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Abstract
Gene transfer between the mitochondrial and nuclear genome of the same species, called endosymbiotic
gene transfer (EGT), is a mechanism which has largely shaped gene contents in eukaryotes since
a unique ancestral endosymbiotic event know to be at the origin of all mitochondria. The gene
tree-species tree reconciliation model has been recently extended to account for EGTs: given a binary
gene tree and a binary species tree, the EndoRex software outputs an optimal DLE-Reconciliation,
that is an embedding of the gene tree into the species tree inducing a most parsimonious history
of Duplications, Losses and EGT events. Here, we provide the first algorithmic study for DLE-
Reconciliation in the case of a multifurcated (non-binary) gene tree. We present a general two-steps
method: first, ignoring the mitochondrial-nuclear (or 0-1) labeling of leaves, output a binary resolution
minimizing the DL-Reconciliation and, for each resolution, assign a known number of 0s and 1s to
the leaves in a way minimizing EGT events. While Step 1 corresponds to the well studied non-binary
DL-Reconciliation problem, the complexity of the formal label assignment problem related to Step 2
is unknown. Here, we show it is NP-complete even for a single polytomy (non-binary node). We
then provide a heuristic which is exact for the unitary cost of operations, and a polynomial-time
algorithm for solving a polytomy in the special case where genes are specific to a single genome
(mitochondrial or nuclear) in all but one species.
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1 Introduction

Since an initial endosymbiotic event integrating an α−proteobacterial genome into an
eukaryotic cell, which is known to be at the origin of all extent mitochondria, eukaryote
evolution has been marked by episodes of gene transfers, mainly from the mitochondria to
the nucleus, resulting in a significant reduction of the mitochondrial genome. Understanding
how both nuclear and mitochondrial genomes have been shaped by gene loss, duplication
and transfer is important to shed light on a number of open questions regarding the origin,
evolution, and characteristics of gene coding capacity of eukaryotes.

From a computational point of view, EndoRex [1] is the first algorithm developed
for integrating endosymbiotic events (special cases of gene transfers, but only between
the mitochondrial and nuclear genome of the same species) in a gene tree - species tree
reconciliation model. Given a gene family with gene copies labeled by 0 or 1 depending
on whether they are encoded in the mitochondrial or nuclear genome of a given species, a
gene tree for the gene family and a species tree for the considered species, EndoRex infers a
most parsimonious scenario of duplications, losses and endosymbiotic gene transfers (EGT)
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explaining the gene tree given the species tree. It is an exact polynomial-time algorithm,
which can be used to output all minimum cost solutions, for arbitrary costs of operations.

However, as it has been shown for other evolutionary events [6], the result of a reconciliation
model strongly depends on the considered trees. For example, due to potential errors in the
trees, some of the plant datasets analysed in [1] produced unrealistic evolutionary histories
with unexpected high number of gene duplications and losses. A solution would be to ignore
weakly supported parts of the tree, leading to a non-binary tree with multifurcated nodes, also
called “polytomies”, and simultaneously infer a binary refinement and optimal reconciliation
of the multifurcated tree, more precisely, infer an optimal evolutionary scenario leading to
a binary refinement of the tree. This strategy has been applied, for example, to infer the
evolution of the gene families responsible for alkaloid accumulation in plants [11].

Reconciling a non-binary gene tree by minimizing a DL-Reconciliation cost (history with
minimum Duplication/Loss cost) has been considered by many authors [2, 4, 10, 9, 12]. As
far as we know, the most efficient algorithm is PolytomySolver [9] which handles unit costs
in linear time, improves the best complexity of previous algorithms for the general DL cost
model by a linear factor and enables to account for various evolutionary rates across the
branches of a species tree, attributing to each taxa its specific duplication and loss cost.

In this paper, we explore the multifurcated gene tree reconciliation problem with a
reconciliation model accounting for duplications, losses, but also EGT events. Our method is
in two steps: ignoring the 0-1 labeling of the leaves, first output all resolutions minimizing
the DL-Reconciliation cost and then, for each resolution (i.e. binary tree), assign a known
number of 0s and 1s to the leaves in a way minimizing EGT events. As step one can be
done efficiently, we then focus on the second step which consists in assigning an optimal
0-1 labeling for the nodes of a binary tree. We show in Section 3 that this problem is
NP-complete, even when the multifurcated tree is restricted to a single polytomy. We then,
in Section 4, present a general algorithm solving each polytomy separately, which is shown
optimal for a unitary cost of operations.

Except for species conserving the traces of an ancestral eukaryotic origin, few genes are
expected to reflect an intermediate endosymbiotic integration of the mitochondrial gene
content to the nucleus, with gene copies in both the nuclear and mitochondrial genome. This
is the case of the eukaryotes with complete mitochondrial genomes explored in [7] (statistics
summarized in [1]): among the 2,486 species, only 52 species have mitochondrial-encoded
genes also present in the nuclear genome. This motivates Section 5 where we develop a
polynomial-time algorithm for the genome labeling problem in the special case where, in
each polytomy, genes are specific to a single genome (mitochondrial or nuclear) in all but
one species. We first begin, in the next section, by formally defining our problems.

2 Preliminaries, evolutionary model and definitions

All trees are considered rooted. Given a tree T , we denote by r(T ) its root, by V (T ) its
set of nodes and by L(T ) ⊆ V (T ) its leafset. A node x is a descendant of y if x is on the
path from y to a leaf of T and an ancestor of y if x is on the path from r(T ) to y; x is a
strict descendant (respect. strict ancestor) of x′ if it is a descendant (respec. ancestor) of x′

different from x′. Moreover, x is the parent of y ̸= r(T ) if it directly precedes y on this path.
In this latter case, y is a child of x. We denote by E(T ) the set of edges of T , where an edge
is represented by its two terminal nodes (x, y), with x being the parent of y. More generally,
if x is an ancestor of y, (x, y) denotes the path between x and y. The subtree of T rooted at
x (i.e. containing all the nodes descendant from x in T ) is denoted T [x]. The lowest common
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ancestor (LCA) in T of a subset L′ of L(T ), denoted lcaT (L′), is the ancestor common to all
the nodes in L′ which is the most distant from the root.

An internal node (a node which is not a leaf) is said to be unary if it has a single child,
binary if it has two children, and a polytomy if it has more than two children. We will denote
by xl and xr the two children of a binary node. The node xl (respec. xr) is called the sibling
of xr (respec. xl).

A tree R is an extension of a tree T if it is obtained from T by grafting unary or binary
nodes in T , where grafting a unary node x on an edge (u, v) consists in creating a new node x,
removing the edge (u, v) and creating two edges (u, x) and (x, v), and in the case of grafting
a binary node, also creating a new leaf y and an edge (x, y). In the latter case, we say that y

is a grafted leaf .
A species tree for a set Σ of species is a tree S with a bijection between L(S) and Σ. In

this paper, we assume that the species tree S for a given set of species Σ is known, rooted
and binary. A gene family is a set Γ of genes where each gene x ∈ Γ belongs to a given
species s(x) of Σ. A tree G is a gene tree for a gene family Γ if its leafset is in bijection
with Γ. We write ⟨G, s⟩ when each leaf of G is meant to be fully identified by its species
labeling, i.e. the species s(x) it belongs to (Figure 1. (3) and (4)). For a subset G ⊆ Γ of
genes, we write s(G) = {s(g) : g ∈ G} as the set of species containing the genes of G. Then
the LCA-mapping of G with S is the function assigning to each node x of G the LCA of
s(V (G[x])) in S.

In this paper, we will consider an additional genome labeling b for a gene x: b(x) = 0 if x

belongs to the mitochondrial genome of s(x), and b(x) = 1 if x belongs to the nuclear genome
of s(x). We write ⟨G, s, b⟩ when we want to specify that each leaf of G is fully identified
by these two labels (Figure 1. (2) and (5)). To summarize, G, ⟨G, s⟩ and ⟨G, s, b⟩ are three
notations for a gene tree, the two last specifying the way the leaves of G are identified.

