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ABSTRACT
Motivation Understanding haplotype and genotype evolu-
tion subject to mutation, recombination and gene conversion
is fundamental to understand genetic specificities of human
populations and hereditary bases of complex disorders. The
goal of this project is to develop new algorithmic tools assi-
sting the reconstruction of historical relationships between
haplotypes, and the inference of haplotypes from genotypes.
Results We present two algorithms. The first one finds an
optimal pathway of mutations, recombinations and gene con-
versions leading to a given haplotype of size m from a set
of h putative ancestral haplotypes. It runs in time O(mhs2),
where s is the maximum number of contiguous sites that can be
exchanged in a single gene conversion. The second one finds
an optimal pathway of mutations and recombinations leading
to a given genotype, and runs in time O(mh2). Both algorithms
are based on a penalty score model and use a dynamic pro-
gramming approach. We apply the second one to the problem
of inferring haplotypes from genotypes, and show how it can
be useful to resolve “hard” genotypes, when the underlying
pair of haplotypes differ substantially from frequent ones.
Availability The algorithms have been implemented in JAVA,
and are available on request.
Contact: mabrouk@iro.umontreal.ca

1 INTRODUCTION
Since the sequencing of the human genome, a great effort has
been deployed to characterize allelic diversity at the nucleo-
tide level, represented by single nucleotide polymorphisms
(SNPs). Having access to these genetic markers is funda-
mental for epidemiological studies in the quest of hereditary
bases of complex disorders. However, it is less the individual
variants that counts than their overall organization along the
chromosomes. A haplotype is a string of polymorphic sites
along a DNA sequence (Figure 1). Preliminary to any human
genetic project, is the acquirement of a haplotype dataset.
However, in diploid organisms, it is not feasible to examine the
two copies of a chromosome separately. Rather, it is the (less
informative)genotype, e.g. the combination of the two com-
plementary chromosomes, that is obtained. The haplotyping

problem is then to extract, from this information, individual
haplotypes.

In addition to characterizing allelic diversity created by
spontaneous mutations, understanding how individual vari-
ants are redistributed accross populations and organized in
blocks has been shown fundamental in the study of human
diversity and disease inference [34, 8, 7]. Recombination
redistribute individual variants among copies the homolo-
gous chromosomes [9, 20], and gene conversion occur when,
during crossing-over, the Holliday junction returns to the
initial configuration rather than being resolved such that
chromatids cross and thus accomplish the recombination
(Figure 2). Gene-conversion can be seen as two either con-
comitant or successive recombinations. However, at a short
distance, a double crossing-over within a single meiosis is
sterically impossible, and it is gene-conversion that can be
invoked to explain the data [27, 15, 1, 21]. To understand
the genealogical relationships between haplotypes and their
“blocky” structures, it is thus important to study their pro-
cess of evolution subject to mutation, recombination and gene
conversion.

Prior work on recombination and gene conversion has lar-
gely focused on statistical tests estimating the recombination
events [13, 18, 33], and on reconstructing the coalescent with
recombination and/or gene conversion, based on statistical
models assuming constant population length, random mating,
and given mutation and rearrangement rates per generation
[10, 30, 29, 31]. Other methods based on algorithmic opti-
mization have been considered for the reconstruction of a
plausible genealogy of haplotypes [16, 28, 25, 22, 32], but
most of these reconstruction problems have been shown NP-
hard. Consequently, simplified evolutionary models have been
considered. In particular, because of a relatively simple pattern
of haplotype diversity in the human genome with a domination
of few common haplotypes [14, 17, 19, 26], the complexity
of the haplotype network can be reduced by considering the
most frequent haplotypes as the most likely to recombine.

