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ABSTRACT

Motivation Understanding haplotype and genotype evolu-
tion subject to mutation, recombination and gene conversion
is fundamental to understand genetic specificities of human
populations and hereditary bases of complex disorders. The
goal of this project is to develop new algorithmic tools assi-
sting the reconstruction of historical relationships between
haplotypes, and the inference of haplotypes from genotypes.
Results We present two algorithms. The first one finds an
optimal pathway of mutations, recombinations and gene con-
versions leading to a given haplotype of size m from a set
of h putative ancestral haplotypes. It runs in time O(mhs?),
where s is the maximum number of contiguous sites that can be
exchanged in a single gene conversion. The second one finds
an optimal pathway of mutations and recombinations leading
to a given genotype and runs in time O(mh?). Both algorithms
are based on a penalty score model and use a dynamic pro-
gramming approach. We apply the second one to the problem
of inferring haplotypes from genotypes, and show how it can
be useful to resolve “hard” genotypes, when the underlying
pair of haplotypes differ substantially from frequent ones.
Availability The algorithms have been implemented in JAVA,
and are available on request.

Contact: mabrouk@iro.umontreal.ca

1 INTRODUCTION

problem is then to extract, from this information, individual
haplotypes.

In addition to characterizing allelic diversity created by
spontaneous mutations, understanding how individual vari-
ants are redistributed accross populations and organized in
blocks has been shown fundamental in the study of human
diversity and disease inference [34, 8, 7]. Recombination
redistribute individual variants among copies the homolo-
gous chromosomes [9, 20], and gene conversion occur when,
during crossing-over, the Holliday junction returns to the
initial configuration rather than being resolved such that
chromatids cross and thus accomplish the recombination
(Figure 2). Gene-conversion can be seen as two either con-
comitant or successive recombinations. However, at a short
distance, a double crossing-over within a single meiosis is
sterically impossible, and it is gene-conversion that can be
invoked to explain the data [27, 15, 1, 21]. To understand
the genealogical relationships between haplotypes and their
“blocky” structures, it is thus important to study their pro-
cess of evolution subject to mutation, recombination and gene
conversion.

Prior work on recombination and gene conversion has lar-
gely focused on statistical tests estimating the recombination
events [13, 18, 33], and on reconstructing the coalescent with
recombination and/or gene conversion, based on statistical
models assuming constant population length, random mating,

Since the sequencing of the human genome, a great effort ha§d given mutation and rearrangement rates per generation
been deployed to characterize allelic diversity at the nucleokl0, 30, 29, 31]. Other methods based on algorithmic opti-
tide |eve|, represented by Sing|e nucleotide po|ym0rphism§nizati0n have been considered for the reconstruction of a
(SNPs). Having access to these genetic markers is fund&lausible genealogy of haplotypes [16, 28, 25, 22, 32], but
mental for epidemiological studies in the quest of hereditarynost of these reconstruction problems have been shown NP-
bases of complex disorders. However, it is less the individuatard. Consequently, simplified evolutionary models have been
variants that counts than their overall organization along th&€onsidered. Inparticular, because of arelatively simple pattern
chromosomes. A haplotype is a string of polymorphic sitesof haplotype diversity inthe human genome with adomination
along a DNA sequence (Figure 1). Preliminary to any humar?f few common haplotypes [14, 17, 19, 26], the complexity
genetic project, is the acquirement of a haplotype datase®f the haplotype network can be reduced by considering the
However, in diploid organisms, itis not feasible to examine theMost frequent haplotypes as the most likely to recombine.
two copies of a chromosome separately. Rather, it is the (less IN this paper, we address the problem of inferring the most
informative)genotypee.g. the combination of the two com- realistic pathway of mutations, recombinations and gene con-
plementary chromosomes, that is obtained. The haplotypin¥ersions generating a given haplotype from a sét jofitative
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ancestral haplotypes of size. Previous dynamic program- SNPs ’: (T3 g (T: ’: i g ?
ming methods have been developed in the absence of genda \¢ b | | b |
conversion [4, 22]. In [3], we formalized the problem and DNA == — - - —= -
described the whole set of pathways involving a minimum