A binary tree is a tree with all internal nodes being binary. If internal nodes have one or
two children, then the tree is said partially binary. A multifurcated tree is a tree containing
at least one polytomy. For example, in Figure 1, the tree (2) is a multifurcated tree with two
polytomies.

A binary refinement of a multifurcated tree is a binary tree defined as follows.

▶ Definition 1 (binary refinement). Let ⟨G, s, b⟩ be a multifurcated tree. A binary tree
⟨GB , sB , bB⟩ is said to be a binary refinement of ⟨G, s, b⟩ if V (G) ⊆ V (GB) and for every
x ∈ V (G), L(⟨G, s, b⟩[x]) = L(⟨GB , sB , bB⟩[x]). We denote by B(⟨G, s, b⟩) the set of binary
refinements of ⟨G, s, b⟩.

As for a multifurcated tree ⟨G, s⟩, a binary refinement ⟨GB , sB⟩ and the set of binary
refinements B(⟨G, s⟩) are defined in the same way, just ignoring the b labeling.

For example, in Figure 1, the tree in (3) and (4) is a binary refinement of ⟨G, s⟩ (i.e. the
tree in (2) ignoring the 0-1 labeling of leaves), and the tree in (5) is a binary refinement of
⟨G, s, b⟩.

We need a final notation. Let X ⊆ L(⟨G, s, b⟩). The count matrix Count(X) for X is a
|Σ| × 2 matrix defined as follows:

{
Count(X)[σ, 0] = number of genes g ∈ X / s(g) = σ and b(g) = 0
Count(X)[σ, 1] = number of genes g ∈ X / s(g) = σ and b(g) = 1

WABI 2022
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Figure 1 (1) A species tree S on Σ = {A, B, C}; (2) A multifurcated gene tree G where leaves are
identified by a species mapping s (a lowercase letter corresponds to the genome identified by the same
uppercase letter) and a genome mapping b (the 0-1 index of each leaf); (3) A DL-Reconciliation of the
binary refinement ⟨GB , sB⟩ of ⟨G, s⟩. The internal node labeling corresponds to the LCA-mapping
with S, squares correspond to duplications and dotted lines to losses (8 events in total). This DL-
Reconciliation is optimal for the unitary cost of operations; (4) The tree ⟨GB , sB⟩ accompanied with
an (M, I) b-Constraint, where I is the set of nodes indicated by crosses; (5) A DLE-Reconciliation
of ⟨GB , sB , bB⟩, where bB is the genome labeling indicated on leaves, which is consistent with (M, I).
The triangle indicates an EGT event and a unary node indicates an EGT-Loss event. For a unitary
cost of operations, this reconciliation of cost 9 is optimal for the DLE-BinL problem.

2.1 DLE Reconciliation
Inside the species’ genomes, genes undergo Speciation (Spe) when the species to which they
belong do, but also Duplication (Dup) i.e. the creation of a new gene copy, Loss of a gene
copy, and transfer when a gene is transmitted from a source to a target genome. In this paper,
we consider a special case of transfers, called endosymbiotic gene transfers or EGT , only
allowing the transmission of genes from the mitochondrial genome to the nuclear genome of
the same species, or vice-versa. If the transmission of a gene from a genome A to a genome B

is accompanied by the loss of the gene in A, we refer to the event as an EGT-Loss (EGTL).
Assume that we are given a binary species tree S and a binary gene tree ⟨G, s, b⟩. Given

an extension R of G, an extension of s is a function s̃ from V (R) to V (S) such that, for each
leaf x of G, s̃(x) = s(x). Moreover, an extension of b is a function b̃ from V (R) to {0, 1}
such that, for each leaf x of T , b̃(x) = b(x). We are now ready to recall the definition of a
DLE Reconciliation as introduced in [1].

▶ Definition 2 (DLE-Reconciliation). Let ⟨G, s, b⟩ be a rooted binary gene tree for a gene
family Γ and S be a rooted binary species tree for the species Σ the genes belong to. A
DLE-Reconciliation of ⟨G, s, b⟩ with S (or simply DLE-Reconciliation if no ambiguity) is a
quadruplet ⟨R, s̃, b̃, e⟩ where R is a partially binary extension of G, s̃ is an extension of s, b̃

is an extension of b, and e is an event labeling of the internal nodes of R, such that:
1. Each unary node x with a single child y is such that e(x) = EGTL, s̃(x) = s̃(y) and
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b̃(x) ̸= b̃(y); x is an EGT-Loss event with source genome σb̃(x) and target genome σb̃(y),
where σ = s̃(x) (or equivalently s̃(y)).

2. For each binary node x of R with two children xl and xr, one of the following cases holds:
a. s̃(xl) and s̃(xr) are the two children of s̃(x) in S and b̃(xl) = b̃(xr) = b̃(x), in which

case e(x) = Spe;
b. s̃(xl) = s̃(xr) = s̃(x) = σ and b̃(xl) = b̃(xr) = b̃(x) in which case e(x) = Dup

representing a duplication in σb̃(x);
c. s̃(xl) = s̃(xr) = s̃(x) = σ and b̃(xl) ̸= b̃(xr) in which case e(x) = EGT ; let y be the

element of {xl, xr} such that b̃(x) ̸= b̃(y), then ẽ(x) is a transfer with source genome
σb̃(x) and target genome σb̃(y).

Grafted leaves in the extension R correspond to gene losses.

As R is as an extension of G, each node in G has a corresponding node in R. In particular,
the s̃, b̃ and e labeling on R induce an s̃, b̃ and e labeling on the nodes of G. The difference
between G and R are additional binary nodes with a child being a grafted leaf (a loss), and
unary nodes corresponding to EGT-Losses.

A DL-Reconciliation of ⟨G, s⟩ is defined as in Definition 2, ignoring the binary assignment
of genes, i.e. it is a tuple ⟨R, s̃, e⟩ where R is an extension of G.

Optimal reconciliation:

Let c be a function attributing a cost to each event in DLE = {Spe, Dup, Loss, EGT, EGTL}.
As it is usually the case, we will assume a 0 cost for speciations and positive costs for all
the other events. Moreover, we assume that c(Dup) ≤ c(EGT ) + c(EGTL) as otherwise
duplications would never be inferred in a most parsimonious reconciliation. Similarly, we
assume c(EGT ) ≤ c(Dup) + c(EGTL) to allow for EGTs and c(EGTL) ≤ c(EGT ) + c(Loss)
to allow for EGT-Losses.

Given a DLE-Reconciliation R = ⟨R, s̃, b̃, e⟩ (respec. DL-Reconciliation ⟨R, s̃, e⟩), the
cost C(R) of R is the sum of costs of the events labeling the internal nodes of R plus the
sum of costs of the losses, i.e. C(R) =

∑
x∈V (R)\L(R) c(e(x)) + |L(R)Loss| ∗ c(Loss) where

|L(R)Loss| is the number of losses in R. In this paper, we seek for a most parsimonious
reconciliation, i.e. a reconciliation of minimum cost, also called optimal reconciliation. We
denote by DLE(G, S) (respec. DL(G, S)) the cost of an optimal DLE-Reconciliation (respec.
DL-Reconciliation).

From now on, we denote by δ, λ, ρ and τ , respectively, the cost of a duplication, a loss,
an EGT-loss and an EGT event. The cost function is said to be unitary when δ = λ = ρ = τ .

The following lemma makes the link between an optimal DLE-Reconciliation and the
optimal DL-Reconciliation. Notice that such optimal DL-Reconciliation is unique [5].