In this paper, we address the problem of inferring the most
realistic pathway of mutations, recombinations and gene con-
versions generating a given haplotype from a set ofh putative
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ancestral haplotypes of sizem. Previous dynamic program-
ming methods have been developed in the absence of gene
conversion [4, 22]. In [3], we formalized the problem and
described the whole set of pathways involving a minimum
number of recombinations and gene conversions leading to
a haplotype, and described a partial method to find a repre-
sentative pathway. Here, we consider the more general case
involving a penalty score model for mutations, recombinati-
ons and gene conversions, and describe an optimized dynamic
programming algorithm that runs in timeO(mhs2), wheres
is the maximum size of a gene conversion. This algorithm is
described in Section 2.

In the second part of this paper, we present a new algorithm
based on the same evolutionary model, to infer haplotypes
from genotypes. Several approaches have been developed for
this purpose, beginning with the Clark’s parsimony approach
[2] and maximum likelihood approaches [6]. In the absence
of recombinations, more combinatorial approaches based on
the perfect phylogeny model have been developed [11, 5]. In
the general case, the most widely used approach is PHASE,
based on a Gibbs sampling method [24, 23]. In most cases, the
software reports a set of accurate haplotype pairs. However
some genotypes give rise to ambiguous results, e.g. many pos-
sible haplotype pairs with low probabilities. Moreover time
before convergence may be very long. In section 3, we present
an efficient method, which runs in time(mh2), to resolve a
given genotype with respect to a set of known haplotypes. In
Section 4, we give some preliminary results demonstrating the
accuracy of this method for genotypes that have been revealed
problematic for PHASE.

2 RECOVERING RECOMBINATION AND
GENE CONVERSION PATHWAYS

We describe an algorithm that finds an optimal (least score)
pathway of mutations, recombinations and gene conversions
generating a given haplotype from a set HAP of known haplo-
types. This algorithm can be seen as a generalization of the
one described in [22] including gene conversions.

The classical methods for inferring historical relationships
between haplotypes assume an infinite site mutation model:
at each SNP site, a mutation only happened once in human
history. In other words, recurrent mutations and back mutati-
ons are forbidden. Here, we consider a relaxed model which
allows for recurrent and back mutations.

2.1 The model and notations
A haplotype of sizem is a string of symbols which models
m single nucleotide polymorphisms (SNPs) on a chromo-
somal segment. SNPs are usually bi-allelic such that in a
population, only two nucleotides are observed at each site.
Therefore, haplotypes can be represented as binary strings of
0’s (ancestral alleles) and1’s (new alleles) (Figure 1).
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Fig. 1. (a) A genomic sequence with its polymorphic sites indicated by
bold squares; (b) Three possible haplotypes found in the population, with
their representations as binary strings, assuming that upper alleles represent
ancestral ones.

A recombination between two haplotypesH1 andH2 can
be modeled as an operation that breaks upH1 andH2 between
sitesi andi− 1, and exchanges the two terminal parts ofH1

andH2. (Figure 2).
A gene conversionbetweenH1 andH2 is an operation that

breaks upH1 andH2 in three parts each by choosing the same
two pairs of adjacent sites in the two haplotypes,i, i− 1 and
j, j − 1, and exchanges the two middle parts ofH1 andH2

(Figure 2).
As only one of the resulting haplotypes is transmitted, a

recombination or a gene conversion can be represented as
H1,H2 −→ H3, whereH1,H2,H3 are three haplotypes.
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Fig. 2. The recombination and gene conversion mechanisms

Each SNP represents a mutation that has affected one haplo-
type in the population. Therefore, if recurrent mutations are
ignored, then allelic changes can be explained solely by
recombinations and gene conversions. In this paper, recur-
rent mutations are allowed, and we call amutation an event
that changes a0 into a1 or a1 into a0 in a haplotype.

In [22], Schwartzet. al. have considered a simplified pro-
babilistic model allowing to evaluate a recombination and
mutation pathway leading to a given haplotype. However,
assigning the appropriate probabilities is an open problem by
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itself. In this paper, we consider an alternative approach, by
attributing penalty scores for mutations, recombinations and
gene conversions.

The penalty score model is based on the following inputs:

1. MUT is the score of a (recurrent) mutation at any site in
any haplotype.

2. REC(i) specifies the score of a recombination between
sitesi − 1 andi. This value can be evaluated from the
nucleotide distance separating these sites.