number of recombinations and gene conversions leading to LAGCTTCTG

a haplotype, and described a partial method to find a repre- 00101000

sentative pathway. Here, we consider the more general case(b) 2 /3 rec AO % To T

involving a penalty score model for mutations, recombinati-

ons and gene conversions, and describe an optimized dynamic 3 E -[ % Cl % Al TO %

programming algorithm that runs in tin@(mhs?), wheres
is the maximum size of a gene conversion. This algorithm is
described in Section 2. Fig. 1. (a) A genomic sequence with its polymorphic sites indicated by

Inthe second part of this paper, we present a new algorithrﬂc"q squares; (b? Three possible.haplotypes found in the population, with
based on the same evolutionary model, to infer haplotypetshe'r representations as binary strings, assuming that upper alleles represent
from genotypes. Several approaches have been developed for estral ones.

this purpose, beginning with the Clark’s parsimony approach

[2] and maximum likelihood approaches [6]. In the absence A recombination between two haplotype; and H, can

of recombinations, more combinatorial approaches based dpe modeled as an operation that breakély@ndH, between

the perfect phylogeny model have been developed [11, 5]. Isitesi andi — 1, and exchanges the two terminal partdf

the general case, the most widely used approach is PHASBNd H». (Figure 2).

based on a Gibbs sampling method [24, 23]. In most cases, theA gene conversiorbetweend; andHy is an operation that
software reports a set of accurate haplotype pairs. Howevdireaks upd; andHy in three parts each by choosing the same
some genotypes give rise to ambiguous results, e.g. many poigvo pairs of adjacent sites in the two haplotypes$,— 1 and

sible haplotype pairs with low probabilities. Moreover time j, j — 1, and exchanges the two middle partsfof and Ho
before convergence may be very long. In section 3, we preseffEigure 2).

an efficient method, which runs in tin{enh?), to resolve a As only one of the resulting haplotypes is transmitted, a
given genotype with respect to a set of known haplotypes. Imecombination or a gene conversion can be represented as
Section 4, we give some preliminary results demonstrating théf,, H, — Hs, whereH,, H,, H3 are three haplotypes.
accuracy of this method for genotypes that have been revealed

problematic for PHASE. Recombination:

Hy: i-1i Ha: i-1i
2 RECOVERING RECOMBINATION AND Ha\,l/

GENE CONVERSION PATHWAYS oo R

We describe an algorithm that finds an optimal (least score) Gene conversion:
pathway of mutations, recombinations and gene conversions Hy: P Hy: .
generating a given haplotype from a set HAP of known haplo- p—
types. This algorithm can be seen as a generalization of the \/
one described in [22] including gene conversions. HS:TI?JH_

The classical methods for inferring historical relationships
between haplotypes assume an infinite site mutation model:
at each SNP site, a mutation only happened once in humarig. 2. The recombination and gene conversion mechanisms
history. In other words, recurrent mutations and back mutati-
ons are forbidden. Here, we consider a relaxed model which

: Each SNP represents a mutation that has affected one haplo-
allows for recurrent and back mutations.