▶ Lemma 3. An optimal DLE-Reconciliation RDLE = ⟨RDLE , s̃DLE , b̃DLE , eDLE⟩ of
⟨G, s, b⟩ can be obtained from the optimal DL-Reconciliation RDL = ⟨RDL, s̃DL, eDL⟩ where
RDLE is obtained from RDL by possibly adding unary nodes (corresponding to EGT-loss),
s̃DLE is an extension of s̃DL and eDLE is obtained from eDL by labeling unary nodes as
EGT-Losses and possibly converting duplications into EGTs.

Proof. This result follows from Lemma 2 in [1] proven for a unitary cost of operations, but
it is easy to see that the proof of lemma 2 can be generalized to a non unitary cost in the
case where ρ ≤ τ + λ, τ ≤ δ + ρ and δ ≤ τ + ρ which, as stated above, are the necessary
conditions to ensure that a duplication, EGT and EGT-Loss may be found in an optimal
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reconciliation. Note that in [1], EGTcopy holds for an EGT event and EGTcut holds for an
EGTL event. ◀

From now on, we restrict the discussion to DLE-Reconciliations obtained from a DL-
Reconciliation, as stated in Lemma 3. Moreover, given a DLE-ReconciliationRDLE , removing
an even number of consecutive EGT-Loss nodes can only lead to a more parsimonious DLE-
Reconciliation. Therefore, we assume that a reconciliation does not involve such nodes.
This assumption is used in the following definition of a compressed reconciliation, aiming at
providing a concise representation of a reconciliation, avoiding to represent losses.

▶ Definition 4 (Compressed reconciliation). A compressed DLE-Reconciliation of ⟨G, s, b⟩
is a tuple ⟨G, s̃, b̃, eV , eE⟩ obtained from a DLE-Reconciliation ⟨R, s̃, b̃, e⟩ of ⟨G, s, b⟩, where
eV is simply e restricted to the nodes of G and eE is a P/A (Presence/Absence) labeling of
the edges of G corresponding to the unary (EGT-Loss) nodes of R, i.e. obtained as follows:
Let G′ be the tree obtained from R by removing grafted leaves and their parental nodes (i.e.
ignoring losses). For each edge (x, y) of G, let x′, y′ be the corresponding nodes in G′ (G′

differs from G only by unary nodes). Then:

eE(x, y) =
{

P if the path (x′, y′) in G′ contains an unary node
A if the path (x′, y′) in G′ contains no unary node

A compressed DL-Reconciliation of ⟨G, s⟩ is defined similarly, ignoring the binary as-
signment of genes. For example, in Figure 1, (3) is a DL-Reconciliation of the gene tree in
(4) with the species tree S in (1). The compressed DL-Reconciliation is simply that tree
R(⟨GB , sB⟩) where we ignore losses, i.e. dotted lines. Moreover, (5) is a DLE-Reconciliation,
and the compressed DLE-Reconciliation is R⟨GB , sB , bB⟩ where we ignore losses and replace
the unary node (EGT-Loss) on the branch leading to c1 by a label on that branch.

If ⟨G, s̃, b̃, eV , eE⟩ is a compressed DLE-Reconciliation of an optimal DLE-Reconciliation,
then it follows from Lemma 3 that s̃ is the LCA-mapping of G with S. Therefore, from now,
we only consider compressed DLE-Reconciliations with s̃ being the LCA-mapping.

For a compressed DLE-Reconciliation Rc = ⟨G, s̃, b̃, eV , eE⟩ of ⟨G, s, b⟩, denote by |eVEGT
|

the number of EGT nodes, by |eE | the number of edges labeled P , i.e. the number of EGT-
Loss events, and define the cost of Rc as C(Rc) = DL(G, S) + |eVEGT

| ∗ (τ − δ) + |eE | ∗ ρ.

▶ Lemma 5. From a compressed DLE-Reconciliation Rc = ⟨G, s̃, b̃, eV , eE⟩ for ⟨G, s, b⟩, we
can obtain a DLE-Reconciliation R of ⟨G, s, b⟩ of cost C(R) = C(Rc).

Proof. Let Rc = ⟨G, s̃, b̃, eV , eE⟩ be a compressed DLE-Reconciliation for ⟨G, s, b⟩.
Let RDL = ⟨RDL, s̃, eDL⟩ be the optimal DL-Reconciliation of G with S. We construct a

DLE-Reconciliation R = ⟨RDLE , s̃DLE , b̃DLE , eDLE⟩ from RDL and Rc as follows:

RDLE is obtained from RDL by grafting a unary node (EGT-Loss) on the edge
(parent(x), x) (in RDL) for each node x ∈ V (RDL)∩V (G) such that eE(parent(x), x) = P

(in G).
s̃DLE(x) is the LCA-mapping of RDLE with S.
eDLE(x) = eDL(x) for each node x ∈ V (RDL) ∩ V (RDLE) and eDLE(x) = EGTL for
each unary node of RDLE . For each node x ∈ V (G) ∩ V (RDLE), if eV (x) = EGT then
we set eDLE(x) = EGT .
b̃DLE(x) = b̃(x) for each node x ∈ V (RDLE)∩V (G). For each node x ∈ V (RDLE)\V (G),
let y be the lowest ancestor of x such that y ∈ V (RDLE) ∩ V (G). If y is not an EGT
node, then set b̃DLE(x) = b̃(y) if there is no EGT-loss event in the path (y, x) (in RDLE),
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and set b̃DLE(x) = 1− b̃(y) otherwise. Else if y is an EGT node, set b̃DLE(x) = b̃(y) if
the EGT node y does not transfer in the direction of x and b̃DLE(x) = 1− b̃(y) otherwise.

As R is constructed from RDL, it is easy to see that the species labeling of the nodes
of RDLE is correct. By construction, the genome labeling of the nodes of RDLE is also
correct, as the genome labeling b̃ is assumed correct (thus the genome labeling of the nodes
x ∈ V (RDLE)∩ V (G) is correct) and the genome labeling of the nodes x ∈ V (RDLE) \ V (G)
is set according to the definition.

Notice that there are |eE | EGT-loss events and |eVEGT
| EGT events in R. Also, the

number of loss events in R is the same as the number of loss events in RDL. Let |eDLDup
|

be the number of duplication nodes in the DL-Reconciliation. As an EGT event in R may
only occur on a node that is a duplication in RDL, there are |eDLDup

| − |eVEGT
| duplication

events in R. Therefore, the cost of R is: C(R) = DL(G, S) + |eVEGT
| ∗ (τ − δ) + |eE | ∗ ρ ◀

▶ Corollary 6. From an optimal compressed DLE-Reconciliation Rc = ⟨G, s̃, b̃, eV , eE⟩, an
optimal DLE-Reconciliation R of ⟨G, s, b⟩ can be obtained in linear time.

Proof. For a compressed DLE-Reconciliation Rc = ⟨G, s̃, b̃, eV , eE⟩, a DLE-Reconciliation
leading to Rc, of the same cost as Rc, can be found in linear-time by the constructive
proof of Lemma 5. In particular, a DLE-Reconciliation R can be obtained from an optimal
compressed DLE-Reconciliation Rc, and this DLE-Reconciliation R is necessarily optimal. In
fact, from Lemma 3, there is an optimal DLE-Reconciliation RDLE obtained from the optimal
DL-Reconciliation. Then, by construction of RDLE , C(RDLE) = DL(G, S) + |eVEGT

| ∗ (τ −
δ) + |eE | ∗ ρ, which is also the cost of its compressed DLE-Reconciliation Rc

DLE . But as Rc

is optimal, C(Rc) ≤ C(Rc
DLE), and thus C(R) ≤ C(RDLE), but as RDLE is by definition

an optimal DLE-Reconciliation, we have C(R) = C(RDLE) and thus R is also optimal. ◀

The problem of finding an optimal DLE-Reconciliation is thus equivalent to that of finding
an optimal compressed DLE-Reconciliation. From now on, we only consider compressed
reconciliations and, for brevity, simply call them reconciliations.