3. GC(i, j) is the score of a gene conversion between the
two sitesi andj. This value depends on the number of
nucleotides separating sitesi+1 andj−1. We also define
the parameters representing the maximum site length of
a gene conversion,l = (j − i)− 1, that is the maximum
number of sites that can be exchange in a single gene
conversion. This value, which depends on the nucleotide
distances between the sites in the considered haplotypes,
is usually small and serves as a bound for an efficient
algorithmic complexity.

4. FREQ(Hp) is the score for choosing a particular haplo-
type Hp as part of the solution. We use the negative
log-frequency ofHp.

2.2 The algorithm
To simplify the ensuing algorithmic developments, we recode
the haplotypes in a way allowing to reformulate the problem as
one of generating theunitary haplotype, that is the haplotype
H such thatH[i] = 1 for any1 ≤ i ≤ m. Let HAP be the set
of h haplotypes of sizem (Figure 3).
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Fig. 3. A possible pathway generating the unitary haplotype from the
set HAP = {H1, H2, H3, H4}, with three gene conversions and one
recombination.

We denoteHp[i..j] = Hp[i] · · ·Hp[j], for 1 ≤ i ≤ j ≤ m.
In other words,Hp[i..j] is the subsequence of the haplotype
Hp of HAP beginning at positioni and ending at positionj.

We denote by HAP[i..j] the set{Hp[i..j], for 1 ≤ p ≤ h}.
A pathway generatingH[i..j] is said toend at haplotype

Hp if the last suffix ofH[i..j] comes fromHp.

To compute the minimal penalty scoreC of a pathway
generatingH from HAP, we recursively compute the sco-
resC(1, j) of the optimal pathways giving rise to the unitary
haplotypesH[1..j] from the set HAP[1..j], for 1 ≤ j ≤ m.

Let Cp(i, j) be the score of an optimal pathwayR giving
rise toH[i..j] and ending at haplotypeHp. Then

C(i, j) = min{Cp(i, j), for 1 ≤ p ≤ h}
We show how to computeCp(i, j) for i < j. The casei > j

is symmetrical and obtained in the same way, but considering
reverse haplotypes (red from right to left).

Suppose first thatHp[j] = 1. ThenCp(i, j) is one of the
following:

1. Cp(i, j) = Cp(i, j − 1): just extend the haplotypeHp

one position right.

2. If the last event ofR is a recombination at positionj, then
Cp(i, j) = C(i, j − 1) + REC(j) + FREQ(Hp).

3. If the last event ofR is a gene conversion between posi-
tions k and j, thenCp(i, j) = Cp(i, k) + CG(k, j) +
C(k + 1, j − 1). This case can happen only forj > 2.

recombination

gene conversion

extension

H h

H p

H q

k jj−1 m
Hap

Pos i1

Fig. 4. The main dynamic programming table and three possible cases for
the last event of a path giving rise toH[1..j], with scoreCp(1, j).

If Hp[j] = 0, an additional mutational event is necessary to
transformHp[j] to 1.

Therefore, if we denote:Mp(j) =
{

0 if Hp[j] = 1
MUT otherwise

Cp(i, j) = Mp(j) + min{Cp(i, j − 1),
C(i, j − 1) + REC(j) + FREQ(Hp),
minj−1−s≤k≤j−2{Cp(i, k) + CG(k, j) + C(k + 1, j − 1)}}

The basic cases areCp(i, i) = FREQ(p) + Mp(i) for 1 ≤
i ≤ mand the final pathway is the one leading to the scoreC =
C(1,m). The resulting algorithm is described in Figure 5.

