
BIOINFORMATICS Vol. 00 no. 00 2005
Pages 1–12

Polytomy Refinement for the Correction of Dubious
Duplications in Gene Trees
Manuel Lafond 1,∗, Cedric Chauve 2,3, Riccardo Dondi 4 and Nadia
El-Mabrouk 1,∗

1Department of Computer Science, Université de Montréal, Montréal (QC), Canada
2LaBRI, Université Bordeaux 1, Bordeaux, France
3Department of Mathematics, Simon Fraser University, Burnaby (BC), Canada
4Universitá degli Studi di Bergamo, Bergamo, Italy
Received on XXXXX; revised on XXXXX; accepted on XXXXX

Associate Editor: XXXXXXX

ABSTRACT
Motivation: Large scale methods for inferring gene trees are error-
prone. Correcting gene trees for weakly supported features often
results in non-binary trees, i.e., trees with polytomies, thus raising
the natural question of refining such polytomies into binary trees. A
feature pointing toward potential errors in gene trees are duplications
that are not supported by the presence of multiple gene copies.
Results: We introduce the problem of refining polytomies in a
gene tree while minimizing the number of created non-apparent
duplications in the resulting tree. We show that this problem can be
described as a graph-theoretical optimization problem. We provide a
bounded heuristic with guaranteed optimality for well characterized
instances. We apply our algorithm to a set of ray-finned fish gene
trees from the Ensembl database to illustrate its ability to correct
dubious duplications.
Availability: The C++ source code for the algorithms and
simulations described in the paper are available at http://www-
etud.iro.umontreal.ca/ lafonman/software.php.
Contact: lafonman@iro.umontreal.ca, mabrouk@iro.umontreal.ca

1 INTRODUCTION
With the increasing number of completely sequenced genomes, the
task of identifying gene counterparts in different organisms becomes
more and more important. This is usually done by clustering genes
sharing significant sequence similarity, constructing gene trees
and then inferring macro-evolutionary events such as duplications,
losses or transfers through reconciliation with the phylogenetic tree
of the considered taxa. The inference of accurate gene trees is an
important step in this pipeline. While gene trees are traditionally
constructed solely from sequence alignments [19, 28, 29], recent
methods incorporate information from species phylogenies, gene
order and other genomic footprints [1, 4, 13, 33, 35, 27, 38]. A large
number of gene tree databases are now available [10, 16, 22, 26, 30].

But constructing accurate gene trees is still challenging; for
example, a significant number of nodes in the Ensembl gene trees
are labelled as “dubious” [16]. In a recent study, we have been able
to show that about 30% of 6241 Ensembl gene trees for the genomes
of the fishes Stickleback, Medaka, Tetraodon, and Zebrafish exhibit
at least one gene order inconsistency, and thus are likely to be

erroneous [24]. Moreover due to various reasons such as insufficient
differentiation between gene sequences and alignment ambiguities,
it is often difficult to support a single gene tree topology with high
confidence. Several support measures, such as bootstrap values
or bayesian posterior probabilities, have been proposed to detect
weakly supported edges. Recently, intense efforts have been put
towards developing tools for gene tree correction [3, 8, 17, 18, 6,
12, 32, 39, 34]. A natural approach is to remove a weakly supported
edge and collapse its two incident vertices into one [2], or to remove
“dubious” nodes and join resulting subtrees under a single root [23].
The resulting tree is non-binary with polytomies (multifurcating
nodes) representing unresolved parts of the tree. A natural question
is then to select a binary refinement of each polytomy based on
appropriate criteria. This has been the purpose of a few theoretical
and algorithmic studies conducted in the last years, most of them
based on minimizing the mutation (i.e., duplication and loss) cost of
reconciliation [5, 25, 36, 40].

In the present paper, we consider a different reconciliation
criterion for refining a polytomy which consists in minimizing the
number of Non-Apparent Duplication (NAD) nodes. A duplication
node x of a gene tree (according to the reconciliation with a given
species tree) is a NAD if the genome sets of its two subtrees
are disjoint. In other words, the reason x is a duplication is
not the presence of paralogs in the same genome, but rather an
inconsistency with the species tree. Such nodes have been flagged
as potential errors in different studies [7, 31, 16]. In particular, they
correspond to the nodes flagged as “dubious” in Ensembl gene trees.

We introduce the polytomy refinement problem in Section 2, and
we show in Section 3 how it reduces to a clique decomposition
problem in a graph representing speciation and duplication
relationships between the leaves of a polytomy. We develop a
bounded heuristic in Section 4, with guaranteed optimality in
well characterized instances. In Section 5 we exhibit a general
methodology, using our polytomy refinement algorithm, for
correcting NAD nodes of a gene tree. We then show in Section 6
that this approach is in agreement with the observed corrections of
Ensembl gene trees from one release to another.

c© Oxford University Press 2005. 1

Lafond et al

2 THE POLYTOMY REFINEMENT PROBLEM

Phylogenies and reconciliations. A phylogeny is a rooted tree which
represents the evolutionary relationships of a set of elements (such
as species, genes, . . .) represented by its nodes: internal nodes are
ancestors, leaves are extant elements, and edges represent direct
descents between parents and children. We consider two kinds of
phylogenies: species trees and gene trees. A species tree S describes
the evolution of a set of related species, from a common ancestor
(the root of the tree), through the mechanism of speciation. For
our purpose, species are identified with genomes, and genomes are
simply sets of genes. As for a gene tree, it describes the evolution of
a set of genes, through the evolutionary mechanisms of speciation
and duplication. Therefore, each gene g, extant or ancestral, belongs
to a species denoted by s(g). The set of genes in a gene tree is called
a gene family. A leaf-label corresponds to a genome in a species tree,
and to a gene belonging to a genome in a gene tree.

Given a a phylogeny T , we denote by l(T) the leaf-set and by
V (T) the node-set of T . Given a node x of T , we denote by l(x)
and call the clade of x, the leaf-set of the subtree of T rooted at x.
We call an ancestor of x any node y on the path from the root of
T to the parent of x. In this case we write y < x. Two nodes x, y
are unrelated if none is an ancestor of the other. For a leaf subset
X of T , lcaT (X), the lowest common ancestor (LCA) of X in T ,
denotes the farthest node from the root of T which is an ancestor of
all the elements of X . In this paper, species trees are assumed to be
binary: each internal node has two children, representing its direct
descendants (see S in Figure 1). For an internal node x of a binary
tree, we denote by x` and xr the two children of x.

DEFINITION 1 (Reconciliation). A reconciliation between a
binary gene tree G and a species tree S consists in mapping each
internal or leaf node x of G (representing respect. an ancestral or
extant gene) to the species s(x) corresponding to the LCA in S
of the set {s(l), for all l ∈ l(x)}. Every internal node x of G
is labelled by an event E(x) verifying: E(x) =Speciation (S) if
s(x) is different from s(x`) and s(xr), and E(x) =Duplication
otherwise.

We define two types of duplication nodes of a gene treeG. A Non-
Apparent-Duplication (NAD) is a duplication node x ofG such that(
∪x∈l(x`)x

)
∩
(
∪y∈l(xr)y

)
= ∅. A duplication which is not a NAD

is an Apparent duplication (AD) node, i.e., a node with the left and
right subtrees sharing a common leaf-label. Therefore, any internal
node x of G is of type S, AD or NAD.

The gene trees we consider might be non-binary. We call
polytomy a gene tree with a non-binary root (see F in Figure 1).

DEFINITION 2 (Binary refinement). A treeHT is a refinement of
a tree T if and only if the two trees have the same leaf-set and T can
be obtained from HT by contracting some edges. When HT refines
T , each node of T can be mapped to a unique node of HT so that
the ancestral relationship is preserved. HT is a binary refinement
of T if and only if HT is binary and is a refinement of T .

In this paper, as only binary refinements are considered, we omit
the term binary from now.

Problem statement. The general problem we address is the
following: Given a non-binary gene treeG and a species tree S, find

a refinement of G containing the minimum number of NADs with
respect to S. Such a refinement ofG is called a minimum refinement
of G w.r.t. S.

Hence, we aim at refining each non-binary node of G. We
first show that each such non-binary node of G can be refined
independently of the other non-binary nodes.

THEOREM 1. Let {Gi, for 1 ≤ i ≤ n} be the set of subtrees of
G rooted at the n children {xi, for 1 ≤ i ≤ n} of the root of G.
Let Hmin(Gi, S) be a minimum refinement of Gi w.r.t. S. Let G′

be the tree obtained from G by replacing each Gi by Hmin(Gi,S).
Then a minimum refinement of G is a minimum refinement of G′.

It follows from Theorem 1 that a minimum refinement of G
can be obtained by a depth-first procedure iteratively solving each
polytomy Gx, for each internal node x of G.

In the rest of this paper, we consider G as a polytomy, and
we denote by F the forest {G1, G2, · · ·Gn} obtained from G by
removing the root. For simplicity, we make no difference between
a tree Gi of F and its root. In particular, s(Gi) corresponds to
s(root(Gi)), where root(Gi) is the root of Gi (see Figure 1). We
are now ready to define the main optimization problem we consider.