2.2 Problem statements
The general problem of simultaneously refining and reconciling a multifurcated gene tree
under the DLE evolutionary model is formulated as follows.

DLE Non-binary Reconciliation problem:
Input: A binary species tree S, a non-binary gene tree ⟨G, s, b⟩ and a cost function c on
DLE.
Output: An optimal DLE-Reconciliation ⟨G′, s̃′, b̃′, eV , eE⟩ of ⟨G, s, b⟩ where ⟨G′, s′, b′⟩ ∈
B(⟨G, s, b⟩).

The DL Non-binary Reconciliation problem is simply the restriction of the previous
problem to DL-Reconciliation, namely given a non-binary gene tree ⟨G, s⟩, the problem is to
find a minimum cost DL-Reconciliation ⟨R, s̃, e⟩ of a binary refinement of G. Notice that in
this case, R is a binary rather than partially binary tree, as unary nodes only correspond to
EGT-Loss events which are not considered in a DL-Reconciliation.

In this paper, we explore a resolution of the DLE Non-binary Reconciliation prob-
lem operating in two steps:
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Resolution method:
Step 1: Find a binary refinement ⟨GB , sB⟩ of ⟨G, s⟩ leading to an optimal DL-Reconciliation
⟨GB , s̃B , e⟩ by solving the DL Non-binary Reconciliation problem.
Step 2: Given ⟨GB , sB⟩ obtained above, find a genome labeling bB such that ⟨GB , sB , bB⟩ is a
binary refinement of ⟨G, s, b⟩, leading to an optimal DLE-Reconciliation ⟨GB , s̃B′

, b̃B , e′
V , eE⟩.

Although not guaranteed to be optimal, this method is a natural greedy heuristic for the
DLE Non-binary Reconciliation problem. In fact, as stated in Lemma 3, an optimal
DLE binary reconciliation (result of Step 2) can be obtained from a DL binary reconciliation
(result of Step 1) by simply converting some duplication nodes into EGT nodes and adding
EGT-Loss labels on branches. Moreover, Step 1 which consists in solving the DL non-binary
Reconciliation problem, can be done efficiently [9]. Having a binary refinement ⟨GB , sB⟩
of ⟨G, s⟩ leading to an optimal DL-Reconciliation, the problem then reduces (Step 2) to
finding a genome labeling for GB allowing for an optimal DLE-Reconciliation which, in the
case of a unitary cost, is equivalent to finding a minimum number of added EGT-Loss events.

Notice however that, in contrast to the species labeling sB , the genome labeling bB of the
leaves of GB is unknown after Step 1. The problem is therefore not reduced to generalizing
bB to the internal nodes (extending bB to b̃B), but consists in finding an appropriate labeling
bB of the leaves as well. Although unknown, this genome labeling of V (GB) is constrained
by the genome labeling of V (G), as formulated in the next lemma which is directly deduced
from the definition of a binary refinement (Definition 1).

▶ Lemma 7. Let ⟨G, s, b⟩ be a multifurcated tree and ⟨GB , sB⟩ be a binary refinement
of ⟨G, s⟩. Then ⟨GB , sB , bB⟩ is a binary refinement of ⟨G, s, b⟩ if and only if, for any
node x of GB with a corresponding node (also denoted x) in G, Count(L(⟨G, s, b⟩[x])) =
Count(L(⟨GB , sB , bB⟩[x])).

Therefore, in addition to ⟨GB , sB⟩ corresponding to a binary refinement of ⟨G, s⟩, the
input of Step 2 also includes a set of constraints induced by the genome labeling of V (G).
These constraints can be represented as a set of |Σ| × 2 matrices M(x) for each x ∈ I, where
I is the subset of V (GB) \ L(GB) with corresponding nodes in V (G). (M, I) is called the
b-Constraint for GB (Figure 1. (4)).

▶ Definition 8. Given a binary tree ⟨GB , sB⟩ and a b-Constraint labeling (M, I) for GB, a
labeling bB is said to be consistent with (M, I) if, for any x ∈ I, Count(L(⟨GB , sB , bB⟩[x]) =
M(x).

The main problem (Step 2) can thus be defined as follows (for simplicity, we avoid the
“B” notation). See an example in Figure 1 where (4) is the input of the DLE-BinL problem
and its output is (5).

DLE Binary Labeling (or DLE-BinL) Problem:
Input: A binary tree ⟨G, s⟩, a b-Constraint (M, I) and a species tree S;
Output: An optimal DLE-Reconciliation ⟨G, s̃, b̃, eV , eE⟩ of ⟨G, s, b⟩ where b is a genome
labeling consistent with (M, I).

We call DLE-BinLR the DLE-BinL problem where I is restricted to the root of G

(which corresponds to considering a single polytomy in the initial multifurcated tree).
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3 Complexity of the DLE-BinL and DLE-BinLR Problems

We show that the decision versions of both DLE-BinL and DLE-BinLR are NP-complete.
In this section, the considered cost is unitary. The DLE-BinL problem in its decision version
is defined bellow and DVDLE-BinLR is simply DVDLE-BinL when I = {r(G)}.

Decision version DLE Binary Labeling (or DVDLE-BinL) Problem:
Input: A binary tree ⟨G, s⟩, a b-Constraint (M, I), a species tree S and an integer Cost;
Question: Is there a DLE-Reconciliation ⟨G, s̃, b̃, eV , eE⟩ of ⟨G, s, b⟩ where b is a genome
labeling consistent with (M, I) for which C(⟨G, s̃, b̃, eV , eE⟩) ≤ Cost?

We first show, by reducing from the Monotone not-all-equal 3-satisfiability problem
(Monotone NAE3SAT Problem), that the DVDLE-BinLR problem is NP-complete. First
observe that the DVDLE-BinLR problem is in NP. In fact, given a DLE-Reconciliation
⟨G, s̃, b̃, eV , eE⟩ of ⟨G, s, b⟩, we can calculate the cost of the DLE-Reconciliation (to verify if
it is less than or equal to Cost) and verify if the genome labeling b is consistent with (M, I)
in polynomial time by traversing the tree G.

The Monotone NAE3SAT problem is the following (monotone meaning that there are
no negation of variables in the clauses)

Monotone NAE3SAT:
Instance: A set of clauses C = (C1 ∧ C2 ∧ · · · ∧ Ck) on a finite set Ł = {ℓ1, ℓ2, . . . , ℓm} of
variables where each Ci, 1 ≤ i ≤ k, is a clause of the form (x ∨ y ∨ z) with {x, y, z} ⊆ Ł;
Question: Is there a truth assignment satisfying C such that the values in each clause are
not all equal to each other?

Given an instance I = (C, Ł) of the Monotone NAE3SAT problem, we compute, in
polynomial time, a corresponding instance I ′ = (⟨G, s⟩, (M, I), S, Cost) of DVDLE-BinLR.
First, the set of species Σ is computed as follows:

For 1 ≤ j ≤ m, Σ contains a species ℓj and for each clause Ci ∈ C, 1 ≤ i ≤ k such that ℓj

is in Ci, Σ contains a species ℓji
.

For each clause Ci ∈ C, 1 ≤ i ≤ k, Σ contains the species Si1, Si2, Si3, Si4, Si5 and Si6.