Complexity: For each columnj of the main dynamic pro-
gramming table,1 ≤ j ≤ m, the algorithm is subdivided into
two parts:
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Initialization:
For i = 1 to m do

For j = 1 to m do
C(i, j) = ∞;

For p = 1 to h do
Cp(i, i) = FREQ(p) + Mp(i);
C(i, i) = min(C(i, i), Cp(i, i));

For each column of the main dynamic programming table:
For j = 2 to m do

For each line:
For p = 1 to h do

Cp(1, j) = min(C(1, j − 1) + REC(j), Cp(1, j − 1));
For each of thes columns preceding columnj :
For k = j − 2 down-to j − 1− s do if k > 0

CG = Cp(1, k) + CG(k, j) + C(j − 1, k + 1);
Cp(1, j) = min(Cp(1, j), CG);

End For (k)
Cp(1, j) = Cp(1, j) + Mp(j);
C(1, j) = min(C(1, j), Cp(1, j));

End For (p)

Consider “reverse” reconstruction, beginning at positionj
and a different table for storing theC∗(j, ∗) values;
For j′ = j − 1 down to j − s + 1 do

For p = 1 to h do
Cp(j, j′) = min(C(1, j − 1) + REC(j), Cp(1, j − 1));

For k = j′ + 2 to j do if k ≤ j

CG = Cp(j, k) + CG(j, k) + C(j′ + 1, k − 1)
Cp(j, j′) = min(Cp(j, j′), CG);

End For (k)
Cp(j, j′) = Cp(j, j′) + Mp(j′);
C(j, j′) = min(C(j, j′), Cp(j, j′));

End For (p)
End For (j’)

End For (j)

Fig. 5. Dynamic algorithm for the computation ofC(i, j), 1 ≤
i, j ≤ m. The value of the optimal path leading toH is given by
C(1, m).

• The computation ofC(1, j), that ismin1≤p≤h Cp(1, j).
For each haplotypep, 1 ≤ p ≤ h, computing the value of
Cp(1, j) requires to consider thes valuesCp(j−1, k+1),
for j − 1− s ≤ k ≤ j − 2. Therefore, the complexity of
this part isO(hs).

• The computation ofC(j, j′), for thes columnsj′ pre-
cedingj. As for the previous step, for each haplotypep,
1 ≤ p ≤ h, the computation ofCp(j, j′) requires to con-
sider all the valuesC(j′ + 1, k− 1), for j′ + 2 ≤ k ≤ j.
Therefore, the complexity of this part isO(hs2).

The total complexity of the algorithm is thusO(m(hs +
hs2)) = O(mhs2).

3 RECONSTRUCTING HAPLOTYPES FROM
GENOTYPES

A genotype is commonly represented as a sequence of 0, 1
and 2, where 0 and 1 correspond to homozygous sites (both

haplotypes have the same allele, i.e. two 0s or two 1s), and
2 represents heterozygous sites (a 0 on one haplotype and
a 1 on the other). The haplotyping problem is to phase the
heterozygous sites, that is to determine on which of the two
haplotypes is the 0 allele and the 1 allele (Figure 6).

  2   1   2   0   1   2   0   1   2

  0   1   1   0   1   1   0   1   1

  1   1   0   0   1   0   0   1   0

H1

H2

Genotype:

Resolution:

Fig. 6. A genotypeG and two haplotypes representing a possible resolution
of G.

The most accurate haplotyping methods follow (at least
implicitly) these principles:

1. If an unresolved genotype can be explained by a pair of
already known haplotypes, then this pair is likely to be
the right one. In case of many possible pairs, the most
likely one depends on the frequencies of the haplotypes
in the population.

2. Otherwise, at least one new haplotype is inferred. Any
new haplotype should be as close as possible, with respect
to the genetic model, to the other ones in the population.

In particular, PHASE uses a Gibbs sampling method, begin-
ning with an arbitrary resolution of the set of genotypes, and
successively updating each pair of haplotypes with respect to
the set of all other haplotypes. The whole process is repea-
ted for a fixed number of times, or until convergence. Pairs
of haplotypes are then reported with their associated probabi-
lities. However, in some cases convergence is not reached,
and some genotypes give rise to many possible haplotype
pairs with low probabilities. In this case, alternative methods
allowing to solve ambiguous genotypes may be valuable.

