
Theoretical Computer Science 320 (2004) 35–50
www.elsevier.com/locate/tcs

Classifying RNA pseudoknotted structures
Anne Condona ;∗ , Beth Davya , Baharak Rastegaria , Shelly Zhaoa ,

Finbarr Tarrantb
aDepartment of Computer Science, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
bThe Kane Building, Department of Computer Science, University College Cork, College Road, Ireland

Abstract

Computational prediction of the minimum free energy (mfe) secondary structure of an RNA
molecule from its base sequence is valuable in understanding the structure and function of
the molecule. Since the general problem of predicting pseudoknotted secondary structures is
NP-hard, several algorithms have been proposed that /nd the mfe secondary structure from a
restricted class of secondary structures. In this work, we order the algorithms by generality of the
structure classes that they handle. We provide simple characterizations of the classes of structures
handled by four algorithms, as well as linear time methods to test whether a given secondary
structure is in three of these classes. We report on the percentage of biological structures from
the PseudoBase and Gutell databases that are handled by these three algorithms.
c© 2003 Published by Elsevier B.V.

Keywords: RNA secondary structure; Pseudoknots; Classi/cation of structures

1. Introduction

RNA molecules—sequences of nucleic acid bases—play diverse roles in the cell: as
carriers of information, catalysts in cellular processes, and mediators in determining
the expression level of genes [5]. The structure of RNA molecules is often key to their
function, and so tools for computational prediction of RNA secondary structure—the
set of base pairings present in its folded state—are widely used.
While comparative approaches are most reliable for secondary structure predic-

tion [4], these approaches require that several homologous (i.e. evolutionarily and
functionally related) sequences are available. When just a single molecule is avail-
able, computational prediction of its secondary structure from its base sequence (at

∗ Corresponding author.
E-mail address: condon@cs.ubc.ca (A. Condon).

0304-3975/$ - see front matter c© 2003 Published by Elsevier B.V.
doi:10.1016/j.tcs.2004.03.042

mailto:condon@cs.ubc.ca


36 A. Condon et al. / Theoretical Computer Science 320 (2004) 35–50

Fig. 1. Arc representation of an RNA secondary structure. In the left substructure (up to index 25), arcs are
hierarchically nested, thus this is a pseudoknot-free substructure. Arcs cross in the substructure on the right,
thus it is pseudoknotted.

/xed temperature, ionic concentration, and pressure) is based on the premise that out
of the exponentially many possibilities, an RNA molecule is most likely to fold into the
minimum free energy (mfe) structure. The free energy of a given structure for a se-
quence is estimated by summing thermodynamic and entropic free energy terms asso-
ciated with the component loops of the secondary structure. Some of these terms have
been obtained experimentally, and others are estimated based on existing databases of
naturally occurring structures.
Unfortunately, /nding the mfe secondary structure for a given RNA sequence is

NP-hard [9]. Several polynomial time algorithms have been proposed for predicting the
mfe secondary structure from restricted classes of secondary structures. The most well
known such class is that of pseudoknot-free secondary structures (see Fig. 1). Many
biological RNA structures are pseudoknot free and extensive experimental work has
been done to determine parameters for the underlying thermodynamic model. Pseudo-
knot-free secondary structures can be described as generalized strings of balanced
parentheses. Dynamic programming algorithms for /nding the mfe pseudoknot-free sec-
ondary structure from the base sequence run in E(n3) time, and are the basis for the
well-known mfold and Vienna secondary structure prediction packages [7,10]. More-
over, there are linear time methods to test that a secondary structure (represented
as an ordered list of base pairs or stems) is pseudoknot free, and to calculate the
free energy of a given secondary structure for a given sequence. The latter algo-
rithm is quite useful in practice, and software to do it available as part of the mfold
package.
Pseudoknots occur in many natural structures [10,11]. Recently, algorithms have been

designed to predict the mfe secondary structure for limited classes of pseudoknotted
structures [1,6,8,11,13]. The running times of these algorithms range from E(n4) to
E(n6), and each handles a diGerent class of structures. However, the trade-oG between
the running time of the algorithms and the generality of the classes of structures they
handle has been poorly understood. Rivas and Eddy [11] state that “we still lack a
systematic a priori characterization of the class of con/gurations that this algorithm
can solve”. LyngsH and Pedersen (L&P) [9] do order several classes in terms of their
generality, but rely on examples rather than formal characterizations to explain which
structures cannot be handled by the classes. Moreover, other than for the algorithm
of Dirks and Pierce (D&P), there has been little data to indicate whether the class of