Minimum NAD Polytomy Refinement (MinNADref) Problem :
Input: A polytomy G and a species tree S;
Output: In the set H(G) of all refinements of G, a refinement H
with the minimum number of NAD nodes. Such a refinement is
called a solution to the MinNADref problem.

3 A GRAPH-THEORETICAL CHARACTERIZATION
We show (Theorem 2) that the MinNADref Problem reduces to a
clique decomposition problem on a graph that represents the impact,
in terms of NAD creation, of joining pairs of trees from F .

The join graph of a polytomy. We first define a graph R based on
the notion of join. A join is an unordered pair {G1, G2} where
G1, G2 ∈ F . The join operation j on {G1, G2} consists in joining
the roots of G1 and G2 under a common parent; we denote by G1,2

the resulting join tree. We call the join type of j = {G1, G2}, and
denote by jt(G1, G2), the reconciliation label of the node created
by joining G1 and G2 (i.e., the root of G1,2), where jt(G1, G2) ∈
{S,AD,NAD}, respectively for Speciation, Apparent Duplication
and Non-Apparent Duplication, w.r.t. the species tree S.

We denote by R = (V,E) the join graph of F , defined as the
unoriented complete graph on the set of vertices V = F , where each
edge (join) is labelled by the corresponding join type (see Fig. 1).
We denote byRS andRAD the subgraphs ofR defined by the edges
of type respectively S and AD. We call a connected component of
RAD an AD-component.

Let F ′ be the new forest obtained by replacing the two trees
G1 and G2 of F by the join tree G1,2. The rules given below,
following directly from the definition of speciation and duplication
in reconciliation, are used to update the join type jt(G1,2, T) for
any T ∈ F \ {G1, G2}.

RULESET 1.

1. If jt(G1, T) = AD or jt(G2, T) = AD, then jt(G1,2, T) =
AD;

2

Polytomy Refinement

2. Otherwise, if jt(G1, T) = NAD or jt(G2, T) = NAD, then
jt(G1,2, T) = NAD;

3. Otherwise, if lca(T) is not a descendant of lca(G1,2), then
jt(G1,2, T) = S;

4. Otherwise, jt(G1,2, T) = NAD.

(a) ((a,f),(g,h)) (g)

(h,l)

(b,e) (i,m)

(d)

((c,d),(j,k))

(k)

F :

((a , f),(g ,h))((c ,d),(j,k)) (a)(d)(g) (k) (b , e) (i , m) (h , l)

R :

a b c d e f g h i j k l m
(a) (d) (g) (k)

(b,e) (i,m)
(h,l)

((a,f),(g,h))
((c,d),(j,k))

S :

n

H :

((a , f),(g , h))((c ,d),(j , k))

(a)(d)(g) (k)
(b , e) (i , m) (h , l)

Fig. 1. A forest F , a species tree S and the corresponding graph R. Each
gene tree G of F is attached to its corresponding node s(G) in S. In R,
joins of type AD are represented by green lines. All other lines are the
joins of type S. Non-trivial AD-components (AD-components containing
at least two nodes) are represented by green ovals. Red lines in R represent
a vertex-disjoint clique W of RS . Here, RAD ∪W has a single connected
component, which leads to the binary refinement H of F with no NAD.
After the joins of W are applied (red edges in H), the speciation-free forest
can be joined with four joins AD (green vertices in H).

Clique Decomposition of the join graph. Let a join sequence J =
(J1, J2, . . . , J|J|) be an ordered list of joins. We denote by F(J, i)
the forest obtained after applying the first i joins of J , starting with
F . Note that F(J, 0) = F , and that Ji ∈ J is a join on F(J, i− 1).
Let J denote the set of all possible join sequences of size |F| − 1.
Clearly, applying all joins of a sequence J ∈ J yields a single
binary tree; and there exists a gene tree H ∈ H(G) with d NADs if
and only if there exists a join sequence J ∈ J with d joins of type
NAD. We refine this property by showing that there is a solution to
the MinNADref Problem where all duplication nodes are ancestral
to all speciation nodes (see the tree H of Figure 1 for an example).
The proof (not shown) makes abundant use of Ruleset 1.

LEMMA 1. There exists a binary refinement H ∈ H(G) with d
NADs if and only if there exists a join sequence J ∈ J with d joins
of type NAD such that, if Ji ∈ J is the first join not of type S in J ,
then all following joins Jj , for j > i, are of type AD or NAD.

We define a speciation tree as a gene tree in which every internal
node is a Speciation node. We deduce from the previous lemma that
we can obtain a solutionH to the MinNADref Problem by creating
a forest of speciation trees first, then successively joining them with
joins of type AD or NAD. As the nodes of R corresponding to
the leaves of a given speciation subtree of H are pairwise joined
by speciation edges, they form a clique in RS (in Fig. 1 the
cliques in red are selected and the corresponding joins are applied to
compute refinement H). The next theorem makes the link between

the number of NADs of H and the cliques of RS . For a set W of
vertex-disjoint cliques of RS , we denote by RAD ∪ W the graph
defined by the union of the edges of RAD and W .

THEOREM 2. A solution to the MinNADref Problem has d
NADs if and only if, among all graphs RAD ∪ W where W is a
set of vertex-disjoint cliques ofRS , at least one has d+1 connected
components and none has less than d+ 1 connected components.

The proof of Theorem 2 is constructive. Given an optimal set W
of vertex-disjoint cliques ofRS , it leads to an optimal refinementH .
Unfortunately, it can be shown that, given an arbitrary graph with
two edge colours AD and S, finding if there exists a setW yielding
a given number of connected components is an NP-hard problem
(proof not shown). However, R is constrained by the structure of
a species tree, which restricts the space of possible join graphs.
An arbitrary complete graph R with edges labelled on the alphabet
{S,AD,NAD} is said to be valid if there exists a species tree and
a polytomy whose join graph is R. We characterize below the valid
graphs in terms of forbidden induced subgraphs. The proof is based
on an exploration of all possible sets of valid edges.

THEOREM 3. A graphR is valid if and only ifRS is {P4, 2K2}-
free, meaning that no four vertices of RS induce a path of length 4,
nor two vertex-disjoint edges.

Although we have not been able to find an exact polynomial-
time algorithm for the MinNADref Problem, this very constrained
structure of the R graph yields a bounded heuristic for this problem
with good theoretical properties described in the next section.

REMARK 1. The P4-free property, that was already introduced in
relation with reconciliations in [21], is of special interest, as many
NP-hard problems on graphs have been shown to admit polynomial
time solutions when restricted to this class of graphs. Unfortunately
we can prove that, given an arbitrary P4-free graph on which we
add AD edges, finding an optimal W is still NP-hard (proof not
shown). However, the added 2K2-free restriction imposes a rigid
structure on the graph at hand, and we conjecture that there exists
a polynomial time algorithm to find an optimal W .

4 A BOUNDED HEURISTIC
We first describe a general approach based on the notion of
useful speciations, followed by a refinement of this approach with
guaranteed optimality criteria.

DEFINITION 3. Let J = (J1, . . . , J|J|) be a join sequence. A
join Ji = {G1, G2} of J is a useful speciation if jt(G1, G2) =
S and G1, G2 are in two different AD-components of the R graph
obtained after applying the J1, . . . Ji−1 joins.

Hence, if R has c AD-components, finding a zero NAD solution
becomes the problem of finding a join sequence with c − 1 useful
speciations. For example, the graph R in Figure 1 has 5 AD-
components (3 trivial and 2 non-trivial), and thus the 4 useful
speciations represented by the red lines lead to a 0 NAD solution
(the binary tree H). In the general case, the problem we face is to
select as many useful speciations as possible, as the resulting AD-
components will have to be connected by NAD joins. If we define a
speciation-free forest as a forestF such that no edge of its join graph

3

Lafond et al

R is a speciation edge, following Lemma 1, we would like to first
compute a set of useful speciations that results in a speciation-free
forest whose join-graph has the least number of AD-components.

DEFINITION 4. A lowest useful speciation is a useful speciation
edge {G1, G2} of RS such that s(G1,2) is not the ancestor of any
s(Gi,j), for {Gi, Gj} being another useful speciation edge of RS .

Lowest useful speciations fit naturally in the context of bottom-
up algorithms where speciations edges that correspond to lower
vertices of S are selected prior to speciations edges corresponding to
ancestral species. The theorem below shows that proceeding along
these lines ensures that the resulting join sequence contains at least
half of the optimal number of useful speciation.

THEOREM 4. Let s be the maximum number of useful speciations
leading to a solution to the MinNADref problem. Then any
algorithm that creates a speciation-free forest through lowest useful
speciations makes at least ds/2e useful speciations.

This theorem implicitly defines a heuristic with approximation
ratio 2 on the number of useful speciations, that visits S in a bottom-
up way, making useful speciations (that would thus be lowest useful
speciations) whenever such an edge is available.