For 1 ≤ j ≤ m, let Lj be a caterpillar tree on the leaves ℓji
for all i such that ℓj is in the

clause Ci. For 1 ≤ i ≤ k, let Si be the tree computed as follows: Si

Si1 Si2
Si3

Si4

Si5

Si6

Then, the species tree S is: S

L1 ... Lm

ℓ1

...
ℓm

S1

...
Sk
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Let now turn to defining the gene tree. For each clause Ci = (x ∨ y ∨ z) ∈ C, 1 ≤ i ≤ k, let
Ti be the following tree:

Ti

xi Si1
Si2

Si4

Si4

yi Si1
Si3

Si5

Si5
zi Si2

Si3
Si6

Si6

For 1 ≤ j ≤ m, let L′
j be a gene tree which is species label isomorphic to Lj . For 1 ≤ j ≤ m,

let Uj be the tree computed as follows: Uj

L’j ℓj
ℓj

The gene tree G is then: G

T1 ... Tk

U1

...
Um

Notice that for each species s ∈ Σ, G contains 2 leaves f such that s(f) = s.
We set M(r(G)) equal to a matrix of ones of size |Σ|×2. Also recall that I = {r(G)}. Finally,
Cost is set to DL(G, S) + k.

We next show that I is a satisfiable instance of the Monotone NAE3SAT problem if
(Lemma 9) and only if (Lemma 11) its corresponding instance I ′ of DVDLE-BinLR admits
a DLE-Reconciliation of cost lower than or equal to Cost.

▶ Lemma 9. Let I be a satisfiable instance of the Monotone NAE3SAT problem. Then
its corresponding instance I ′ of DVDLE-BinLR admits a DLE-Reconciliation of cost lower
than or equal to Cost.

Proof. See Appendix. ◀

Let R′(⟨G, s⟩, (M, I), S) be the optimal DLE-Reconciliation of ⟨G, s, b⟩ (with b being a
genome labeling consistent with (M, I)) obtained from the optimal DL-Reconciliation of G

with S by converting some duplication events into EGT events and by adding some EGT-loss
events (this DLE-Reconciliation exists by Lemma 3).

▶ Lemma 10. Let I be an instance of the Monotone NAE3SAT problem. For its corresponding
instance I ′ of DVDLE-BinLR, the optimal DLE-Reconciliation R′(⟨G, s⟩, (M, I), S) is such
that there is at least 1 EGT-loss event in each subtree Ti of G (i.e. eE(x, y) = P for an edge
(x, y) of Ti) for 1 ≤ i ≤ k.

Proof. See Appendix. ◀

▶ Lemma 11. Let I be an unsatisfiable instance of the Monotone NAE3SAT problem.
Then its corresponding instance I ′ of DVDLE-BinLR does not admit a DLE-Reconciliation
of cost equal or lower than Cost.
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Proof. See Appendix. ◀

Note that, by construction, the instance of DVDLE-BinLR in the reduction contains a
gene tree with no more than two leaves having the same species label. From this remark, and
since Monotone NAE3SAT is NP-complete, lemmas 9 and 11 lead to the following result.

▶ Theorem 12. The DVDLE-BinLR Problem is NP-complete, even if each species label is
present at most 2 times in the leaves of the gene tree G.

As an instance of the DVDLE-BinLR problem is also an instance of the DVDLE-BinL
problem, we conclude that the DVDLE-BinL problem is also NP-complete (we can easily
show that it is in NP in the same way we showed that the DVDLE-BinLR Problem is in
NP).

▶ Corollary 13. The DVDLE-BinL Problem is NP-complete, even if each species label is
present at most 2 times in the leaves of the gene tree G.

4 A general algorithm for the DLE-BinL Problem

A natural heuristic for the DLE-BinL problem for ⟨G, s⟩, where G is a binary resolution of
an initial multifurcated tree where initial polytomies are reflected by a b-Constraint (M, I),
would be to solve each polytomy, i.e. each subtree rooted at a node x of I, individually. In
fact, this strategy leads to an exact algorithm for the DL Non-binary Reconciliation
problem. However, in the case of DLE-Reconciliation, the b̃ labeling of internal nodes
introduces a dependency between polytomies, avoiding the heuristic to be exact in general,
i.e. for an arbitrary cost of operations. In this section, we present the general heuristic
(Algorithm 1) and show that it is exact in the case of a unitary cost of operations.

Algorithm 1 traverses the tree G in post-order and each time it encounters a node x ∈ I,
it “solves” the corresponding subtree G[x] and replaces it by a single leaf, genome labeled
appropriately. Once the tree G has been completely traversed, the subtrees are put back
in the tree. Notice that on line 13, the algorithm adds a new species to Σ, but does not
extend the species labeling s̃ to this new species. The reason is that the new added species is
eventually removed from the tree (line 34), i.e. does not remain in the returned reconciliation.
Also notice that on line 9, the algorithm adds a new leaf without genome label for which the
algorithm will not consider the genome label at any point in the execution. That leaf is also
eventually removed from the tree (line 36).

Algorithm 1 calls a function DLEBinLR(⟨G, s⟩[x], M(x), S, Bin) where Bin ∈ {0, 1},
returning an optimal solution of the DLE-BinLR problem such that b̃(x) = Bin. Recall
that the DLE-BinLR problem is also NP-complete. In the next section, we will present
DLEBinLR1Species which can be substituted to DLEBinLR in Algorithm 1 for a restric-
tion of the problem, where, for each polytomy, genes are b-labeled identically in all but one
species.

▶ Theorem 14. Let ⟨G, s⟩ be a binary tree, (M, I) be a b-Constraint for ⟨G, s⟩, S be a
species tree and c be the unitary cost. Then, with the input (⟨G, s⟩, (M, I), S), Algorithm 1
returns an optimal DLE-Reconciliation of ⟨G, s, b⟩ where b is a genome labeling consistent
with (M, I).

Proof. See Appendix. ◀
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Algorithm 1 DLEBinL(⟨G, s⟩, (M, I), S)

1 i← 0
2 for each node x of V (G) \ r(G) in a post-order traversal do
3 M̃(x)← a zero matrix of size |Σ| × 2
4 if x ∈ I then
5 M ′(x)←M(x)− M̃(xl)− M̃(xr)
6 Gj0 ← DLEBinLR(⟨G, s⟩[x], M ′(x), S, 0)
7 Gj1 ← DLEBinLR(⟨G, s⟩[x], M ′(x), S, 1)
8 if C(Gj0) == C(Gj1) then
9 Replace the subtree ⟨G, s⟩[x] in G by a new leaf ℓi without genome label

10 else
11 label← arg minp∈{0,1}(C(Gjp

));
12 Replace the subtree ⟨G, s⟩[x] in G by a new leaf ℓi with s(ℓi)← Si (where

Si is a new species) and b(ℓi)← label;
13 Add the species Si to Σ;
14 for all x′ ∈ I such that x′ is a strict ancestor of x do
15 Add the line [1− b(ℓi), b(ℓi)] (corresponding to Si) to M(x′)
16 end
17 for all x′′ ∈ I such that x′′ is not a strict ancestor of x do
18 Add the line [0,0] (corresponding to Si) to M(x′′)
19 end
20 if the sibling of x is not in I and has already been visited then
21 Add the line [0,0] (corresponding to Si) to M̃(sibling(x))
22 end
23 end
24 M̃(ℓi)←M(x)
25 i← i + 1
26 else if x is an internal node then
27 M̃(x)← M̃(xl) + M̃(xr)
28 end
29 end
30 M ′(r(G))←M(r(G))− M̃(r(G)l)− M̃(r(G)r)
31 G← optimal solution of DLEBinLR(⟨G, s⟩, M ′(r(G)), S)
32 for j = i - 1 to 0 do
33 if there is a leaf labeled ℓj with a genome label in G then
34 Replace the leaf ℓj in G by the tree Gjk

where k = b(ℓj)
35 else
36 Replace the leaf ℓj in G by the tree Gjk

where k = b(parent(ℓj))
37 end
38 end
39 return ⟨G, s̃, b̃, eV , eE⟩

5 An exact algorithm for the one-species version of the DLE-BinLR
Problem

We consider a restriction of the DLE-BinLR problem where genes are specific to a single
genome (the mitochondrial or nuclear genome) in all but one species. In its simplest version
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where a single species is present, the problem reduces to assigning a multiset of two labels
(a given number of 0s and a given number of 1s) to the leaves of a tree-shape (i.e. a tree
with no leaf labels), in a way minimizing 0-1 transitions in the tree. Similar problems on
assigning leaves to tree-shapes or to multilabeled trees (MUL-trees) have been considered
in the context of other tree distances (Robinson Foulds distance, path distance, maximum
agreement subtree), most of them being NP-complete [3, 8]. Here we present an exact
polynomial-time algorithm for this restricted version of the DLE-BinLR problem, which we
call the DLE-BinLR1Species problem.