type in the population. Therefore, if recurrent mutations are

] ignored, then allelic changes can be explained solely by
2.1 The model and notations recombinations and gene conversions. In this paper, recur-
A haplotype of sizem is a string of symbols which models rent mutations are allowed, and we calhaitation an event
m single nucleotide polymorphisms (SNPs) on a chromo-+that changes @into al or al into a0 in a haplotype.
somal segment. SNPs are usually bi-allelic such that in a In [22], Schwartzet. al. have considered a simplified pro-
population, only two nucleotides are observed at each sitéabilistic model allowing to evaluate a recombination and
Therefore, haplotypes can be represented as binary strings ofutation pathway leading to a given haplotype. However,
0's (ancestral alleles) ands (new alleles) (Figure 1). assigning the appropriate probabilities is an open problem by
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itself. In this paper, we consider an alternative approach, by To compute the minimal penalty scote of a pathway
attributing penalty scores for mutations, recombinations andeneratingH from HAP, we recursively compute the sco-
gene conversions. resC(1, j) of the optimal pathways giving rise to the unitary
The penalty score model is based on the following inputs: haplotypesH [1..5] from the set HAPL..j], for 1 < j < m.
Let C, (4, j) be the score of an optimal pathw&ygiving
1. MUT is the score of a (recurrent) mutation at any site infise toH [i..j] and ending at haplotyp#,,. Then
any haplotype.
2. REC(i) specifies the score of a recombination between C(i,j) = min{Cy(3,5), for 1 < p < h}
sitesi — 1 andi. This value can be evaluated from the We show how to comput€, (i, j) fori < j. The casé > j
nucleotide distance separating these sites. is symmetrical and obtained in the same way, but considering
deverse haplotypes (red from right to left).
Suppose first thall,,[j] = 1. ThenC,(3, j) is one of the
following:

3. GC(i, ) is the score of a gene conversion between th
two sitesi andj. This value depends on the number of
nucleotides separating sites 1 andj — 1. We also define
the parametes representing the maximum site length of 1. Cy(i,j) = Cy(i,j — 1): just extend the haplotyp#,
a gene conversioth,= (j — i) — 1, that is the maximum one position right.
number_of S|te_s that can l_Je exchange in a single 9€Ne;5 |fthe last event oR is a recombination at positigh then
conversion. This value, which depends on the nucleotide (i,) = C(i,j — 1) + REC(j) + FREQ H,)
distances between the sites in the considered haplotypes P J ] / P
is usually small and serves as a bound for an efficient
algorithmic complexity.

4. FREQH,) is the score for choosing a particular haplo-
type H, as part of the solution. We use the negative

3. If the last event oR is a gene conversion between posi-
tions k andj, thenC,(i,j) = C,(i,k) + CG(k,j) +
C(k+1,j —1). This case can happen only fpr> 2.

log-frequency ofH,,. os| 1 i K -1 m
Ha
2.2 The algorithm N
To simplify the ensuing algorithmic developments, we recode gene|convefsion
the haplotypes in away allowing to reformulate the problem as H, extension| \
one of generating thenitary haplotype, that is the haplotype
H suchthatd[i] = 1 foranyl < ¢ < m. Let HAP be the set recoipbination
of h haplotypes of sizen (Figure 3). H, /
i Hh
Pos !
Hap 1 23 456 7 8 9101112 13 141516

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Hix1 00101200011 1000 _
Fig. 4. The main dynamic programming table and three possible cases for

H21§ 0010 000100/ Gene—Conversion the last event of a path giving rise #[1..5], with scoreC, (1, j).
— Recombination

g0 1L 1o 000 1l 1 40110 A
! Gene-Conversion
HA:E 0001100010 LGene—Conversion

If H,[j] = 0, an additional mutational event is necessary to
transformH,, [j] to 1.

Therefore, if we denotel/,(j) = {

0if Hylj] :_1

MUT otherwise

Fig. 3. A possible pathway gengratlng the unitary haplgtype from the Colij) = Mp(j) + min{Cp(i,j — 1),

set HAP ={H,, Ha, H3, Hy}, with three gene conversions and one C(i,j — 1) + REQ(j) + FREQH,,),

