [15] map for chromosomes 5 (Figure 1)
and 1 (Figure 5) of maize as a reference, and compared it with the “Paterson
2003” [4] and “Klein 2004” [13] maps of the chromosomes labeled C and LG-01,
respectively, of sorghum. We extracted all markers of maize indicated as having a
homolog in one of the databases of sorghum. All are found completely ordered in
maize. This linear order is considered as the identity permutation. For markers
of sorghum that are located on maize chromosome 5 (resp. 1), a total order
maximizing the adjacency criterion is indicated in Figure 1.d (resp. Figure 5.b).
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Fig. 5. (a) The partial order of markers in sorghum that are located and totally ordered
on the maize chromosome 1; (b) A total order maximizing the adjacency criterion.

7 Conclusion

We have presented a detailed complexity result and algorithmic study for the
problem of linearizing a partial order that is as close as possible to a given total
order, in term of the breakpoint distance. Applications on the grass genomes
show that this may be helpful to order unresolved sets of markers of some species
using the totally ordered maps of well studies species such as rice. However,
preliminary to the application of our algorithms is generating the appropriate
partial orders. For this purpose, an automated preprocessing of the Gramene
comparative database would be required to output the considered genetic maps,
and then combine them on a single partial order. The absence of such tools
prevented us from presenting more consequent applications.

The next step of this work will be to generalize our approach to two (or more)
partial orders, as previously considered in [16, 18] for the reversal distance. As
conjectured by Sankoff, an NP-complete result for this problem should be proved.
A dynaming programming approach may also be envisaged for this case.

Considering the breakpoint (or similarly the adjacency) distance is a first
step towards more general distances such as the number of conserved or common
intervals [1, 3, 5]. Indeed, an adjacency of two genes is just a common interval
of size 2. A simple extension of the greedy heuristic would be to order genes
that remain unordered after maximizing adjacencies, by using the constraint of
maximizing intervals of size 3, 4 and so on.
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8 Appendix

8.1 Proof of Theorem 1

First, let us present some interesting properties of any instance of Minimum-
Breakpoint Linearization problem obtained by a MBL-construction. Then,
we will use those properties to prove that the Minimum-Breakpoint Lin-
earization problem is NP-complete. An illustration of a MBL-construction of
a graph G of 6 vertices is illustrated in Figure 6.

Fig. 6. Example of a MBL-constrction. The graph (a) is a connected graph of 6 vertices.
The sequence (b) represents the complete order O and the graph (c) represents the
partial order P obtained from the graph (a) by a MBL-construction.

Lemma 2. Let G = (V, E) be a graph and P = (VP , EP ) be a partial order
obtained from G by a MBL-construction. There exists no linearization O′ of
P where both αi <O′ βi and αj <O′ βj, for any αi, αj , βi, βj of VP such that
(vi, vj) ∈ E.

Proof. By contradiction, let us assume that there exists such a linearization O′

where αi <O′ βi and αj <O′ βj . Since (vi, vj) ∈ E, we have (βi, αj) ∈ EP

and (βj , αi) ∈ EP . Therefore, in any linearization of P – and consequently O′

– βi ≪O′ αj and βj ≪O′ αi – which leads, by transitivity, to βi ≪O′ αi; a
contradiction. ⊓⊔

Lemma 3. Let G = (V, E) be a graph of n vertices, O and P = (VP , EP ) be re-
spectively a complete and a partial order obtained from G by a MBL-construction.
Given any linearization O′ of P , bkpts(O, O′) = (3n+1)−k where k is the num-
ber of couples (αi, βi) such that αi <O′ βi.



Proof. By construction, in O, (i) δ <O α1 <O β1 <O γ1, (ii) ∀1 < i ≤ n,
γi−1 <O αi <O βi <O γi and (iii) γn <O ǫ. In any linearization O′ of P , (i)
δ <O′ γ1, (ii) ∀1 < i ≤ n, γi−1 <O′ γi and (iii) either αi <O′ ǫ or βi <O′ ǫ for a
given 1 ≤ i ≤ n. Therefore, in any linearization O′ of P , the only adjacencies that
can be preserved are the ones of the form αi <O βi for some 1 ≤ i ≤ n. Let k be
the number of couples (αi, βi) such that αi <O′ βi. If k = 0 then no adjacencies
at all are preserved, therefore bkpts(O, O′) = (3n+1). And consequently, if k > 0
then bkpts(O, O′) = (3n + 1) − k. ⊓⊔

We now turn to prove the following theorem.

Theorem 1. A connected graph G = (V, E) admits an independent set of
vertices V ′ ⊆ V of cardinality greater than or equal to k if and only if there
exists a linearization O′ of P such that bkpts(O, O′) ≤ (3n + 1) − k, where O
and P result from a MBL-construction of G.

Proof. (⇒) Let V ′ ⊆ V such that |V ′| ≥ k and V ′ is an independent set. Let O′

be a linearization of P defined by O′ = δ P1 P2 P3 P4 ǫ where:

– P1 is the linearization of the subset of vertices V ′
1 = {γi|1 ≤ i ≤ n} such

that ∀1 < i ≤ n, γi−1 <P1
γi;

– P2 is any linearization of the subset of vertices V ′
2 = {βi|vi ∈ V − V ′};

– P3 is any linearization of the subset of vertices V ′
3 = {αi, βi|vi ∈ V ′} such

that ∀vi ∈ V ′, αi <P3
βi;

– P4 is any linearization of the subset of vertices V ′
4 = {αi|vi ∈ V − V ′}.

By Lemma 3, we can affirm that bkpts(O, O′) = (3n + 1) − |V ′|. Since, by
hypothesis, |V ′| ≥ k, we obtain bkpts(O, O′) ≤ (3n + 1) − k.

(⇐) Suppose we have a linearization O′ of P such that bkpts(O, O′) ≤ (3n+
1) − k. Let V ′ ⊆ V be the set of vertices such that:

∀(αi, βi) such that αi <O′ βi, add vi to V ′

By Lemma 2, we can affirm that V ′ is an independent set. Let us verify that
|V ′| ≥ k. By Lemma 3, Bkpts(O, O′) = (3n + 1) − k where k is the number of
couples (αi, βi) such that αi <O′ βi. Therefore, we obtain |V ′| = k. ⊓⊔