We now describe an improved version of this general heuristic
principle. A detailed example is given in Figure 2. The main idea is
to consider a bottom-up traversal of the species tree S, and for each
visited vertex s, to find a useful set of speciation edges by finding a
matching in a bipartite graph. More precisely, for a node s ∈ V (S),
we consider the complete bipartite graph B = (X ∪ Y, {xy|x ∈
X, y ∈ Y }) such that the left (respec. right) subset X (respec. Y)
contains all the trees Gi of F where s(Gi) is on the left (respec.
right) subtree of s. Consider the two partitions ADX and ADY of
X and Y respectively into AD-components. The key step of our
heuristic is to find a matching M ⊆ E(B) of useful speciations
between ADX and ADY , called a useful matching. For example,
in Figure 2, the bipartite graph and matching illustrated for Step 3
correspond to node l and that of Step 4 to node m of S.

Notice that not all edges of B correspond to useful speciations.
Indeed it is possible that for some x ∈ X and some y ∈ Y , although
{x, y} is a speciation edge, x and y are in the same AD-component
of R due to another tree z not in B such that {x, z} and {z, y} are
AD-edges. For example in Figure 1, although {(a), (g)} is a join
of type S, the trees (a) and (g) are in the same AD-component of
R due to the tree ((a, f), (g, h)). For a vertex x of X (respec. y
of Y), denote by AD(x) (respec. AD(y)) the component of ADX
(respec. ADY) containing x (respec. y). We indicate the fact that
AD(x) and AD(y) belong to the same AD-component in R by
adding two dummy genes b1 in AD(x) and b2 in AD(y), and a
bridge {b1, b2} in E(B). Such bridges will be included in every
matching, preventing to include non-useful speciation edges.

An instance P of the problem associated with a vertex s of S
is denoted by P = (X,Y,ADX , ADY , B) where X , Y , ADX ,
ADY are defined as above and B is the set of bridges induced
by R. The graph corresponding to P , i.e., the complete bipartite
graph on sides X and Y to which we added the bridge edges B, is
denoted by B(P). The whole method is summarized in Algorithm 1
MinNADref(F ,S) and illustrated on a simple example in Figure 2.

Finding a useful matching of maximum size can be done
in polynomial time by Algorithm 2. For an instance P =

Algorithm 1 MinNADref(F ,S)
for each node s of S in a bottom-up traversal of S do

Let P = (X,Y,ADX , ADY , B) be the problem instance
corresponding to s;
Find a useful matching M of B(P) of maximum size
(Algorithm MaxMatching below);
Apply each speciation of M , and update F

end for
For each connected component C of RAD , join the trees of C
under AD Nodes;
If there is more than one tree remaining, join them under NAD
nodes.

F

A

A: 2 B: 5 F:
1 3

E: 13D: 11 G:
5 7

H: 10 I:
12 14

J:
3 4

K:
6 8

D E

B H

B HJ F KA G D EB HJF KA G

A G

B HJ

F K

9 13 141 2 3 4 5 6 7 8 10 11 12

a b c d e
f h

ij

k

l

m

g

K

J

B

G

H D

I

E

(S):

J

F

A G

K

B H

Step 3 (l) : Step 4 (m) :

D E

Step 1 (i) :

Step 2 (k) : B

D E

G

H

(l) After Step 3:

(k) After Step 2:

(i) After Step 1

(m) After Step 4:

I

G K

I:

I

M:
5 12

M

(F):

(M)

M

Fig. 2. A species tree S and a forest F of binary trees forming the polytomy.
The trees of F are placed on S according to their LCA. The i, k, l and m
nodes of S are annotated with the forest obtained after running Algorithm 2
on these nodes. Their corresponding complete bipartite matching instances
are illustrated at the bottom. AD joins are represented by dotted lines, useful
matching are represented by plain lines (we omit drawing all the other edges
of the complete bipartite graphs). Note that there is a bridge induced by
M between (F,K) and I at step 4. In the fourth step, we obtain a single
connected component, which allows, in a final step, to connect all the
subtrees by AD nodes (final tree is on the top of the figure).

(X,Y,ADX , ADY , B), the algorithm progressively increments the
set M of speciation edges, eventually leading to a useful matching
of maximum size. At a given step, let GP,M be the graph with
vertices X ∪ Y and edges EP,M = EAD ∪M , where EAD is the
set of AD edges of R connecting vertices of X ∪ Y . Components
ADXi ∈ ADX and ADYj ∈ ADY are linked if there is a path in
GP,M linking a vertex ofADXi to a vertex ofADYj , and not linked
otherwise.

THEOREM 5. Given an instance P = (X,Y,ADX , ADY , B),
Algorithm 1 finds a useful matching M of maximum size.

Algorithm 1 is a heuristic as it may fail to give the optimal
solution (refinement with minimum number of NADs), as in
Figure 1 for example. In this example, a bottom-up approach would
greedily speciate a and d, which cannot lead to the optimal solution.
However, we prove in Theorem 6 that if transitivity holds for the
duplication join type, then Algorithm 1 is an exact algorithm for

4

Polytomy Refinement

Algorithm 2 MaxMatching(X,Y,XX , ADY , B)

D = ∅; M = B;
while D 6= X ∪ Y do

Find C ∈ ADX ∪ADY of maximum cardinality with vertices
not included in D, if any; assume w.l.o.g. C = ADXi ∈
ADX ;
for each x ∈ C that is not incident to an edge in M do

if there is an y ∈ Y such thatAD(y) is not linked toC then
Find such y with AD(y) of maximum cardinality;
Add the vertices x and y toD and add the speciation edge
{x, y} to M ;

end if
end for
Add remaining vertices of C to D;

end while

the MinNADref problem. The example of Figure 1 does not satisfy
this property, as {(a), ((a, f), (g, h))} is a join of duplication
type (AD), {((a, f), (g, h)), (g)} is a join of duplication type but
{(a), (g)} is a join of speciation type.

THEOREM 6. (1) Let s be the maximum number of useful
speciations leading to a solution to the MinNADref problem. Then
Algorithm 1 makes at least ds/2e useful speciations. (2) If, for every
node s of S the instance P corresponding to s has no bridges,
then Algorithm 1 outputs a refinement of the input polytomy with
the maximum number of useful speciations.

The following corollary provides an alternative formulation of the
optimality result given by the above theorem.

COROLLARY 1. Algorithm 1 exactly solves the MinNADref
problem for an input (F ,S) such that each AD-component of the
corresponding graph R is free from S edges (i.e., there is no S edge
between any two vertices of a given AD-component).

5 GENE TREE CORRECTION
The polytomy refinement problem is motivated by the problem
of correcting gene trees. Duplication nodes can be untrusted for
many reasons, one of them being the fact that they are NADs,
pointing to disagreements with the species tree that are not due
to the presence of duplicated genes. Different observations tend to
support the hypothesis that NAD nodes may point at erroneous parts
of a gene tree [7, 32]. For example, the Ensembl Compara gene
trees [37] have all their NAD nodes labelled as “dubious”. In [7],
using simulated data-sets based on the species tree of 12 Drosophila
species given in [20] and a birth-and-death process, starting from
a single ancestral gene, and with different gene gain/loss rates, it
has been found that 95% of gene duplications lead to an AD vertex.
Although suspected to be erroneous, some NAD nodes may still be
correct, due to a high number of losses. However, in the context of
reconciliation, the additional damage caused by an erroneous NAD
node is the fact that it significantly increases the real rearrangement
cost of the tree [32]. Therefore, tools for modifying gene trees
according to NADs are required. We show now how Algorithm 1
can be used in this context.

In [23], a method for correcting untrusted duplication nodes has
been developed. The correction of a duplication node x relies on
pushing x by multifurcation, which transforms x into a speciation
node with two children being the roots of two polytomies. Figure 3
recalls the pushing by multifurcation procedure. These polytomies
are then refined by using an algorithm developed in [25], which
optimizes the mutation cost of reconciliation.

In the context of correcting NADs, we use the same general
methodology, but now using Algorithm MinNADref for refining
polytomies. Removing all NADs of a gene tree can then be done
by iteratively applying the above methodology on the highest NAD
node of the tree (the closest to the root).

a b c d

S :G :

a1 c3c2 b1 d2d1

x

c1 b2 a1 b1 b2 c1 c3c2 d2d1

G* :s

sl sr

Fig. 3. A gene tree G and a species tree S, from which we obtain G∗ by
pushing x by multifurcation. Here, x is a NAD, and is pushed by taking
the forest of maximal subtrees of G that only have genes from species in
the sl subtree (green), then another forest for the sr subtree (red) in the
same manner. Both these forests are joined under a polytomy, which are
then joined under a common parent, so the root of G∗ is a speciation.

6 RESULTS
Simulated data. Simulations are performed as follows. For a given
integer n, we generate a species tree S with a random number
of leaves between 0.5n and 3n. We then generate a forest F =
(G1, . . . , Gn) of cherries by randomly picking, for each cherry
Gi ∈ F , one node si ∈ S and two leaves one from each of the two
subtrees rooted at si. Any leaf of S is used at most once (possibly
by adding leafs to S if required), leading to a set of cherries related
through joins of type S or NAD. Then, for each pair {Gi, Gj} with
join type NAD, we relate them through AD with probability 1/2 (or
do nothing with probability 1/2), by adding a duplicated leaf.