recombination. minj_;_s<p<;j—2{Cp(i, k) + CG(k,j) + C(k + 1,5 — 1)}}

The basic cases af&,(i,7) = FREQp) + M, (i) for 1 <
We denoteH, [i..j] = H,[i]--- Hp[j], for1 <i<j<m. ¢ <mandthefinalpathwayistheoneleadingtothe score
In other words,H,.[i..j] is the subsequence of the haplotype C(1,m). The resulting algorithm is described in Figure 5.
H, of HAP beginning at position and ending at positiop.
We denote by HAR..j] the set{ H,,[i..j], for 1 < p < h}. Complexity: For each column of the main dynamic pro-
A pathway generatind|[i..j] is said toend at haplotype = gramming table] < j < m, the algorithm is subdivided into
H, if the last suffix of H[i..j] comes fromH,,. two parts:
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Initialization:
For ¢ = 1tomdo
For j = 1tomdo
C(i,7) = oo;
For p = 1to hdo
Cp(i,i) = FREQ(p) + My (3);
C(i,4) = min(C(i, 1), Cp(i,1));
For each column of the main dynamic programming table:
For j = 2tomdo
For each line:
Forp =1to hdo
Cp(1,5) = min(C(1,j — 1) + REQ(), Cp(1,5 — 1));
For each of thes columns preceding columj:
Fork =35 —2down-toj —1—sdoifk >0
CG=Cp(l,k)+CG(k,j)+C(j — 1,k +1);
CP(L]) = mln(Cp(l,]),CG),
End For (k)
Cp(1,4) = Cp(1,5) + Mp(j);
C(1,7) = min(C(1, j), Cp(l’j));
End For (p)

Consider “reverse” reconstruction, beginning at positign
and a different table for storing th€' (4, ) values
Forj’=j—1downtoj — s+ 1do
For p =1to hdo
Cp(j,5') = min(C(1,5 — 1) + REC(), Cp(1,5 — 1));
Fork=j +2tojdoifk <j
CG = Cp(j, k) + CG(j, k) + C(j’ + 1,k —1)
Cp(jvj/) = min(Cp(j,j’), CG);
End For (k)
Cp(5,3") = Cp(4,5") + Mp(3");
C(j,5') = min(C(4,5), Cp (4. 3"));
End For (p)
End For (j°)
End For (j)

Fig. 5. Dynamic algorithm for the computation @¥(i,5), 1 <

1,7 < m. The value of the optimal path leading I is given by

C(1,m).

e The computation of’(1, j), that ismin; <,<, Cp(1, j).

For each haplotypg, 1 < p < h, computing the value of

C,(1, j) requires to consider thevaluesC, (j—1, k+1),

forj —1—s <k < j— 2. Therefore, the complexity of

this part isO(hs).
e The computation ot (3, j'), for the s columns;’ pre-

cedingj. As for the previous step, for each haplotype
1 < p < h, the computation of’, (7, j') requires to con-

sider all the value€'(j' + 1,k — 1), forj' +2 < k < 5.
Therefore, the complexity of this part@(hs?).

The total complexity of the algorithm is thu@(m(hs +
hs?)) = O(mhs?).

3 RECONSTRUCTING HAPLOTYPES FROM
GENOTYPES

haplotypes have the same allele, i.e. two Os or two 1s), and
2 represents heterozygous sites (a 0 on one haplotype and
a 1 on the other). The haplotyping problem is to phase the
heterozygous sites, that is to determine on which of the two
haplotypes is the 0 allele and the 1 allele (Figure 6).

Genotype: 2 12012012

011011011-H1
11001001 0<=H2

Resolution:

Fig. 6. AgenotypeG and two haplotypes representing a possible resolution
of G.

The most accurate haplotyping methods follow (at least
implicitly) these principles:

1. If an unresolved genotype can be explained by a pair of
already known haplotypes, then this pair is likely to be
the right one. In case of many possible pairs, the most
likely one depends on the frequencies of the haplotypes
in the population.

2. Otherwise, at least one new haplotype is inferred. Any
new haplotype should be as close as possible, with respect
to the genetic model, to the other ones in the population.