A. Condon et al. / Theoretical Computer Science 320 (2004) 35–50 37

structures handled by these algorithms includes most known pseudoknotted biological
structures.
To address these problems, in Section 3 we provide simple characterizations of the

classes of structures handled by four algorithms: the Rivas and Eddy (R&E) class
(which is the most general class known to us), the class of Akutsu and Uemura et al.
(A&U) [13,1], the Dirks and Pierce (D&P) [6] class, and a simple class, modeled
after that of LyngsH and Pedersen (L&P). Using our characterizations, we provide linear
time algorithms to test if an input structure is in the R&E, D&P, and L&P classes,
and present results for several RNA secondary structure families. As an example of
our results, in tests of 486 secondary structures with isolated base pairs removed, we
found that all but three Group II Intron structures are in the R&E class.
We provide background on RNA secondary structure in Section 5, and describe our

results in more detail in subsequent sections.

2. Secondary structure background

An RNA molecule is a chain of four types of bases, denoted by A, C, G, and U
(for Adenine, Cytosine, Guanine, and Uracil). The chain has distinct 5′ and 3′ ends.
We index the bases consecutively from the 5′ end, starting at 1. A folded molecule
is held together by hydrogen bonds between pairs of bases, with each base typically
participating in at most one pair. A set R of such base pairs is called a secondary
structure of the molecule. If bases indexed i and j are paired where i¡j then we
write i · j∈R. Throughout, we use n to denote the length of a molecule.
Fig. 1 gives an arc representation of a secondary structure. The chain of indexed

bases is represented as an indexed line of dots, and arcs connect paired bases. Later, we
will use a linked list representation of secondary structures, where list elements are the
base indices, ordered starting from the 5′ end, with additional pointers corresponding
to arcs of the structure’s arc representation.
We will also use an alternative pattern representation of secondary structures. In

a pattern, information about the base indices is lost but the pattern of nesting or
overlaps among base pairs is preserved. (We note that the de/nition of pattern could
be extended so that unpaired bases are represented using a special symbol.) To de/ne
patterns precisely, we introduce some notation. We use � to denote the empty string.
Let Nn denote the natural numbers between 1 and n (inclusive). For any string s over
alphabet 
, s ↓ � denotes the string s with all occurrences of � removed. Also, |s|
denotes the number of symbols in s.
Patterns: A string p (of even length) over some alphabet 
 is a secondary structure

pattern, or simply a pattern, if every symbol of 
 occurs either exactly twice, or not
at all, in p. We say that secondary structure R for a strand of length n corresponds to
pattern p if there exists a mapping m : Nn → 
∪{�} with the following properties:
(i) if i · j∈R then m(i)∈
 and m(i)=m(j), (ii) if i · j and j · i =∈R for all j∈Nn,
then m(i)= �, and (iii) p=m(1)m(2) : : : m(n). For example, the substructure of Fig. 1
from indices 5 to 21 corresponds to pattern ABBACDEEDC, and the substructure
from indices 43 to 50 corresponds to pattern ABCDBADC. It is possible to convert



38 A. Condon et al. / Theoretical Computer Science 320 (2004) 35–50

between commonly used representations of secondary structures, such as list of base
pairs, and pattern representations, in time linear in n.
Let R⊆N2

n correspond to pattern p over alphabet � and let mapping m wit-
ness this correspondence. Let m−1

i : 
 → Nn be de/ned by m−1
i (�)=

min{i ∈Nn |m(i)= �}∪ {n+1} and let m−1
j (�)= max{ j∈Nn |m(j)= �}∪ {0}. Note

that m−1
i (�) ∈Nn if and only if m−1

j (�) ∈Nn, in which case m−1
i (�)¡m−1

j (�). Also,
(m−1

i (�); m−1
j (�))= (n+1; 0) if and only if � does not occur in pattern p. If (m−1

i (�);
m−1
j (�)) 
=(n+1; 0) then m−1

i (�) ·m−1
j (�)∈R and we say that base pair m−1

i (�) ·m−1
j

(�) corresponds to �.
Fig. 1 illustrates a pseudoknot free substructure (up to index 25) and a pseudo-

knotted substructure. Formally, a secondary structure R is pseudoknot free if for all
pairs i · j and i′ · j′ in R, it is not the case that i¡i′¡j¡j′. Applying this de/nition
directly to determine whether a secondary structure is pseudoknot free would require
E(n2) time. However, linear time tests for pseudoknot freeness are well known. For
completeness, and because our characterizations of pseudoknotted secondary structure
classes presented later are similar, we outline such a test here. We use the notion of
pseudoknot free patterns.
Pseudoknot free patterns: We say that symbol � is self-adjacent in string p if �� is a

substring of p. We write p−→
PKF

p′ if p′ =p ↓ �, for some self-adjacent

symbol � of p, and p ∗−−→
PKF

p′ if p=p′ or ∃ patterns p1; : : : ; pk for some k such

that p−→
PKF

p1−→
PKF
· · ·pk −→

PKF
p′. We say that p is a pseudoknot free pattern if and only

if p ∗−−→
PKF

�.