Let σ ∈ Σ be the only species for which the genes belonging to it are not specific to a
single genome. We will call the leaves ℓ ∈ L(G) for which s(ℓ) = σ free leaves and the leaves
ℓ ∈ L(G) for which s(ℓ) ̸= σ fixed leaves. For a fixed leaf ℓ, b(ℓ) is fixed and known in advance,
as all leaves whose species label is s(ℓ) have the same genome label which is known from
the matrix M . The DLE-BinLR1Species problem is then reduced to finding an optimal
DLE-Reconciliation for which exactly k free leaves are labeled by 0, where k = M(r(G))[σ, 0].

Let RDL = ⟨G, s̃, e⟩ be an optimal DL-Reconciliation for ⟨G, s⟩. From Lemma 3, an
optimal DLE-Reconciliation RDLE = ⟨G, s̃, b̃, eV , eE⟩ with exactly k free leaves labeled by 0
can be obtained from RDL by converting some duplications into EGTs and adding EGT-
Loss events, i.e. a P/A labeling on edges. We define minCostTransfer(⟨G, s̃, b̃, eV , eE⟩) =
|eVEGT

| ∗ (τ − δ) + |eE | ∗ ρ. Then recall from Section 2 that, by construction of RDLE , we
have:

C(RDLE) = DL(G, S) + minCostTransfer(⟨G, s̃, b̃, eV , eE⟩)

The problem thus reduces to minimizing minCostTransfer(⟨G, s̃, b̃, eV , eE⟩).
We will need to consider the two possible genome labeling i ∈ {0, 1} for the root of G.

We therefore denote by minCostTransfer(⟨G, s̃, e⟩, k, i) the minCostTransfer function for
an optimal DLE-Reconciliation RDLE with exactly k free leaves labeled by 0 and with the
additional constraint that b̃(r(G)) = i.

We are now ready to present Algorithm 2. It proceeds in two phases: (1) a bottom-up
phase (Algorithm 3) in which we assign an array of size 2 × (k + 1) to each node x of G

where the (i, j)th entry equals minCostTransfer(⟨G[x], s̃, e⟩, j, i) where ⟨G[x], s̃, e⟩ is the
optimal DL-Reconciliation of G[x] with S; (2) a top-down phase (not given in pseudo-code)
in which the algorithm assigns the b̃ labeling of nodes and locates the EGT and EGT-Loss
events in the optimal solution. For this purpose, for each entry of x.array of each internal
node x, the bottom-up algorithm keeps in memory pointers to the entries of the arrays of
the children of x from which the value of the entry was obtained.

▶ Theorem 15. The output of Algorithm 2 is a solution of the DLE-BinLR1Species
problem.

Proof. See Appendix. ◀

▶ Theorem 16. Algorithm 2 computes the solution of the DLE-BinLR1Species problem in
O(nk2) time, where n is the number of leaves of G.

Proof. For each leaves of G, the associated array is computed in time O(k). For each internal
node of G, the associated array is computed in time O(k2). The time complexity to compute
the arrays for all the nodes is then O(nk2).

Once all the arrays are computed, the algorithm finds the optimal assignation of the
internal nodes with a preorder traversal of G in time O(n)

We conclude that the time complexity of Algorithm 2 is O(nk2). ◀
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Algorithm 2 BinLR1Species(⟨G, s⟩, (M, I), S)

1 k ←M(r(G))[σ, 0]
2 ⟨G, s̃DL, eDL⟩ ← Optimal DL-Reconciliation of ⟨G, s⟩ with S

3 Bottom− up(⟨G, s⟩, eDL, k)
4 Top− down(⟨G, s⟩, eDL, k)
5 return ⟨G, s̃, b̃, eV , eE⟩

Algorithm 3 Bottom − up(⟨G, s⟩, e, k)

1 for each node x of G in a post-order traversal do
2 x.array ← Array of size 2× (k + 1)
3 if x is a leaf then
4 if x is fixed to "0" then
5 x.array(0, 0)← 0
6 x.array(i, j)←∞ for every values of (i, j) ̸= (0, 0)
7 else if x is fixed to "1" then
8 x.array(1, 0)← 0
9 x.array(i, j)←∞ for every values of (i, j) ̸= (1, 0)

// Case where x is a free leaf
10 else
11 x.array(0, 1)← 0
12 x.array(1, 0)← 0
13 x.array(i, j)←∞ for every values of (i, j) ̸= (1, 0) and (i, j) ̸= (0, 1)
14 end
15 else
16 for j = 0 to k do
17 T00, T01, T10, T11 ← Arrays of size (j + 1)
18 for ℓ = 0 to j do

// ℓ is the number of free leaves labeled "0" under xl and
j − ℓ is the number of free leaves labeled "0" under xr

19 T00(ℓ)← xl.array(0, ℓ) + xr.array(0, j − ℓ)
20 T01(ℓ)← xl.array(0, ℓ) + xr.array(1, j − ℓ)
21 T10(ℓ)← xl.array(1, ℓ) + xr.array(0, j − ℓ)
22 T11(ℓ)← xl.array(1, ℓ) + xr.array(1, j − ℓ)
23 end

// Cost of the first transfer
24 cost← ((e(x) == Dup) ? τ − δ : ρ)

// Case where x is labeled "0"
25 x.array(0, j)←

min(min(T00), cost + min(T01), cost + min(T10), cost + ρ + min(T11))
// Case where x is labeled "1"

26 x.array(1, j)←
min(cost + ρ + min(T00), cost + min(T01), cost + min(T10), min(T11))

27 end
28 end
29 end

See Figure 2 for an example of an execution of Algorithm 2.
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Figure 2 (1) A species tree S on Σ = {A, B, C}; (2) A binary gene tree G where leaves are
identified by a species mapping s, and a b-Constraint (M, I) where I = r(G); (3) An optimal DL-
Reconciliation of G with S; (4) The tree G accompanied with the arrays computed by Algorithm 3
(we consider here the costs δ = λ = 1 and ρ = τ = 2) and the pointers for an optimal solution;
(5) The optimal DLE-Reconciliation RDLE(G, S) of ⟨G, s, b⟩ (where b is consistent with (M, I))
returned by Algorithm 2. The cost minCostT ransfer(RDLE(G, S)) is 3. Events are represented as
in Figure 1.

6 Conclusion

Endosymbiotic gene transfers (EGTs) are important events to be considered in a reconciliation
model aiming to infer the evolution of a gene family, given a gene tree for the gene family
and a species tree for the species containing the genes. As it is usually difficult, or impossible,
to infer a well supported binary tree based on sequence data, it is also important to be able
to account for non-binary gene trees. In this paper, we present the first method for DLE
reconciliation, i.e. reconciliation accounting for duplications, losses, but also EGTs, for a
multifurcated gene tree. It is a natural extension of the DL reconciliation of a multifurcated
tree, where we first consider a solution for this problem, i.e. an optimal DL-Reconciliation,
which can be obtained efficiently, and then appropriately assign the binary genome labeling
(0/1 for mitochondrial/nuclear) to the nodes of the tree, accounting for EGT transfers, in a
way minimizing a total DLE (Duplications, Losses and EGT) cost.