In particular, PHASE uses a Gibbs sampling method, begin-
ning with an arbitrary resolution of the set of genotypes, and
successively updating each pair of haplotypes with respect to
the set of all other haplotypes. The whole process is repea-
ted for a fixed number of times, or until convergence. Pairs
of haplotypes are then reported with their associated probabi-
lities. However, in some cases convergence is not reached,
and some genotypes give rise to many possible haplotype
pairs with low probabilities. In this case, alternative methods
allowing to solve ambiguous genotypes may be valuable.

Here, we present a new method to resolve a single genotype
inlight of a set of known (or inferred) haplotypes. The first step
is to find an optimal pathway of mutations and recombinations
leading from the known haplotypes to the target genotype.
This pathway in then used to infer the haplotype pair.

The penalty model is based on the same three inputs MUT,
REC(7) and FREQH,,) defined in the preceding section.

3.1 Finding an optimal pathway

We generate the sé of all possible genotypes that can be
obtained from two haplotypes of HAP. More precisély—
{Gpq = (Hy,Hy), for 1 < p < g < h}. The problem

is then to find the recombination and mutation pathway of
minimal score”' generating the unresolved genoty@dérom
G.Forl < j < m,letC(j)bethe score of an optimal pathway
givingrisetoG[1..5] fromthe se6[1..5], andC, ,(j) the score

of such a path ending at genoty@g ,. Then

A genotype is commonly represented as a sequence of 0, 1

and 2, where 0 and 1 correspond to homozygous sites (both

C(j) = min{C, 4(j), for1 <p,q < h}
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Let R be an optimal pathway generatiayl..j] with score

Cp.4(j). Suppose first that, ,[j] = G[j]. ThenC, ,(j) is r_ HaHs Hs Hs
computed from somé’, . (j — 1) as follows: Hy Hy Hy Hy
1. If p = p’ andgq = ¢ (or similarly p = ¢’ andgq = p'), In this case, inferring the underlying pair of haplotypes is
then we just extend the genotygs , one position right. ~ Straightforward:
ThUS,Cpﬂ(j) = Cp,q(j - 1)- — %
2. Otherwise, ifp = g andp’ = ¢/, then there is one recom- 0011
bination betweerH,, and H, (or similarly betweer#,, However, in the case of two recombinations at the same site

andHy), andC, ,(j) = Cpp(j — 1) + REC(j) +  (case 3 above), the phase can not be deduced. For example:

FREQ(p).
3. Otherwise, if{p, ¢} N {p’, ¢’} = 0, then two recombina- Hy Hy Hy Hy _ Hy Hy Hy Hy

tions at sitej are necessary, an@d, ,(j) = Cp .o (j — Hs H3 Hy Hy — H3 Hy Hy Hy

1) +2.REQ(j) + FREQp) + FREQ(q). In this case, additional information should be considered

4. Otherwise/{p,q} N {p’,¢'}| = 1. W.l.o.g., assumg = to choose between the two different scenarios. Additional
p’. Then there is a recombination betwep andH,/,  penalties can also be added to favor informative pathways.
andCy4(j) = Cp ¢ (j — 1) + REQ(j) + FREQ(q). The situation with mutations is similar. Cases (a) and (b)

leave no ambiguities, where as case (c) do not allow to decide
on which of the two haplotype the mutation should be placed.
Here also, itis possible to prevent this case by adding an extra
penalty to this scenario. If ambiguous mutations persist, we
a. If the values ofG, ,[j] and G[j] are in {0,1} and chose to place them on the new haplotype that is the farthest

Let C;,,’q, (7) be the value obtained from the preceding for-
mula. If G, ,[j] # G[j]. then mutation penalties should be
added as follows:

p # ¢, then two mutations are necessary éhd, (j) =  one from known haplotypes.
Cy o (J) +2.MUT.
b. If the values ofG), 4[j] andG[j] are in{0,1}, butp = 4 EXPERIMENTS
g, then only one mutation is necessary and . (j) =  We simulated various independent data sets under the infinite-
Cp () +MUT. sites model by using the Hudson's program [12]. Each set
c. If G, ,(j) or G(j) has value, then just one mutation is consisted of 50 genotypes obtained by random pairing of 100
required, and’ (j) = C’(j) + MUT. haplotypes, assuming a panmictic constant size population.