Here, we present a new method to resolve a single genotype
in light of a set of known (or inferred) haplotypes. The first step
is to find an optimal pathway of mutations and recombinations
leading from the known haplotypes to the target genotype.
This pathway in then used to infer the haplotype pair.

The penalty model is based on the same three inputs MUT,
REC(i) and FREQ(Hp) defined in the preceding section.

3.1 Finding an optimal pathway
We generate the setG of all possible genotypes that can be
obtained from two haplotypes of HAP. More precisely,G =
{Gp,q = (Hp,Hq), for 1 ≤ p ≤ q ≤ h}. The problem
is then to find the recombination and mutation pathway of
minimal scoreC generating the unresolved genotypeG from
G. For1 ≤ j ≤ m, letC(j)be the score of an optimal pathway
giving rise toG[1..j] from the setG[1..j], andCp,q(j) the score
of such a path ending at genotypeGp,q. Then

C(j) = min{Cp,q(j), for 1 ≤ p, q ≤ h}
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Let R be an optimal pathway generatingG[1..j] with score
Cp,q(j). Suppose first thatGp,q[j] = G[j]. ThenCp,q(j) is
computed from someCp′,q′(j − 1) as follows:

1. If p = p′ andq = q′ (or similarly p = q′ andq = p′),
then we just extend the genotypeGp,q one position right.
Thus,Cp,q(j) = Cp,q(j − 1).

2. Otherwise, ifp = q andp′ = q′, then there is one recom-
bination betweenHp andHp′ (or similarly betweenHq

and Hq′ ), andCp,p(j) = Cp′,p′(j − 1) + REC(j) +
FREQ(p).

3. Otherwise, if{p, q} ∩ {p′, q′} = ∅, then two recombina-
tions at sitej are necessary, andCp,q(j) = Cp′,q′(j −
1) + 2.REC(j) + FREQ(p) + FREQ(q).

4. Otherwise,|{p, q} ∩ {p′, q′}| = 1. W.l.o.g., assumep =
p′. Then there is a recombination betweenHq andHq′ ,
andCp,q(j) = Cp′,q′(j − 1) + REC(j) + FREQ(q).

Let C ′
p′,q′(j) be the value obtained from the preceding for-

mula. If Gp,q[j] 6= G[j], then mutation penalties should be
added as follows:

a. If the values ofGp,q[j] and G[j] are in {0, 1} and
p 6= q, then two mutations are necessary andCp′,q′(j) =
C ′

p′,q′(j) + 2.MUT.

b. If the values ofGp,q[j] andG[j] are in{0, 1}, but p =
q, then only one mutation is necessary andCp′,q′(j) =
C ′

p′,q′(j) + MUT.

c. If Gp,q(j) or G(j) has value2, then just one mutation is
required, andC(j) = C ′(j) + MUT.

The final result isC = C(m) with the associate path.

Complexity: It is possible to compute each valueCp,q(j) in
constant time, since REC(j), MUT, FREQ(p) and FREQ(q)
do not depend onp′, neither onq′. All we need is to compute
(at no additional cost) the following values, which correspond
to the best choices of genotypes for the three possible scenarios
of recombination:

• minp′,q′(Cp′,q′(j − 1))
• minp′(Cp′,q(j − 1))
• minq′(Cp,q′(j − 1))

Since1 ≤ p ≤ q ≤ h and 1 ≤ j ≤ m, the global
complexity of the algorithm is inO(mh2).

3.2 Inferring haplotype pairs
In the case of a single recombination at one site (cases 2 and
4 above), there is no ambiguity to deduce the corresponding
haplotype pair. For example, suppose we have a genotype
G = 0221, the haplotypesH1 = 1111, H2 = 0000, H3 =
0101 and the following optimal path:

R =
H3

H2

H3

H2

H3

H1

H3

H1

In this case, inferring the underlying pair of haplotypes is
straightforward:

G =
0101
0011

However, in the case of two recombinations at the same site
(case 3 above), the phase can not be deduced. For example:

H4

H3

H4

H3

H1

H2

H1

H2
≡ H4

H3

H4

H3

H2

H1

H2

H1

In this case, additional information should be considered
to choose between the two different scenarios. Additional
penalties can also be added to favor informative pathways.