For each pair (S,F), we compared the number of NADs found
by Algorithm MinNADref with the minimum number of NADs
returned by an exact algorithm exploring all possible binary trees
that can be constructed from F . We generated a thousand random
S and F for each n ≥ 4. We stopped at n = 14, as the brute-force
algorithm is too time costly beyond this point. Over all the explored
datasets simulated as described above, Algorithm MinNADref was
able to output an optimal solution, i.e., a refinement with the
minimum number of NADs. Therefore, the examples on which the
heuristic fails seem to be rare, and the algorithm performs well on
polytomies of reasonable size.

We then wanted to assess how the NAD minimization criterion
differs from the rearrangement cost minimization criterion. We
generated 960 random instances with forests of sizes ranging
between 5 and 100 (10 instances for each 5 ≤ n ≤ 100).
We compared the output of Algorithm MinNADref with that of
Algorithm MinDLref, given in [25], which computes refinement
minimizing the duplication+loss (DL) cost of reconciliation with
the species tree. Both algorithms gave the exact same refinement

5

Lafond et al

for only 12 instances (1.25%). As expected, Algorithm MinNADref
always yielded a refined tree with a lower or equal number of NADs
than the tree given by Algorithm MinDLref, but always had a higher
or equal DL-cost. However in many cases, minimizing the DL-
score did not minimize the number of NADs, as in 377 instances
(39.3%), Algorithm MinNADref yielded strictly less NADs than
Algorithm MinDLref.

Ensembl Gene Trees. Next we tested the relevance of the proposed
gene tree correction methodology, by exploring how Ensembl gene
trees are corrected from one release to another. As the Ensembl
general protocol for reconstructing gene trees does not change
between releases, the observed modifications on gene trees are more
likely due to modifications on gene sequences.

We used the Ensembl Genome Browser to collect all available
gene trees containing genes from the monophyletic group of ray-
finned fishes (Actinopterygii), and filtered each tree to preserve
only genes from the taxa of interest (ray-finned fish genomes). We
selected from both Releases 74 (the present one) and 70 the 1096
gene trees that are present in both with exactly the same set of genes
from the monophyletic group of fishes, and with less NAD nodes in
Release 74. We wanted to see to what extent our general principle of
correcting a NAD by transforming it to a speciation node is observed
by comparing Rel.70 to Rel.74. Such a transformation requires to
preserve the clade of the corrected NAD node x of the initial tree,
meaning that l(x) should also be the leaf-set of a subtree in the
corrected tree. For more than 90% of these trees (993 trees), the
highest NAD node clade was preserved in Rel.74. Moreover, among
all such nodes that were corrected, i.e., were not NAD nodes in
Rel.74 (641 trees) almost all were transformed into speciation nodes
(630 trees), which strongly supports our correction paradigm.

In order to evaluate our methodology for correcting NADs,
we applied it to the highest NAD node of each of the 1096
aforementioned trees of Rel.70. Figure 4 illustrates a comparison
between the corrected trees (Rel.70C, C standing for “Corrected”)
obtained by our methodology and those of Rel. 74. Pairwise
comparisons are based on the normalized Robinson-Foulds (RF)
distance (number of identical clades divided by the total number
of clades). The yellow curve shows a good correlation between
Rel.70C and Rel.74, with about 65% exhibiting more than 80%
similar clades between Rel.70C and Rel.74. If we reduce the set of
trees to those for which the highest NAD node is also transformed to
a speciation node in Rel.74 (630 trees), the correlation is even better
(blue curve of Figure 4), with 44% of trees being identical (277 over
630 trees) and about 80% exhibiting more than 80% similar clades
between Rel.70C and Rel.74. Now, in order to specifically evaluate
Algorithm MinNADref, we further restricted the set of trees to those
giving rise to a non-trivial polytomy (i.e., polytomy of degree > 2)
after the pushing by multifurcation, which leads to a set of 117 trees.
Overall the results for these trees (red curve in Figure 4) are very
close to those observed for all trees (yellow curve) detailed above.

We then wanted to evaluate our correction of the 117
aforementioned trees compared to trees in Rel.74. Figure 5 provides
an evaluation of the corrected trees (yellow curve) compared to
those in Rel. 74 (blue curve) based on the normalized RF distance
with the initial trees in Rel.70. Overall, the initial tree is closer to our
correction than to the one of Rel.74. Therefore, even though gene
trees of Rel.74 are likely to have stronger statistical support with
respect to the gene sequences provided in Rel.74, our correction

0.00 – 0.10 0.10 – 0.20 0.20 – 0.30 0.30 – 0.40 0.40 – 0.50 0.50 – 0.60 0.60 – 0.70 0.70 – 0.80 0.80 – 0.90 0.90 – 1.00
0

0.1

0.2

0.3

0.4

0.5

0.6

Trees with the NAD transformed
 into a speciation by Ensembl
Trees with the NAD transformed
into a speciation by Ensembl
and giving rise to a non-trivial polytomy
All trees

RF Dist / Max RF Dist

%
 o

f
tr

ee
s

Fig. 4. Normalized RF-distance between corrected gene trees (by
modification of the highest NAD) from Rel. 70 and corresponding gene trees
in Rel. 74. Blue curve: transformation of the highest NAD into a speciation.
Red curve: trees with a non-trivial polytomy after pushing by multifurcation.
Yellow curve: all trees.

0.00 – 0.100.10 – 0.200.20 – 0.300.30 – 0.400.40 – 0.500.50 – 0.600.60 – 0.700.70 – 0.800.80 – 0.900.90 – 1.00
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

117 trees having non-trivial polytomy

V70 vs V74
V70C vs V70

RF Dist / Max RF Dist

%
 o

f
tr

ee
s

Fig. 5. Normalized RF-distance between corrected trees (yellow curve) and
Rel. 74 trees (blue curve) and original Rel. 70 trees.

removes NADs whilst respecting as much as possible the given tree
topology. Finally, we considered the reconciliation mutation cost as
another evaluation criterion. Among the 117 trees of Rel.70C, 30 are
identical to the corresponding trees in Rel. 74, and 60% have a lower
mutation cost, which tend to support our correction compared to the
tree in Rel.74. As for the 40% remaining trees, half of them have
more NADs than the corresponding tree in Rel.74, which suggests
that applying our correction to all NAD, instead of just the highest
one, would help to obtain better results.

Finally, we evaluated the effect of NAD correction on the tree
likelihood. For this purpose, we selected the 1891 Ensembl Rel.74
gene trees of the considered monophyletic group containing at
least one NAD, and we corrected each NAD individually. The
sequences were aligned using ClustalW [14] and the likelihood
values were computed with PhyML [19]. For a tree T and a
NAD node x, denote by Tx the tree obtained after correcting x.
For each T and each x, we computed the log-likelihood ratio
L(x) = logLH(T)/logLH(Tx). Among the 4454 NAD nodes
found in the considered set of trees, 95.4% of the L(x) ratios were
between 0.98 and 1.02. Although the correction algorithm is not
expected to outperform the Ensembl protocol in terms of likelihood
as it ignores sequences, we found that the likelihood of the tree has
been improved (L(x) > 1) after correction for 43.9% of the NAD

6

Polytomy Refinement

nodes. Moreover, a total of 1180 (62.4 %) trees contained at least
one NAD node improving the likelihood.

7 CONCLUSION
The present work is dedicated to the polytomy refinement problem.
While the mutation cost of reconciliation has been used previously
as an optimization criterion for choosing an appropriate binary
tree, here we use an alternative criterion which is the minimization
of Non-Apparent Duplications (NADs). The tractability of the
MinNADref Problem remains open, as is the problem to select,
among all possible solutions, those leading to a minimum
reconciliation cost. Although developing a gene tree correction tool
is not the purpose of this paper, we show how our algorithm for
polytomy refinement can be used in this context, by developing a
simple algorithm allowing to correct a single NAD. This algorithm
has been applied to trees of a previous Ensembl release, and the
corrected trees have been compared to the trees of the current
Ensembl release. A good correlation between the two sets of trees is
observed, which tends to support our correction paradigm. While
minimizing NADs cannot be a sufficient criterion for gene tree
correction, it should rather be seen as one among others, such as
statistical [39], syntenic [23] or based on reconciliation with the
species tree [6, 24, 32], that can be integrated in a methodological
framework for gene tree correction.

ACKNOWLEDGMENTS
N.El-Mabrouk and M. Lafond are supported by “Fonds de recherche
du Québec - Nature et technologies” (FRQNT). C. Chauve and N.
El-Mabrouk are supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC). R.Dondi is supported by
the MIUR PRIN 2010-2011 grant “Automi e Linguaggi Formali:
Aspetti Matematici e Applicativi”, code H41J12000190001.

REFERENCES
[1]O. Akerborg, B. Sennblad, L. Arvestad, and J. Lagergren. Simultaneous bayesian

gene tree reconstruction and reconciliation analysis. Proc. Natl. Acad. Sci. U.S.A.,
106(14):5714–5719, 2009.

[2]R.G. Beiko and N. Hamilton. Phylogenetic identification of lateral genetic transfer
events. BMC Evol. Biol., 6(15), 2006.