For each set, we used PHASE version 2.1 with default parame-
ters. The software returns the best possible pairs of haplotypes
The final result i = C'(m) with the associate path. explaining each genotype, with a probability associated to
each pair. We considered a genotypeagiguousvhen all
Complexity: It is possible to compute each valag,,(;) in its best haplotype pairs were reported with probabilities of 0.3
constant time, since RE), MUT, FREQ(p) and FREQq)  ©OF Iess. For other genotypes, we stored all pairs of haplotypes
do not depend op, neither ony'. All we need is to compute  féported with probabilities> 0.3 in the set HAP of known
(at no additional cost) the following values, which correspondaplotypes. We finally applied our method to the ambiguous
tothe best choices of genotypes for the three possible scenarig§notypes. We then compared the predicted pairs with the true

of recombination: ones, and reported the number of correctly resolved geno-
types for each method. All tests were done with penalty 11
e min, o (Cp (j — 1)) for mutations and 10 for recombinations.
o miny (Cp 4(j — 1)) Table 1 shows the results obtained on datasets generated
. . with different recombination parameters. In each case, the
e ming (Cpq(j — 1))

number of ambiguous genotypes correctly resolved by our
Sincel < p < ¢ < handl < j < m, the global algorithm is higher. However, the impact on the overall per-

complexity of the algorithm is i (mh?). formance remains small. Moreover, these preliminary results
) ) do not allow to evaluate the effect of recombination rates on
3.2 Inferring haplotype pairs the accuracy of our method.

In the case of a single recombination at one site (cases 2 andWe then performed similar tests on longer haplotypes
4 above), there is no ambiguity to deduce the correspondin{rable 4). In this case, the number of ambiguous genotypes
haplotype pair. For example, suppose we have a genotypmrrectly resolved by our algorithm is significantly higher.
G = 0221, the haplotypedd; = 1111, H, = 0000, H3 = Moreover, solving each ambiguous haplotypes required no
0101 and the following optimal path: more than few seconds.
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Ambiguous genotypes application would be to estimate the frequencies of recombi-
Correctly resolved nations compared to those of gene conversions of different

4N.r | Total | by PHASE| by ours types, based on population data.
16 49 12 24 A direct application to the haplotyping problem has been
24 48 20 21 presented. The time efficiency of the developed algorithm
32 55 15 23 makes it useful to solve “hard” genotypes that give rise to
40 54 16 18 ambiguous results with statistical methods. The preliminary

results obtained are encouraging and reveal a good perfor-
Table 1. Results summed over 30 independent datasets for different valueB1ance for long genotypes. However more experiments have to
of the recombination parameté = 4N.r (120 independent data sets in be performed with different penalty scores, to test the method.
total)._We fixed the muta_tion parameterie= 4Nep = 1_6. The size of the At this stage, gene conversions were not included in our
resulting haplotypes varies from 60 to 100 polymorphic sites. evolutionary model for haplotyping, as our method do not
naturally extend to that case. However, this should have a
limited effect on the final solution, as gene conversions usually
involve one or two polymorphic sites, and thus can be treated

Ambiguous genotypes as mutations.
Correctly resolved

Dataset| Total | by PHASE| by ours

1 3 0 2 REFERENCES

2 2 1 2 [1]P. Andolfatto and M. Nordborg. The effect of gene conversion

3 3 0 1 on intralocus associationGenetics 148:1397- 1399, 1998.

4 3 0 2 [2]A. Clark. Inference of haplotypes from PCR-amplified samples

5 7 1 7 of diploid populationsMol. Biol. Evol, 7:111- 122, 1990.