The situation with mutations is similar. Cases (a) and (b)
leave no ambiguities, where as case (c) do not allow to decide
on which of the two haplotype the mutation should be placed.
Here also, it is possible to prevent this case by adding an extra
penalty to this scenario. If ambiguous mutations persist, we
chose to place them on the new haplotype that is the farthest
one from known haplotypes.

4 EXPERIMENTS
We simulated various independent data sets under the infinite-
sites model by using the Hudson’s program [12]. Each set
consisted of 50 genotypes obtained by random pairing of 100
haplotypes, assuming a panmictic constant size population.
For each set, we used PHASE version 2.1 with default parame-
ters. The software returns the best possible pairs of haplotypes
explaining each genotype, with a probability associated to
each pair. We considered a genotype asambiguouswhen all
its best haplotype pairs were reported with probabilities of 0.3
or less. For other genotypes, we stored all pairs of haplotypes
reported with probabilities≥ 0.3 in the set HAP of known
haplotypes. We finally applied our method to the ambiguous
genotypes. We then compared the predicted pairs with the true
ones, and reported the number of correctly resolved geno-
types for each method. All tests were done with penalty 11
for mutations and 10 for recombinations.

Table 1 shows the results obtained on datasets generated
with different recombination parameters. In each case, the
number of ambiguous genotypes correctly resolved by our
algorithm is higher. However, the impact on the overall per-
formance remains small. Moreover, these preliminary results
do not allow to evaluate the effect of recombination rates on
the accuracy of our method.

We then performed similar tests on longer haplotypes
(Table 4). In this case, the number of ambiguous genotypes
correctly resolved by our algorithm is significantly higher.
Moreover, solving each ambiguous haplotypes required no
more than few seconds.
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Ambiguous genotypes
Correctly resolved

4Ner Total by PHASE by ours
16 49 12 24
24 48 20 21
32 55 15 23
40 54 16 18

Table 1. Results summed over 30 independent datasets for different values
of the recombination parameterR = 4Ner (120 independent data sets in
total). We fixed the mutation parameter toθ = 4Neµ = 16. The size of the
resulting haplotypes varies from 60 to 100 polymorphic sites.

Ambiguous genotypes
Correctly resolved

Dataset Total by PHASE by ours
1 3 0 2
2 2 1 2
3 3 0 1
4 3 0 2
5 7 1 7
6 3 0 0
7 4 1 1
8 3 0 1
9 4 1 2
10 7 4 5
11 6 1 4
12 5 1 2
13 5 1 1
14 4 0 3
15 2 0 0
16 3 1 3
17 4 0 1
18 6 2 4
19 3 0 1
20 7 0 2
Total 84 14 44

Table 2. Results obtained for 20 datasets generated with the parameters
4Neµ = 4Ner = 32. The size of the resulting haplotypes varies from
125 to 185 polymorphic sites.

5 CONCLUSION
We have developed formal tools to find probable evolutio-
nary pathways giving rise to a given haplotype or genotype,
under a realistic model involving mutations, recombinations
and gene conversions. This is the first step toward a more
general heuristic allowing to reconstruct the complete evolu-
tionary network connecting all haplotypes. Another important

application would be to estimate the frequencies of recombi-
nations compared to those of gene conversions of different
types, based on population data.

A direct application to the haplotyping problem has been
presented. The time efficiency of the developed algorithm
makes it useful to solve “hard” genotypes that give rise to
ambiguous results with statistical methods. The preliminary
results obtained are encouraging and reveal a good perfor-
mance for long genotypes. However more experiments have to
be performed with different penalty scores, to test the method.

At this stage, gene conversions were not included in our
evolutionary model for haplotyping, as our method do not
naturally extend to that case. However, this should have a
limited effect on the final solution, as gene conversions usually
involve one or two polymorphic sites, and thus can be treated
as mutations.
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