[3]A.C. Berglund-Sonnhammer, P. Steffansson, M.J. Betts, and D.A. Liberles.
Optimal gene trees from sequences and species trees using a soft interpretation
of parsimony. J. Mol. Evol., 63:240-250, 2006.

[4]B. Boussau, G. J Szöllosi, L. Duret, M. Gouy, E. Tannier, and V. Daubin. Genome-
scale coestimation of species and gene trees. Genome Res., 23:323-330, 2013.

[5]W.C. Chang and O. Eulenstein. Reconciling gene trees with apparent polytomies.
In COCOON 2006, volume 4112 of Lecture Notes in Computer Science, pages
235–244, 2006.

[6]R. Chaudhary, J.G. Burleigh, and O. Eulenstein. Efficient error correction
algorithms for gene tree reconciliation based on duplication, duplication and loss,
and deep coalescence. BMC Bioinformatics, 13(Supp.10):S11, 2011.

[7]C. Chauve and N. El-Mabrouk. New perspectives on gene family evolution: losses
in reconciliation and a link with supertrees. In RECOMB 2009, volume 5541 of
Lecture Notes in Computer Science, pages 46-58, 2009.

[8]K. Chen, D. Durand, and M. Farach-Colton. Notung: Dating gene duplications
using gene family trees. J. Comp. Biol., 7:429–447, 2000.

[9]D. G. Corneil, Y. Perl, and L. K Stewart. A linear recognition algorithm for
cographs. SIAM J. Comput., 14(4):926-934, 1985.

[10]R.S. Datta, C. Meacham, B. Samad, C. Neyer, and K. Sjölander. Berkeley phog:
Phylofacts orthology group prediction web server. Nucleic Acids Res., 37:W84-
W89, 2009.

[11]P.S. Dehal and J.L. Boore. A phylogenomic gene cluster resource: the
phylogenetically inferred groups (phigs) database. BMC Bioinformatics, 7(201),
2006.

[12]A. Doroftei and N. El-Mabrouk. Removing noise from gene trees. In WABI 2011,
volume 6833 of Lecture Notes in Bioinformatics, pages 76-91, 2011.

[13]D. Durand, B.V. Haldórsson, and B. Vernot. A hybrid micro-macroevolutionary
approach to gene tree reconstruction. J. Comput. Biol., 13:320–335, 2006.

[14]M.A. Larkin et al. Clustalw and clustalx version 2. Bioinformatics, 23:2947-
2948, 2007.

[15]J. Felsenstein. Evolurionary trees from DNA sequences: a maximum likelihood
approach. J. Mol. Evol., 17:368-376, 1981.

[16]P. Flicek and al. Ensembl 2012. Nucleic Acids Res., 40:D84- D90, 2012.
[17]P. Gorecki and O. Eulenstein. Algorithms: simultaneous error-correction and

rooting for gene tree reconciliation and the gene duplication problem. BMC
Bioinformatics, 13(Supp 10):S14, 2011.

[18]P. Gorecki and O. Eulenstein. A linear-time algorithm for error-corrected
reconciliation of unrooted gene trees. In ISBRA 2011, volume 6674 of Lecture
Notes in Bioinformatics, pages 148-159, 2011.

[19]S. Guidon and O. Gascuel. A simple, fast and accurate algorithm to estimate large
phylogenies by maximum likelihood. Syst. Biol., 52(5):696- 704, 2003.

[20]M.W. Hahn, M.V. Han, and S.-G. Han. Gene family evolution across 12
drosophilia genomes. PLoS Genetics, 3:e197, 2007.

[21]M. Hellmuth, M. Hernandez-Rosales, K. Huber, V. Moulton, P. Stadler, and
N. Wieseke. Orthology relations, symbolic ultrametrics, and cographs. J. Math.
Biol., 66(1–2):399–420, 2013.

[22]J. Huerta-Cepas J, S. Capella-Gutierrez S, L.P. Pryszcz LP, I. Denisov, D. Kormes,
M. Marcet-Houben, and T. Gabald’on. Phylomedb v3.0: an expanding repository
of genome-wide collections of trees, alignments and phylogeny-based orthology
and paralogy predictions. Nucleic Acids Res., 39:D556-D560, 2011.

[23]M. Lafond, M. Semeria, K.M. Swenson, E. Tannier, and N. El-Mabrouk. Gene
tree correction guided by orthology. BMC Bioinformatics, 14 (supp 15)(S5), 2013.

[24]M. Lafond, K. Swenson, and N. El-Mabrouk. Models and algorithms for genome
evolution, chapter Error detection and correction of gene trees. Springer, 2013.

[25]M. Lafond, K.M. Swenson, and N. El-Mabrouk. An optimal reconciliation
algorithm for gene trees with polytomies. In WABI 2012, volume 7534 of Lecture
Notes in Computer Science, pages 106-122, 2012.

[26]H. Mi, A. Muruganujan, and P.D. Thomas. Panther in 2013: modeling
the evolution of gene function, and other gene attributes, in the context of
phylogenetic trees. Nucleic Acids Res., 41:D377-D386, 2012.

[27]M. D. Rasmussen and M. Kellis. A bayesian approach for fast and accurate gene
tree reconstruction. Mol. Biol. Evol., 28(1):273–290, 2011.

[28]F. Ronquist and J.P. Huelsenbeck. MrBayes3: Bayesian phylogenetic inference
under mixed models. Bioinformatics, 19:1572- 1574, 2003.

[29]N. Saitou and M. Nei. The neighbor-joining method: a new method for
reconstructing phylogenetic trees. Mol. Biol. Evol., 4:406-425, 1987.

[30]F. Schreiber, M. Patricio, M. Muffato, M. Pignatelli, and A. Bateman. Treefam
v9: a new website, more species and orthology-on-the-fly. Nucleic Acids Res,
42:D922-D925, 2013.

[31]C. Scornavacca, V. Berry, and V. Ranwez. From gene trees to species trees through
a supertree approach. In LATA 2009, volume 5457 of Lecture Notes in Computer
Science, pages 702-714, 2009.

[32]K. M. Swenson, A. Doroftei, and N. El-Mabrouk. Gene tree correction for
reconciliation and species tree inference. Algorithms Mol. Biol., 7(31), 2012.

[33]G.J. Szöllosi, W. Rosikiewicz, B. Bousseau, E. Tannier, and V. Daubin. Efficient
exploration of the space of reconciled gene trees. Syst. Biol., 62(6):901-912, 2013.

[34]T.H. Nguyen TH, V. Ranwez, S. Pointet S, A.M. Chifolleau, J.P. Doyon, and
V. Berry. Reconciliation and local gene tree rearrangement can be of mutual profit.
Algorithms Mol. Biol., 8(8):12, 2013.

[35]P.D. Thomas. GIGA: a simple, efficient algorithm for gene tree inference in the
genomic age. BMC Bioinformatics, 11:312, 2010.

[36]B. Vernot, M. Stolzer, A. Goldman, and D. Durand. Reconciliation with non-
binary species trees. J. Comput. Biol., 15:981–1006, 2008.

[37]A.J. Vilella, J. Severin, A. Ureta-Vidal, L. Heng, and E. Birney. EnsemblCompara
GeneTrees: Complete, duplication-aware phylogenetic trees in vertebrates.
Genome Research, 19(2):327–335, 2009.

[38]I. Wapinski, A. Pfeffer, N. Friedman, and A. Regev. Automatic genome-wide
reconstruction of phylogenetic gene trees. Bioinformatics, 23(13):i549-i558,
2007.

[39]Y-C. Wu, M.D. Rasmussen, M.S. Bansal, and M. Kellis. Treefix: Statistically
informed gene tree error correction using species trees. Syst. Biol., 62(1):110-120,
2012.

[40]Y. Zheng, T. Wu, and L. Zhang. Reconciliation of gene and species trees with
polytomies. eprint arXiv:1201.3995, 2012.

7

Lafond et al

8 APPENDIX
Proof of Theorem 1: Let H be a minimum refinement of G. Then
H is a binary arrangement of the n subtrees Hi for 1 ≤ i ≤ n,
where each Hi is a refinement of Gi. Suppose that for a given
i, Hi is not a minimum refinement of Gi. Then replacing Hi
by Hmin(Gi, S) lowers the number of NAD nodes in the subtree
rooted at xi, but has no effect on the type of nodes outside this
subtree. It follows that a minimum refinement of G is a minimum
refinement of G′.

Proof of Lemma 1: Sufficiency is clearly true. As for necessity,
let J be a join sequence with d NADs, and Ji−1 = {G1, G3} be
the first join of type AD or NAD in J followed by a join Ji =
{G2, G4} of type S. We show that we can swap the join types of
Ji−1 and Ji. In other words, we create a new sequence J ′ where
J ′k = Jk for k < i − 1, J ′i−1 is of type S, J ′i of the same type
as Ji−1, and all subsequent joins types are the same as in J . We
can then apply this swapping procedure until all S joins are in the
beginning of J ′.