6 3 0 0 [3]N. EI-Mabrouk. Deriving haplotypes through recombina-

7 4 1 1 tion and gene conversionlournal of computational Biology

8 3 0 1 2(2):241-256, 2004.

9 4 1 2 [4IN. El-Mabrouk and D. Labuda. Haplotypes histories as
pathways of recombinationsBioinformatics 20:1836-1841,

10 7 4 5 2004.

11 6 1 4 [S]E. Eskin, E. Halperin, and K. Karp. Large scale reconstruction

12 5 1 2 of haplotypes from genotype data.Rmoceedings of the seventh

13 5 1 1 annual international conference on reserach in Computational

14 4 0 3 molecular biology (RECOMBRACM Press, 2003.

15 2 0 0 [6]L. Excoffier and M. Slatkin. Maximum-likelihood estimation of

16 3 1 3 molecular haplotype frequencies in a diploid populatidol.

17 4 0 1 Biol. Evol, 12(5):921-927, 1995.

18 6 2 4 [7]S.B. Gabriel, S.F. Schaffner, H. Nguyen H, J.M. Moore, J. Roy,

19 3 0 1 B. Blumenstiel, J. Higgins, M. DeFelice, A. Lochner A, M. Fag-

20 7 0 2 gart, S.N. Liu-Cordero, C. Rotimi, A. Adeyemo, R. Cooper,
R. Ward, E.S. Lander, M.J. Daly, and D. Altshuler. The

Total 84 14 44 structure of haplotype blocks in the human genorSeience

296(5576):2225 - 2229, 2002.
Table 2. Results obtained for 20 datasets generated with the parameters[8]G. Greenspan and D. Geiger. Model-based inference of haplo-
4Nep = 4Ner = 32. The size of the resulting haplotypes varies from type block variation. InW. Miller, M. Vingron, and S. Istrail, edi-
125 to 185 polymorphic sites. tors,Proceedings of the seventh annual international conference
on reserach in Computational molecular biology (RECOIMB)
pages 131 - 137. ACM Press, 2003.
[9]T.A. Greenwood, B.K.Rana, and N.J. Schork. Human haplotype
block sizes are negatively correlated with recombination rates.
5 CONCLUSION Genome Research4:1358-1361, 2004.

. . [10]R.C. Griffiths and P. Marjoram. Ancestral inference from
We have developed formal tools to find probable evolutio- samples of DNA sequences with recombinatiodounal of

nary pathways giving rise to a given haplotype or genotype, Computational Biology3(4):479-502, 1996.

under a realistic model involving mutations, recombinations|11)p. Gusfield. Haplotyping as perfect phylogeny: Conceptual
and gene conversions. This is the first step toward a more  framework and efficient solutions. Rroceedings of the sixth

general heuristic allowing to reconstruct the complete evolu-  annual international conference on reserach in Computational
tionary network connecting all haplotypes. Anotherimportant ~ molecular biology (RECOMB)ages 166 - 175. ACM Press,




Haplotype reconstruction

2002. [23]M. Stephens and P. Donnelly. A comparison of bayesian
[12]R.R. Hudson. Generating samples under a wright-fisher neutral  methods for haplotype reconstruction from population genotype
model of genetic variationBioinformatics 18:337-338, 2002. data.Am. J. Hum. Genet73(4):1162- 1169, 2003.

[13]R.R. Hudson and N.L. Kaplan. Statistical properties of the num-[24]M. Stephens, N.J. Smith, and P. Donnelly. A new statistical
ber of recombination events in the history of a sample of DNA method for haplotype reconstruction from population dAta.
sequencesGenetics111:147-164, 1985. J. Hum. Genet.68(4):978- 989, 2001.