We show that the optimal genome labeling assignment step is NP-complete for an arbitrary
binary refinement, even for a single polytomy, and even when genes are present in only
two copies in each species. We then present two natural heuristics for the general and
one-polytomy versions of the problem which are shown to be exact for some restrictions on
the model (unitary cost of operations and/or free leaves belonging to a single genome). As
explained in the introduction, we argue that these restrictions are biologically relevant. The
next step will be to apply our method to the orthologous mitochondrial protein-coding genes
(MitoCOGs) dataset [1, 7].

From a theoretical and algorithmic point of view, which is the focus of this paper, many
open questions remain. Apart from the fact that a heuristic combining accuracy and time-
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efficiency should be developed for both the DLE-BinL and DLE-BinLR problems in the
case of a general cost function and an arbitrary number of species presenting an intermediate
endosymbiotic integration, a more fundamental question is whether an exact one-step method,
considering all the events at once, can be developed. In fact, the complexity results obtained
here do not allow to conclude on the complexity of the DLE Non-binary Reconciliation
problem. It is indeed not excluded that the polynomial-time PolytomySolver algorithm [9]
can be extended for solving a multifurcated tree with a binary labeling of leaves, at least in
special cases. In the near future, we will first explore the extension of PolytomySolver to
the one species restriction of the model, before considering generalization to an arbitrary
number of species.
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Appendix

Proof of Lemma 9
Proof. Let RDL = ⟨G, s̃, e⟩ be the optimal DL-Reconciliation of G with S. We recall that,
by definition, C(RDL) = DL(G, S). We will show that we can obtain a DLE-Reconciliation



M. Gascon and N. El-Mabrouk 5:17

RDLE of cost lower than or equal to Cost from RDL by converting some duplication events
into EGT events and by adding EGT-Loss events. Notice that because the costs are unitary,
converting a duplication event into an EGT event does not change the cost of the reconciliation.
Thus, the cost of RDLE is C(RDL) plus the number of EGT-loss events in RDLE .

Let TA be a truth assignment satisfying C such that the values in each clause are not all
equal to each other (we know that such truth assignment exists because I is a satisfiable
instance).

We now construct the genome labeling b̃ (and b) and the mappings eV and eE as follows:
Let eV = e. Let eE(x, y) = A for all edge (x, y) of G.
For all j, 1 ≤ j ≤ m, such that ℓj is True (resp. False) in TA, we set b̃(x) = 1 (resp.

b̃(x) = 0) for each nodes x of the left subtree of Uj .
Notice that for each σ ∈ Σ \ {Sij |1 ≤ i ≤ k, 1 ≤ j ≤ 6}, we have set the genome

label of exactly one of the two leaves of G for which the species label is σ. For each
σ ∈ Σ \ {Sij |1 ≤ i ≤ k, 1 ≤ j ≤ 6}, we then set the genome label of the leaf with species
label σ whose genome label have not been set yet to 1− i where i is the genome label of the
other leaf with species label σ.

For each nodes x on the path from the parent of r(T1) to r(G), we set b̃(x) = 0. We set
b̃(r(Ti)) = 0 for 1 ≤ i ≤ k and we set b̃(r(Uj)) = 0 for 1 ≤ j ≤ m.

Therefore, there is no EGT-loss event on edges that are not in the subtrees Uj (1 ≤ j ≤ m)
or Ti (1 ≤ i ≤ k), as all the nodes connected by those edges are labeled by 0.

We now show that no EGT-loss event is required in the subtree Uj of G, for 1 ≤ j ≤ m. by
construction, all the nodes in the left subtree of Uj have the same genome label i (i ∈ {0, 1})
and the node in the right subtree of Uj has the genome label 1−i. Thus, b̃(r(Uj)l) ̸= b̃(r(Uj)r).
Notice that r(Uj) is a duplication node in RDL and recall that b̃(r(Uj)) = 0. We then set
eV (r(Uj)) = EGT which is a transfer from 0 to 1. Therefore, there is no EGT-loss event in
the subtree Uj .

We now show that exactly one EGT-loss event is required in the subtree Ti of G, for
1 ≤ i ≤ k. Notice that for a clause Ci = (x∨ y ∨ z) ∈ C, x, y and z can’t be all equal to each
other in TA (because TA is a solution of the instance) and so, by construction, the genome
labels of xi, yi and zi in Ti are not all equal to each other. Without loss of generality, let
assume that b̃(xi) = 0, b̃(yi) = 1 and b̃(zi) = 1 (the other possible cases are very similar).
Then, the following genome labeling b̃ of Ti is correct and requires exactly one EGT-loss
event:

We set eE(x, y) = P where (x, y) is the edge with a triangle on it in the tree above. We also
set e′(lcaTi

({xi, Si4})) = EGT , e′(lcaTi
({yi, Si5})) = EGT and e′(lcaTi

({zi, Si6})) = EGT
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(those are the nodes represented by a triangle in the tree above). We can do so because those
nodes are duplication nodes in RDL.

There is then exactly k EGT-loss events in RDLE . Thus, the cost of RDLE is DL(G, S)+k

and C(RDLE) ≤ Cost.
For each leaf x of G, we set b(x) = b̃(x). Notice that the genome labeling b we construct

is consistent with (M, I) as for each σ ∈ Σ, there is one leaf labeled σ whose genome label is
1 and one leaf labeled σ whose genome label is 0, as needed.

We then obtain a DLE-Reconciliation RDLE = ⟨G, s̃, b̃, eV , eE⟩ of ⟨G, s, b⟩ where b is a
genome labeling consistent with (M, I) for which C(RDLE) ≤ Cost and we conclude that
the instance I ′ of DVDLE-BinLR admits a DLE-Reconciliation of cost lower than or equal
to Cost. ◀

Proof of Lemma 10
Proof. For the optimal DLE-Reconciliation R = R′(⟨G, s⟩, (M, I), S), for each clause Ci =
(x ∨ y ∨ z) ∈ C, 1 ≤ i ≤ k, for any genome labeling labeling b consistent with (M, I), there
will be at least one EGT-loss event in the three following subtrees of Ti (regardless of the
labeling b̃ of the internal nodes of these subtrees) :

xi Si1
Si2 yi Si1

Si3 zi Si2
Si3

This is the case because there are no duplication node in the DL reconciliation of these
subtrees with S (so no EGT events can occur in these subtrees by construction of R) and
we know that at least one of these subtrees will not have all its leaves labeled by the same
genome label (because two leaves with the same species label can’t have the same genome
label by construction of the instance) so at least one EGT-loss will be required. ◀

Proof of Lemma 11
Proof. By contradiction, let us suppose that for an unsatisfiable instance I of the Monotone
NAE3SAT problem, its corresponding instance I ′ of DVDLE-BinLR does admit a compressed
DLE-Reconciliation of cost equal or lower than Cost. Let R = R′(⟨G, s⟩, (M, I), S). By
lemma 3, R is optimal and thus C(R) ≤ DL(G, S) + k as I ′ does admit a compressed
DLE-Reconciliation of cost equal or lower than Cost = DL(G, S) + k. By lemma 10, R is
such that there is at least 1 EGT-loss event in each subtree Ti of G for 1 ≤ i ≤ k. There is
then at least k EGT-loss events in the reconciliation R. As the cost of R is equal to DL(G, S)
plus the number of EGT-loss events in R (from lemma 4 in [1]), C(R) must be higher than
or equal to DL(G, S) + k and we conclude that C(R) = DL(G, S) + k. Thus, there is exactly
one EGT-loss event in each subtree Ti of G for 1 ≤ i ≤ k and no EGT-loss event elsewhere
in the tree as otherwise C(R) would be higher than DL(G, S) + k. In particular, there is no
EGT-loss event in the subtrees Uj , 1 ≤ j ≤ m, and we can conclude that all nodes in the
subtree L′

j , 1 ≤ j ≤ m, have the same genome label (there is no EGT event in the subtree
L′

j as there is no duplication in the DL-Reconciliation of L′
j with S).