Let G1,3 denotes the subtree created after applying Ji−1. If
neither G2 nor G4 are equal to G1,3, then we can safely swap Ji−1

and Ji since they create two independent subtrees, which does not
affect subsequent joins. So suppose w.l.o.g. that G4 = G1,3, and
therefore Ji = {G1,3, G2}. Since Ji is of type S, then G1 and G3

both shared an S edge withG2 inF(J, i−2). Let J ′i−1 = {G1, G2}
be the join of type S, which creates a subtree denoted G1,2, and
let J ′i = {G1,2, G3}. If Ji−1 is of type AD, then by applying
Ruleset 1.1 (replacing T by G3), it follows that J ′i = {G1,2, G3}
is of type AD. Conversaly, if Ji−1 is of type NAD, then by applying
Ruleset 1.2, it follows that J ′i if of type NAD. In other words,
J ′i and Ji−1 are of the same type. Since the subtrees created by
applying Ji and J ′i share the same leafset, and that join types are
defined by the leaves, all subsequent joins in J can be applied in
J ′.

Proof of Theorem 2: We first prove a simple claim.
Claim i. Consider H ∈ H(G) with exactly d NADs. Then there

exists a set W of vertex-disjoint cliques in RS such that RAD ∪W
has d+ 1 connected components.

Recall that d is the minimum number of NADs attainable. Let
J be a join sequence realizing H . By Lemma 1, we can assume
that all speciations precede all duplications. Let k be the number
of maximum speciation subtrees of H . As stated before (statement
just preceding the theorem), the set of leaves of each speciation
subtree of H forms a clique in RS . Moreover, as the k maximum
speciation subtrees ofH are disjoint (do not share a common node),
the corresponding set W of cliques in RS are vertex-disjoint. Let
RJ be the graph obtained after applying all the speciations in J . If
RJ has more than d + 1 AD-components, then J cannot lead to a
solution with d NADs. Indeed, we have exhausted all speciations
used by J , which implies only NAD edges are used to join AD-
components together - requiring more than d of them if there are
more than d+1 AD-components. On the other hand, if RJ has less
than d + 1 AD-components, then there exists a solution with less
than d NADs, contradicting the fact that d is the minimum number
of NADs of a solution to the MinNADref Problem . It follows that
RJ has exacly d+1 AD-components, which completes the proof of
the claim.

“⇐” Let d+1 be the minimum number of connected components
formed by the edges of RAD augmented with the edges of a set W
of vertex-disjoint cliques of RS . Then all nodes of each connected
component can be joined under a single subtree by applying joins of
type AD and S. These d+1 subtrees can then be joined with exactly
d NADs, yielding a refinement H with exactly d NADs. Then H
is a solution to the MinNADref Problem as otherwise there is a
refinement H∗ with d∗ < d NADs, leading (Claim i) to a W ∗ such
that RAD ∪W has d ∗+1 < d+ 1 connected components, which
contradicts the fact that d+ 1 is the minimum number of connected
components formed by the edges ofRAD augmented with the edges
of a set of vertex-disjoint cliques in RS .

“⇒” Let H be a solution to the MinNADref Problem with d
NADs. Then, by Claim i, there is a set W of vertex-disjoint cliques
in RS such that RAD ∪ W has d + 1 connected components.
Now suppose that the minimum number of connected components
induced by a set of vertex-disjoint cliques is d∗+1 < d+1. By the
sufficient proof above, it follows that d∗ is the minimum number of
NAD nodes of a resolution, contradicting the minimality of d.

Proof of Theorem 3: In this proof, for two vertices Gi, Gj of R,
we denote si,j = lcaS(s(Gi), s(Gj)).

“⇒”Suppose RS is not {P4, 2K2}-free. Let G1, G2, G3, G4 be
four vertices, with {G1, G2} and {G3, G4} being two edges in RS ,
that form an induced P4 or 2K2. This implies that at least one of the
two edges {G1, G3} and {G2, G4} should be absent from RS .

Assume w.l.o.g. that {G1, G3} is the missing edge. The edge
between G1, G2 means that s(G1) and s(G2) are unrelated in S.
Suppose w.l.o.g. that s(G1) is in the left subtree of s1,2, and s(G2)
in the right subtree. The missing edge between G1 and G3 then
implies that s(G1) and s(G3) are related, in other words that s(G3)
is on the left subtree of s1,2 or is an ancestor of s1,2.

Suppose that {G2, G3} is not an edge in RS . Then, by a similar
reasoning as before, it follows that s(G3) is either on the right
subtree of s1,2 or is an ancestor of s1,2. It follows from the two
arguments that s(G3) is an ancestor of s1,2. Now, the edge between
G3, G4 means that s(G3) and s(G4) are unrelated in S, and
thus s(G4) is unrelated to s(G1) and s(G2) as well. But in this
case {G1, G4} and {G2, G4} should be edges in RS , and thus
G1, G2, G3, G4 can neither form a 2K2 nor a P4 struture.

Now suppose that {G2, G3} is an edge in RS . Then
G1, G2, G3, G4 cannot form a 2K2 structure, and for the four edges
to form a P4 structure, {G2, G4} should not be an edge in RS . By
taking the same proof as above (switchingG3 andG4), we have that
s(G4) is an ancestor of s1,2. Now, the edge {G3, G4} means that
s(G3) and s(G4) are unrelated in S, and thus s(G3) is unrelated to
s(G1) and s(G2) as well. But in this case {G1, G3} should be an
edge in RS , and thus G1, G2, G3, G4 can neither form a 2K2 nor a
P4 structure.

In both cases, the evolutionary constraints on S edges in a valid
graph lead to a contradiction with the assumption that RS contains
a P4 or a 2K2. So if RS contains a P4 or a 2K2, R is not valid.

“⇐”The other direction of the proof uses the notion of cotrees,
related to P4-free graphs. A cotree T is a rooted tree in which the
internal nodes are labelled 0 or 1 and have at least two children.
We say T is an alternating cotree if the labels of any root-leaf path
alternate between 0 and 1. A cotree T represents a given graph H
if l(T) = V (H), and xy ∈ E(H) if and only if lcaT (x, y) is

8

Polytomy Refinement

labelled by 1. It is well-known that for any P4-free graph H , there
is a unique alternating cotree that represents H [9]. Let T denote
the unique alternating cotree representing RS . Note that l(T) =
V (R). The fact that RS is also 2K2-free implies the following: any
internal node x of T labelled 0 has at most one non-leaf child. If
not, then x has two children x1, x2 labelled 1, which implies we
can find a, b ∈ l(x1), c, d ∈ l(x2) such that lcaT (a, b) = x1 and
lcaT (c, d) = x2. Since the lca of each pair (a, c), (a, d), (b, c) and
(b, d) is x, labelled 0, then a, b, c, d induces a 2K2 in which the
edges are ab and cd.

Now, given R and T , we can construct a forest F and a species
tree S that make R valid. Note that since T is constructed from RS ,
for two leaves x, y of T , lcaT (x, y) is labelled 1 if jt(x, y) = S,
and labelled 0 if jt(x, y) ∈ {AD,NAD}. The reader may refer
to Figure 6 for an example of the whole construction for a given
R. The species tree is found by a transformation of T . Note that
T is not necessarily binary, but the reader can verify that any
binary refinement of the constructed species tree will result in a
valid instance. Let x ∈ l(T). We transform x into a bigger tree
β(x) = (βAD(x), (x

∗, βNAD(x))), where x∗ is a single leaf and
βAD(x) and βNAD(x) are two copies of T . For some y ∈ l(T),
denote by βAD(x, y) (resp. βNAD(x, y)) the unique leaf of βAD(x)
(resp. βNAD(x)) that corresponds to y in the copy.

The species tree S is obtained by replacing each leaf x ∈ l(T)
by β(x). The point of β(x) is to reserve the βAD(x) subtree for
the vertices of R that x shares an AD relationship with, and the
βNAD(x) subtree for the NAD relationship. Hence in F , both trees
corresponding to x and y will have a gene mapped to βAD(x, y)
or to βAD(y, x) when jt(x, y) = AD. If jt(x, y) = NAD, then
either y but not x will have a gene mapped to βNAD(x, y), or x but
not y will have a gene mapped to βNAD(y, x)

Denote by βx the root of β(x). Now on to the construction of F .
Let x ∈ l(T). Let γ(x) be a copy of β(x) from which we remove
the βNAD(x) subtree (hence γ(x) is a copy of (βAD(x), x∗)). The
species that each gene of γ(x) is mapped to is its corresponding leaf
in β(x). It follows from this that s(γ(x)) = βx.

We finally construct F by adding a subtree for each x ∈ l(T) as
such :

• If the parent of x in T is labelled 1, add γ(x) to F .

• If the parent of x in T is labelled 0, start from γ(x) and for
each leaf y of T such that lcaT (x, y) is the parent of x,

– if jt(x, y) = AD, let γ(x)← (y′, γ(x)), where y′ is a new
gene such that s(y′) = βAD(y, x).

– if jt(x, y) = NAD, let γ(x) ← (y′, γ(x)), where y′ is a
new gene such that s(y′) = βNAD(y, x).

then add the resulting γ(x) to F .