It is straightforward to show that secondary structure R is pseudoknot free if and
only if the pattern corresponding to R is pseudoknot free. Roughly, a linear time test
that a pattern is pseudoknot free simply scans the pattern from left to right, removing
self-adjacent pairs when possible. The pattern is empty after the last symbol is scanned,
if and only if it is pseudoknot free.

3. Structure classes

Dynamic programming algorithms for prediction of mfe pseudoknotted secondary
structures were proposed (in chronological order) by Uemura et al. [13], Akutsu [1],
Rivas and Eddy (R&E) [11], LyngsH and Pedersen (L&P) [8], and Dirks and Pierce
(D&P) [6]. (We note that the D&P algorithm is more general than the others, in that
it can calculate the partition function as well as the mfe secondary structure.) Each
algorithm /nds the mfe structure from a limited class of secondary structures. Akutsu
derived his class by simplifying that of Uemura et al. We call the class, as described
by Akutsu, the A&U class. We refer to the other classes by the initials of the au-
thors of the algorithm. We note that our version of the L&P class is simpler than
that de/ned in their paper—see Section 3.4. We use PKF to denote the class of pseu-
doknot free secondary structures. In summary, the classes can be properly ordered as



A. Condon et al. / Theoretical Computer Science 320 (2004) 35–50 39

follows:

PKF ⊂ L&P ⊂ D&P ⊂ A&U ⊂ R&E:

The fact that the A&U class is properly contained in the R&E class was already noted
by LyngsH and Pedersen [9], by comparing the structure of the recurrences of both
algorithms. Instead, to derive our containments, in the next subsections we develop
formal characterizations of each of the D&P and R&E classes. Precise descriptions of
the A&U and L&P classes are already in the work of Akutsu [1] and LyngsH and
Pedersen (L&P) [8], respectively, but we also characterize these classes in a manner
similar to our characterizations of the D&P and R&E classes, so that the containments
above can be derived.

3.1. R&E structures

The R&E structure class is de/ned implicitly by the recurrences of the algorithm of
Rivas and Eddy [11]. We /rst abstract the form of the recurrences to de/ne the class of
secondary structures that their class can handle; this is done formally in the de/nition
of R&E-algorithm patterns below. Following this, we give our characterization of the
structure class, and argue that our characterization is equivalent to the class of R&E-
algorithm patterns.
We need to account for “gapped regions” that play an important role in the R&E

recurrences, and so we /rst introduce generalized patterns. A generalized pattern over

 is a string p over 
∪{G}, where G =∈
, such that there is at most one G in
p and p ↓G is a pattern. A generalized pattern p over alphabet 
 is a generalized
R&E-algorithm pattern if at least one of the following conditions hold.
1. p= � or p= �g�, for some �∈
 and g∈{G; �}.
2. p=Gp′ or p=p′G where p′ is a generalized R&E-algorithm pattern.
3. p=p1p2gp3p4 where |p|¿4, g∈ [G; �], p1p2p3p4 ∈
∗, and either

(a) p1Gp3 and p2Gp4 are generalized R&E-algorithm patterns, |p1Gp3|¡|p|, and
|p2Gp4|¡|p|, or,

(b) p1Gp4 and p2gp3 are generalized R&E-algorithm patterns, |p1Gp4|¡|p|, and
|p2gp3|¡|p|.

4. p=p1Gp2p3p4 or p=p1p2p3Gp4 where |p|¿4, p1Gp3 and p2Gp4 are gener-
alized R&E-algorithm patterns, |p1Gp3|¡|p|, and |p2Gp4|¡|p|.

A generalized R&E-algorithm pattern p is a R&E-algorithm pattern if p does not
contain G. We say that secondary structure R is an R&E secondary structure it cor-
responds to a R&E-algorithm pattern.
We next de/ne the class of R&E patterns, which is a simple generalization of the

pseudoknot free patterns. In Theorem 1 we will show that the set of R&E-algorithm
patterns is equal to the set of R&E patterns. Let p be a string over alphabet 
. Symbol
� is directly adjacent to symbol � in p if and only if either ��� is a substring of p
or there are two disjoint substrings x; y of p, both of length 2, such that � and � are
both in x and � and � are both in y. (The direct adjacency relation is not necessarily
symmetric.) If � is directly adjacent to some symbol in pattern p, we say � is directly
adjacent in p.