We now define a truth assignment TA as follows: for all 1 ≤ j ≤ m, let the variable ℓj be
true if the genome label of the nodes in L′

j is 1, and let the variable ℓj be false otherwise.
We now show that TA satisfies I. For each clause Ci = (x ∨ y ∨ z) ∈ C, 1 ≤ i ≤ k, we need
to show that x, y and z are not all equal to each other. Let us suppose by contradiction
that this is false, and that there exists a clause Ci = (x ∨ y ∨ z) ∈ C such that x, y and z

are all equal to each other. Then, by construction, the genome labels of the leaves xi, yi

and zi in the corresponding subtrees Ti are all equal to each other. Then, there is at least 2
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EGT-losses events in Ti, as at least two of the following three subtrees of Ti will not have all
their leaves labeled by the same genome label and there are no EGT events in those subtrees
(by construction) because there are no duplication node in the DL reconciliation of these
subtrees with S (this is easy to verify) :

xi Si1
Si2 yi Si1

Si3 zi Si2
Si3

This is a contradiction, as there must be exactly one EGT-loss event in the subtree Ti. We
then conclude that for each clause Ci = (x∨y∨z) ∈ C, 1 ≤ i ≤ k, x, y and z are not all equal to
each other. Thus, the truth assignment TA satisfies I, and we conclude by contradiction that
if I is an unsatisfiable instance of the Monotone NAE3SAT problem, then its corresponding
instance I ′ of DVDLE-BinLR does not admit a compressed DLE-Reconciliation of cost
equal or lower than Cost. ◀

Proof of Theorem 14
Proof. The proof is by induction on the number of node x ∈ V (G) such that x ∈ I.

Notice that the DLE-Reconciliation ⟨G, s, b⟩ returned by Algorithm 1 is such that b is a
genome labeling consistent with (M, I) by construction.

If there is only one node x ∈ V (G) such that x ∈ I, then this node x is the root of G

by definition. The algorithm then returns an optimal solution, as assume that we can solve
DLEBinLR(⟨G, s⟩, M ′(r(G)), S, i) (where M ′(r(G)) = M(r(G))) for i ∈ {0, 1}.

If there is more than one node x ∈ V (G) such that x ∈ I, then the root of G is in I by
definition. By induction, we may assume that for each node x ∈ V (G) \ r(G) such that x ∈ I,
the resolution of G[x] computed by the algorithm is exact. For each of those subtrees G[x],
we then know the possible genome label(s) at the root leading to an optimal resolution of
G[x] and the corresponding optimal resolution of G[x]. We now give the index 1 to |I| − 1 to
the elements of I \ r(G). For all 1 ≤ j ≤ |I| − 1, there is then two cases for xj ∈ I \ r(G) :

Case 1: G[xj ] is such that both b̃(xj) = 0 and b̃(xj) = 1 can lead to an optimal resol-
ution of G[xj ].

In that case, Algorithm 1 will remove G[xj ] from G and replace it by a new leaf without
genome label. It solves G(xj) separately and then replace the new leaf in G by the solved
G[xj ] (after the rest of G is solved). G[xj ] can be solved separately in that case, because
regardless of the genome label of the parent of G[xj ] in an optimal resolution of (the rest
of) G we can obtain an optimal resolution of G[xj ] with r(G[xj ]) having the same gen-
ome label as its parent (and thus we can obtain an optimal solution to the problem by
putting the solved G[xj ] with r(G[xj ]) having the same genome label as its parent back in G).

Case 2: G[xj ] is such that only b̃(xj) = ij (where ij ∈ {0, 1}) can lead to an optimal
resolution of G[xj ]. In that case, Algorithm 1 will remove G[xj ] from G and replace it by a
new leaf labeled by i.

Then, Algorithm 1 solves DLEBinLR(⟨G′, s⟩, M ′(r(G)), S) where G′ is the tree obtained
by removing G[xj ] for xj in Case 1, and by replacing G[xj ] for xj in Case 2 by a new leaf
with the appropriate genome labeling and where M ′(r(G)) is the appropriate matrix of
constraints for the genome labeling of the leaves of G′. By construction, it will then return
the solution of lowest cost such that b̃(xj) = ij , for all xj in Case 2.

Let’s show that this solution is optimal. By contradiction, suppose that there is xj ∈ I

(xj in Case 2) such that there is no optimal solution of the problem for which b̃(xj) = ij .
Then, the optimal solution R∗ of the problem is such that b̃(xj) ̸= ij . In R∗, if we set
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b̃(xj) = ij and replace the resolved subtree G[xj ] by the optimal resolution of G[xj ] (that we
can obtain because b̃(xj) = ij), we obtain a new solution R′ of the problem with at most one
more EGT-loss event (on the edge (parent(x), x)) and such that the resolution of G[xj ] in
R′ has a strictly lower cost than the resolution of G[xj ] in R∗. There is then at least one less
event in the resolution of G[xj ] in R′ and as the cost are unitary, the solution R′ we obtain
is such that C(R′) ≤ C(R∗) and thus R′ is optimal. Contradiction. We then conclude that
there is an optimal solution of the problem for which b̃(x) = i.

Thus, Algorithm 1 returns an optimal solution for the input (⟨G, s⟩, s̃, (M, I), S).
We conclude, by induction, that the solution returned by Algorithm 1 is optimal.

◀

Proof of Theorem 15
Proof. Once the optimal arrays are computed for all nodes, the optimal solution is easily re-
constructed from the entry min(r(G).array(0, k), r(G).array(1, k)) by following the pointers
from the root to the leaves.

The key point is therefore showing that the arrays computed by Algorithm 3 are exact, i.e.,
for each node x, x.array(i, j) is equal to minCostTransfer(⟨G[x], s̃, e⟩, j, i) where ⟨G[x], s̃, e⟩
is the optimal DL-Reconciliation of G[x] with S.

The proof is by induction on the height of G(x).
If x is a leaf (either free or fixed), it is easy to see that x.array is correct.
Now if x is an internal node, we assume by induction that xl.array and xr.array

are correct. By contradiction, let’s assume that there is (i, j) such that x.array(i, j) ̸=
minCostTransfer(⟨G[x], s̃, e⟩, j, i). Let R be the optimal DLE-Reconciliation obtained
from the optimal DL-Reconciliation by converting some duplication events into EGT events
events and by adding some EGT-loss events (this DLE-Reconciliation exists by Lemma 3)
leading to minCostTransfer(⟨G[x], s̃, e⟩, j, i). Then, in R, b̃(x) = i, b̃(xl) = ℓ1 where
ℓ1 ∈ {0, 1} and b̃(xr) = ℓ2 where ℓ2 ∈ {0, 1}. Also, as there are j free leaves labeled by 0
under x, the sum of the numbers of free leaves labeled by 0 under xl and xr must be equal to
j. If the genome labels of the children of x are not the same as i, x is converted as an EGT
event if x is a duplication node in the DL-Reconciliation (and possibly an EGT-Loss event is
added) and if x is not a duplication node then some EGT-Loss events may be added on the
edges between x and its children. As the algorithm considers all possibilities of genome labels
for xl and xr and all possibilities of number of free leaves labeled by 0 under xr and xl leading
to j free leaves under x (and considers the optimal assignation of EGT and EGT-loss events
for the transfer(s) needed from x to its children), the particular possibility leading to R will
be considered and then x.array(i, j) = minCostTransfer(⟨G[x], s̃, e⟩, j, i). Contradiction.
Thus, there is no such (i, j) and x.array is exact.

We conclude, by induction, that the arrays computed by Algorithm 3 are exact. ◀
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