Note that from this, for x ∈ l(T), if the parent of x is labelled
1 then s(γ(x)) = βx, and if the parent of x is labelled 0, then
s(γ(x)) is the parent of βx, which is labelled 0. To see this, denote
by p(x) the parent of x in T , labelled 0. Observe that p(x) remains
unchanged in S. Now, for each y ∈ l(t) such that lcaT (x, y) =
p(x), γ(x) has genes mapped to species of β(y). Thus γ(x) has
only genes mapped to species that are descendants of p(x) in S, and
thus s(γ(x)) = p(x) in S.

In both cases, s(γ(x)) is a descendant of its lowest ancestor
labelled 1, if any. From this, we get that if x, y share an S edge
in R, then they are left and right descendants of lcaT (x, y) labelled
1, implying that s(γ(x)) and s(γ(y)) are left and right descendants
of this same node labelled 1 in S. They are therefore related by
speciation as prescribed. Now, suppose that x, y are related by a
NAD edge. If lcaT (x, y) is p(x), then γ(x) contains y′ mapped to
βNAD(y, x). This forces γ(x) and γ(y) to be related by duplication,
which is of type NAD since by construction γ(x) and γ(y) contain
no gene mapped to the same species. The same argument holds
when lcaT (x, y) is p(y). So suppose that lcaT (x, y) is not p(x) nor
p(y). Then lcaT (x, y) = lcaT (p(x), p(y)) and is labelled 0. But
this implies that lcaT (p(x), p(y)) has at least two non-leaf children,
one containing p(x) and the other containing p(y), contradicting
the 2K2-free assumption as stated above. We observe that the same
applies to vertices x, y of R related by an AD edge, except that they
must share a gene mapped to βAD(y, x) or βAD(x, y), making them
related by apparent duplication. We finally note that no other tree of
F has genes mapped to βAD(y, x) or βAD(x, y), thereby removing
the possibility of an unwanted apparent duplication.

Before being able to prove Theorem 4, we need the following
general property on P4-free graphs.

LEMMA 2. Let {x, y} be an edge of a P4-free graph G, and
let Wx and Wy be two vertex-disjoint cliques of G respectively
containing x and y. Then we can partition the vertices V (Wx) ∪
V (Wy) into at most two other cliques, with one containing {x, y}.

PROOF. If the set V (Wx) ∪ V (Wy) induces a single clique,
then we are done. Otherwise, let Y (x) ⊆ V (Wy) denote the set
of vertices in Wy that share an edge with x (including y), and
let X(Y) ⊆ V (Wx) be the vertices of Wx that share an edge
with every vertex of Y (x). The set V1 = {x} ∪ Y (x) ∪ X(Y)
induces a clique containing {x, y}. Now, let a and b be two vertices
sharing an edge of Wx and Wy respectively with x and y, such that
a, b /∈ V1. If a, b are both inWx, or both inWy , then they obviously
share an edge. Otherwise, suppose w.l.o.g. that a is in Wx and b
in Wy . Because a /∈ X(Y), there is some bi ∈ Y (x) such that
{a, bi} /∈ E(G). And because b /∈ Y (x), {x, b} /∈ E(G). But
{a, x, bi, b} induces a P4, unless ab ∈ E(G). Therefore, every pair
of vertices in Wx or Wy but not in V1 share an edge, forming our
second clique.

If Y (x) is empty, we can apply the same argument by symmetry
usingX(y) and Y (X) ifX(y) is not empty. If both Y (x) andX(y)
are empty, then let V1 = {x, y} induce the first clique. Let a, b
be vertices sharing edges with x and y respectively. Now, a, x, y, b
induce a P4 unless {a, b} ∈ E(G), and thus second clique is formed
by the vertices sharing an edge with x, y.

Let cAD be the number of AD-components of R before applying
any join. Suppose we have a join sequence with s useful speciations,
all applied before any AD or NAD join. It follows that applying
a useful speciation connects two AD-components together, and
applying s of them results in a graph with ADAD − s AD-
components, from which we can obtain a tree with d = ADAD −
s − 1 NADs. It is then clear that there exists a solution with d
NADs iff there exists a join sequence with s = ADAD − d − 1
useful speciations. Hence we can minimize the number of NADs
by maximizing the number of useful speciations we can make. Our

9

Lafond et al

0

1

a b

c d

βAD(a) βNAD(a)
a*

βAD(b) βNAD(b)
b*

βAD(c) βNAD(c)
c*1

0

βAD(a) βAD(b)

βAD(c)
βNAD(b,c)

βAD(a,c)

a* b*

βNAD(d,c)

c*
βAD(d)

βAD(b,d)

βNAD(a,d)

βNAD(c,d)

d*

βAD(d) βNAD(d)
d*

a b

d c

(R) (T)

(S)

γ(a) γ(b)

γ(c) γ(d)

βa βb

βc βd

Fig. 6. A construction of F and S given R. The solid black edge of
R is an S-edge, the green edges are AD-edges and the blue dotted
edges are NAD-edges. T is the cotree corresponding to RS , where
V (R) = l(T). The species tree S is build by replacing each leaf
x of T by β(x). For instance here, βAD(a) contains the leaves
{βAD(a, a), βAD(a, b), βAD(a, c), βAD(a, d)}. The gene tree forest F
consists of {γ(a), γ(b), γ(c), γ(d)}, in which we labelled the genes to their
corresponding species, built from the construction given in the proof of
Theorem 3.

heuristic consists in constructing a join sequence by always picking
the lowest available speciation, which is shown to find at least half
the number of useful speciations as the optimal solution. We first
need the following property.

LEMMA 3. Let {x, y} be an S edge of R corresponding to a
lowest available speciation, and let d be number of NADs of a
solution to the MinNADref problem. Then there exists a solution
which makes the {x, y} speciation that has at most d+ 1 NADs.

PROOF. Let W be a set of vertex-disjoint cliques of RS , and let
RW be the R graph restricted to the set of edges W ∪ RAD (W
must exist by Theorem 3). RW has d + 1 connected components.
Let Wx (resp. Wy) be the clique of W that contains x (resp. y). If

Wx = Wy , then we are done. Otherwise, by Lemma 2, we can
partition the vertices of Wx and Wy into two other cliques, namely
W1 containing the xy edge and the other clique W2. Let W ′ =
W \ {Wx,Wy} ∪ {W1,W2}. Now, W ′ is another set of vertex-
disjoint cliques. Denote by RW ′ the graph R restricted to W ′ ∪
RAD . Denote by Zx, Zy the vertices in V (R) \ {Wx,Wy} in the
same RW component as x and y respectively. Similarly, let Z1, Z1

be the vertices in V (R) \ {W1,W2} in the same RW ′ component
as a vertex of W1 and a vertex of W2 respectively. We have that
Zx∪Zy = Z1∪Z2. If x, y were in two distinct componentsWx∪Zx
andWy∪Zy inRW , thenRW ′ also has d+1 components, as these
two components got replaced byW1∪Z1 andW2∪Z2. If x, y were
in the same component, at worstRW ′ has d+2 components, having
the x, y component replaced by W1 ∪ Z1 and W2 ∪ Z2.

We are now ready to prove Theorem 4:
Proof of Theorem 4: Let d = ADAD − s − 1 be the minimum
number of NADs in an optimal solution, and let xy be the lowest
useful speciation available in R. Note that s = ADAD − d − 1.
By Lemma 3, there exists a solution with d+ 1 NADs that contains
the xy speciation. Let R′ be the graph obtained after applying the
{x, y} join, thus contracting x and y and applying Ruleset 1. Since
xy is the lowest speciation, any common neighbor of x and y in RS
is a neighbor of the xy vertex in R′S . Therefore, R′S has ADAD −
1 AD-components and admits an optimal solution with at most d
NADs. Hence, the number of useful speciations we can make given
R′ is at least s′ = ADAD − 1 − d − 1 = s − 2. It then follows
that after applying the first k lowest speciations, we have a solution
with at least s − 2k more useful speciations, which implies that k
can be at least as big as s/2 if s is even. If s is odd, k can be as high
as (s − 1)/2, and there is at least one useful speciation available,
hence the lower bound of ds/2e.

Proof of Theorem 5: First, we can notice that by including the
bridges into M , we ensure that all other added edges are useful
speciation edges.

Now, we prove the maximality of the useful matching by
induction on |X ∪ Y |. Given P = (X,Y,ADX , ADY , B), denote
byMP the solution returned by Algorithm 2, and byOPTP a useful
matching of maximum size over instance P .

If |X ∪ Y | = 1, then the theorem trivially holds, since each
useful matching of P contains no edge. Assume the theorem holds
for |X ∪ Y | = k, we show that it holds for |X ∪ Y | = k + 1.

Let α ∈ X ∪ Y be the last vertex added to D by Algorithm 2,
and assume w.l.o.g that α ∈ X . Write X ′ = X \ {α}, and P ′

the instance obtained from P by removing α. By induction, since
|X ′ ∪ Y | = k, |MP ′ | = |OPTP ′ |. Moreover, by construction,
MP ′ is exactly MP minus the edge of MP incident to α, if any.