[14]3. Jaruzelska, E. Zietkiewicz, M. Batzer, D.E. Cole, J.P. Moisan,[25]E. Ukkonen. Finding founder sequences from a set of recom-
R. Scozzari, S. Tavaré, and D. Labuda. Spatial and temporal binants. In R. Guigé and D. Gusfield, editoSecond Inter-

distribution of the neutral polymorphisms in the last ZFX intron: national Workshop, Algorithms in Bioinformatics (WABI'02)
analysis of the haplotype structure and genealo@gnetics volume 2452 oLNCS pages 277-286. Springer, 2002.
152:1091-101, 1999. [26]B.C. Verrelli, J.H. McDonald, G. Argyropoulos, G. Destro-
[15]A.J. Jeffreys and C.A. May. Intense and highly localized gene  Bisol, A. Froment, A. Drousiotou, G. Lefranc, A.N. Helal,
conversion activity in human meiotic crossover hot spdtat J. Loiselet, and S.A. Tishkoff. Evidence for balancing selec-
Genet, 36(2):151- 156, 2004. tion from nucleotide sequence analyses of human G6RD.

[16]J. Kececioglu and D. Gusfield. Reconstructing a history of J. Hum. Genet.71:1112-28, 2002.
recombinations from a set of sequenceBiscrete Applied [27]J.D. Wall. Close look at gene conversion hot spolgature
Mathematics88:239-260, 1998. Genetics36(2):114 - 115, 2004.
[17]D. Labuda, E. Zietkiewicz, and V. Yotova. Archaic lineages in [28]L. Wang, K. Zhang, and L. Zhang. Perfect phylogenetic net-
the history of modern human&enetics 156:799- 808, 2000. works with recombinationJournal of Computational Biology
[18]S.R. Myers and R.C. Griffiths. Bounds on the minimum number 8(1):69-78, 2001.
of recombination events in a sampke histdBenetics2002. [29]C. Wiuf and J. Hein. The ancestry of a sample of sequences
[19]M.V. Osier, A.J. Pakstis, H. Soodyall, D. Comas, D. Goldman, subject to recombinatiorGenetics 151:1217-1228, 1999.
A. Odunsi, F. Okonofua, J. Parnas, L.O. Schulz, J. Bertranpetit[30]C. Wiuf and J. Hein. Recombination as a point process along

B. Bonne-Tamir, R.B. Lu, J.R. Kidd, and K.K. Kidd. A glo- sequencesTheoretical Population Biology5:248-259, 1999.
bal perspective on genetic variation at the ADH genes reveald31]C. Wiuf and J. Hein. The coalescent with gene conversion.
unusual patterns of linkage disequilibrium and diversitym. J. Genetics155:451-462, 2000.
Hum. Genet.71:84- 99, 2002. [32]S. Wu and X. Gu. A greedy algorithm for optimal recombination.
[20]D. Posada, K.A. Crandall, and E.C. Holmes. Recombinationin  In J. Wang, editorCOCOON volume 2001 ofLNCS pages
evolutionary genomicsAnnu. Rev. Genet36:75 - 97, 2002. 87-90. Springer-Verlag, 2001.
[21]M. Przeworski and J.D. Wall. Why is there so little intragenic [33]Y.S.Song and J.Hein. Onthe minimum number of recombination
linkage disequilibrium in humans3enet. Res., Cami7:143- events in the evolutionary history of dna sequencksMath.
151, 2001. Biol., 48:160- 186, 2004.

[22]R. Schwartz, A.G. Clark, and S. Istrail. Methods for infer- [34]K. Zhang, F. Sun, M.S. Waterman, and T. Chen. Dynamic
ring block-wise ancestral history from haploid sequences - The  programming algorithms for haplotype block partitioning: app-

haplotype coloring problem. In R. Guigé and D. Gusfield, lications to human chromosome 21 haplotype data. In W. Miller,

editors, Second International Workshop, Algorithms in Bio- M. Vingron, and S. Istrail, editor®2roceedings of the seventh

informatics (WABI'02) volume 2452 ofLNCS pages 44-59. annual international conference on reserach in Computational

Springer, 2002. molecular biology (RECOMB)ages 332 - 340. ACM Press,
2003.