Assume that α is incident to an edge ofMP . It holds that |MP | =
|MP ′ |+1 = |OPTP ′ |+1. On the other hand, remove fromOPTP
the edge incident to α, if any. Then the edges left in OPTP form
a useful matching of P ′, and thus |OPTP ′ | ≥ |OPTP | − 1. As it
has been shown that |MP | = |OPTP ′ |+ 1, it follows that |MP | ≥
|OPTP |, and thus MP is a useful matching of P of maximum size.

Now, assume that α is not incident to an edge of MP . Denote by
c(α) the connected component of GP,MP that contains α.

Claim i. Each vertex β in Y \ c(α) is incident to an edge in MP .
If the claim was wrong, the algorithm would have added an edge

between α and β. If, in addition, each vertex of Y ∩ c(α) is incident

10

Polytomy Refinement

to an edge of MP , then each vertex of Y is incident to an edge
of MP , implying that MP is of maximum size, which completes
the proof. Hence assume that there exists at least one vertex β of
Y ∩ c(α) such that β is not incident to any edge of MP .

Claim ii. Each vertex γ in X \ c(α) must be incident to an edge
of MP (statement ii).

Again, the proof is immediate: if the claim was wrong, the
algorithm would have defined an edge from β to γ.

Now, consider the set AD\α = ADX\c(α) ∪ ADY \c(α) of
AD-components on the sets of vertices (X \ c(α)) ∪ (Y \ c(α)).
By definition of useful speciation edges, the graph defined by the
vertex set AD\α and the edge set containing one edge for each pair
(ADXi ∈ ADX\c(α), ADYj ∈ ADY \c(α)) of linked components
has no cycles, and thus at least one vertex (AD-component) of
degree less than 2. Each such AD-component reduces to a single
vertex as otherwise there would be a vertex of this AD-component
not incident to any edge of MP , which is in contradiction with
Claim ii. Hence, as α is the last vertex added toD and the algorithm
proceeds in decreasing order of AD-component cardinality, the AD-
component containing α inX should be of cardinality one, meaning
that x is an isolated vertex. Hence Y ∩ c(α) = ∅, and with Claim i
it follows that each vertex of Y is adjacent to an edge of MP , and
thus MP has maximum size.

LEMMA 4. Let P = (X,Y,ADX , ADY , B) and P ′ =
(X ′, Y ′, ADX′ , ADY ′ , B′) be two instances such that |X ′| =
|X|, |Y ′| = |Y |, |ADX′ | = |ADX |, |ADY ′ | = |ADY | and
|B| = |B′|. Then P and P ′ admit maximum useful matchings of
the same size.

Proof of Lemma 4: Consider two maximum useful matchings M ,
M ′ of P , P ′ respectively and the induced graphs GP,M ,GP ′,M′ .
Assume w.l.o.g. that |M | > |M ′|.
• Claim (i): Since |X ′| = |X|, |Y ′| = |Y | and |ADX′ | = |ADX |,
it follows that GP,M contains strictly less connected components
than GP ′,M′ .
• Claim (ii) Since |M | > |M ′|, it follows that there exists a node
x of X ′ and a node y of Y ′ that are not incident to an edge of M ′.
Then one of the two following cases hold.
Case 1.: x and y belong to different components of GP ′,M′ . Then it
holds that M ′ is not a maximum useful matching, since we can add
edge {x, y} to M ′, thus contradicting the assumption that M ′ is a
maximum useful matching of P ′.
Case 2.: x and y belong to the same connected component c(x) of
GP ′,M′ . We show that we can compute a useful matchingM∗ of P ′,
such that|M∗(P ′)| > |M(P ′)|. First, we show that there exist two
nodes x1 ∈ X ′ and y1 ∈ Y ′ that belong to a connected component
of GP ′,M′ different from c(x) such that {x1, y1} is an edge of M ′.
Notice that if x1 and y1 do not exist, then one of the following
two cases holds: (2.1) There exists a single connected component in
GP ′,M′ , but this violates Claim (i); (2) Each connected component
of GP ′,M′ different from c(x) contains only bridges, which implies
that there exist two nodes of GP ′,M′ (one of x, y and a node that
belongs to (ADX′ ∪ ADY ′) \ c(x)) not incident to an edge of M ′

and belonging to different components of GP ′,M′ . But then we fall
in Case 1. and M ′ is not a maximum useful matching of P ′. Thus
nodes x1 and y1 exist, so we can compute a useful matching M∗

of P ′ starting from M ′ as follows: remove {x1, y1} from M ′ and

add edges {x, y1}, {x1, y} to M∗. It follows that M∗ is a useful
matching for P ′ with |M∗| > |M ′|, contradicting the assumption
that M ′ is a maximum useful matching of P ′.

LEMMA 5. Let P = (X,Y,ADX , ADY , B = ∅) and P ′ =
(X ′, Y, AD′X , ADY , B

′ = ∅) be two instances such that |X ′| −
|X| = |AD′X | − |ADX | with |X ′| ≥ |X|. If P ′ admits a useful
matching M ′, then P admits a useful matching M such that |M | ≥
|M ′| − (|X ′| − |X|).

Proof of Lemma 5: Let x1, x2 be two nodes of X ′ in two distinct
components of AD′X . If we join the trees corresponding to x1 and
x2, leading to a single node x1,2, we create a new instance P ∗ =
(X∗, Y, AD∗X , ADY , ∅), in which |X∗| = |X ′| − 1 and |AD∗X | =
|AD′X | − 1. If x1 and x2 are incident to edges in M ′, say {x1, y}
and {x2, z}, then M∗ = M ′ \ {{x1, y}, {x2, z}} ∪ {x1,2, z} is
a useful matching for P ∗. Otherwise, if x1 or x2 is not incident
to an edge of M ′, then construct a matching M∗ of P ∗ from M ′

by removing the edge incident to x1 or x2, if any. In all cases,
|M∗| ≥ |M ′|−1. By applying such join operation |X ′|−|X| times,
we obtain an instance P ∗ with |X| nodes and |ADX | components
and a useful matching M∗ verifying |M∗| ≥ |M ′| − (|X ′| − |X|).
By Lemma 4, it follows that P admits a useful matching M of the
same size, which concludes the proof.

Proof of Theorem 6: Let F be the input forest of Algorithm 1. Let
F(s) be the subset of F containing the trees G such that s(G) is
s or one of its descendants. Let ns be the total number of useful
speciations performed on trees of F(s) at step s of the algorithm,
i.e., after considering node s. We show by induction on the height of
s that ns is the maximum number of useful speciations that can be
chosen on the trees of F(s), which proves the theorem as s can be
the root of S. This is trivially true if s is a leaf. So let s be an internal
node of S with children x and y. LetP = (X,Y,ADX , ADY , B =
∅) be the instance corresponding to s. Let |MP | be the number of
useful speciations performed by the algorithm for P . Then ns =
|MP |+ nx + ny .

Suppose we can make another choice of n′x and n′y useful
speciations on F(x) and F(y) respectively, yielding a different
instance P ′ = (X ′, Y ′, AD′X , AD

′
Y , B

′ = ∅) for s. Suppose also
that P ′ admits |MP ′ | useful speciations such that n′s = |MP ′ | +
n′x+n

′
y > |MP |+nx+ny = ns. Note that by induction, nx ≥ n′x

and ny ≥ n′y , and thus we should have |MP ′ | > |MP |. Any of
the n′x speciations has the effect of merging two nodes potentially
in X , and merging two components potentially in ADX . Now
|X| = |F(x)| − nx. If |ADR| is the number of AD-components
of R before any speciation, then |ADX | = |ADR| − nx. Similarly
|X ′| = |F(x)| − n′x and |AD′X | = |ADR| − n′x. This leads to
nx − n′x = |X ′| − |X| = |AD′X | − |ADX |. In the same manner,
ny −n′y = |Y ′| − |Y | = |AD′Y | − |ADY |. From this, n′s > ns ⇒
n′s−ns > nx−n′x+ny−n′y = |X ′|−|X|+|Y ′|−|Y |. But we cal
also deduce from Lemma 5 that n′s−ns ≤ |X ′|−|X|+ |Y ′|−|Y |:
a contradiction.

Proof of Corollary 1: A bridge is created between two AD-
components ADX , ADY if and only if there exist two vertices x ∈
ADX and y ∈ ADY such that {x, y} is an S edge in R and x and
y belong to the same AD-component in R. It follows that for a pair

11

Lafond et al

(F ,S) leading to a graphR where AD-components are free from S
edges, we are guaranteed that for every node s of S the instance P
corresponding to s has no bridges. It follows from Theorem 6 that
Algorithm 1 finds a maximum set M of useful speciations, i.e., a
set of useful speciations leading to the minimum number ad of AD-
components, and to a refinement H with ad− 1 NADs. Suppose H
is not optimal, i.e., there is an H ′ with ad′ < ad − 1 NADs. By
Lemma 1, we can assume that the join sequences J ′ leading to H ′

has all M ′ joins of type S first, followed by AD and NAD joins. As
M is a maximum set of useful speciations, we have |M ′| ≤ M . If
M ′ < M , then after applying the M ′ speciations, the graph is left
with ad′ > ad − 1 AD-components, requiring more than ad − 1
NADs, contradicting the hypothesis. Therefore H is a solution to
theMinNADref problem.

12