40 A. Condon et al. / Theoretical Computer Science 320 (2004) 35–50

Let p be a pattern. We say that p−−→
R&E

p′ if p′ =p ↓ � for some � that is either self-

adjacent or directly adjacent in p. Also, p ∗−−→
R&E

p′ if p=p′ or ∃ patterns p1; : : : ; pk

for some k such that p−−→
R&E

p1−−→
R&E
· · ·pk −−→

R&E
p′. Pattern p is R&E if p ∗−−→

R&E
�.

A generalized pattern p over 
∪{G} is a generalized R&E pattern if either p is
R&E, p ∗−−→

R&E
G or p ∗−−→

R&E
�G� for some �∈
.

Theorem 1. The R&E secondary structures are exactly the structures corresponding
to R&E patterns.

Proof. We show one direction, that if p is a generalized R&E-algorithm pattern, then
p is a generalized R&E pattern. The proof is by induction on |p|. The base case is
straightforward. For the inductive step, let |p|¿3, and suppose that all generalized
R&E-algorithm patterns of length ¡|p| are R&E.

In the most interesting case, p=p1p2gp3p4 where case 3(b) of the de/nition of
R&E-algorithm patterns holds for p1; p2; p3 and p4. Since |p1Gp4|¡|p| and |p2gp3|¡
|p|, it follows from the induction hypothesis that p1Gp4 and p2gp3 are generalized
R&E patterns. The result therefore follows from the following claim.

Claim. If p1Gp4 and p2gp3 are generalized R&E patterns, where g∈ [G; �] then
p1p2gp3p4 is a generalized R&E pattern.

Claim can be also be proved in a straightforward way, by induction on |p1p2p3p4|.
One base case is when for some � and �, �=p1 =p4 and �=p2 =p3, so that
p= ��g��−−→

R&E
�g�, which is a generalized R&E pattern by the base case of the de/-

nition of R&E patterns.
For the inductive step, let |p1p2p3p4|¿4 and suppose that the Claim holds for all

p′
1; p

′
2; p

′
3; p

′
4 with |p′

1p
′
2p

′
3p

′
4|¡|p1p2p3p4|. We consider the case where |p1p4|¿2;

the case where |p2p3|¿2 is similar. Suppose that p1Gp4−−→
R&E

p′
1Gp

′
4, where p

′
1Gp

′
4 is

a generalized R&E pattern. Then, by the induction hypothesis, since |p′
1Gp

′
4|¡|p1Gp4|,

p′
1p2gp3p′

4 is a generalized R&E pattern. Also, p1p2gp3p4−−→
R&E

p′
1p2gp3p′

4, since if

� is self-adjacent or directly adjacent in p1gp4 then � must also be self-adjacent or
directly adjacent in p1p2gp3p4. Therefore,

p1p2gp3p4−−→
R&E

p′
1p2gp3p′

4
∗−−→

R&E
�;

from which the Claim follows.

3.2. A&U et al. structures

We /rst de/ne the A&U structure class, following the de/nition of Akutsu [1].
A secondary structure R is called a simple pseudoknot if there exist j′0; j0 ∈Nn with
j′0¡j0 for which the following conditions are satis/ed.
1. Each i · j∈R satis/es either i¡j′06j¡j0 or j′06i¡j06j.
2. If i · j and i′ · j′ are in R with either i¡i′¡j′0 or j′06i¡i′, then j′¡j.



A. Condon et al. / Theoretical Computer Science 320 (2004) 35–50 41

R is an A&U secondary structure if either R is a simple pseudoknot or a pseudoknot
free secondary structure, or for some i0; k0; 16i0¡k06n; R=R′ ∪R′′ where R′⊆
(Nn − [i0; k0])2, R′′⊆ [i0; k0]2, R′ is an A&U structure and R′′ is a nonempty simple
pseudoknot or pseudoknot free structure.
Our characterization of A&U structures is less elegant than that obtained for the

R&E class in the previous section, but is nevertheless useful in order to compare the
classes.
Let p be a string. We say that � is directly nested in p, with respect to �, if disjoint

substrings �� and �� appear in p in that order. If � is directly nested in p, with respect
to some �, we say that � is directly nested in p. We say that � is A&U-adjacent in
p, with respect to � if � is directly nested in p or if substring � is followed (not
necessarily contiguously) by substring ��� in p.
Given �, we say p−−−→

A&U; �
p′ if p′ =p ↓ � for some � that is A&U-adjacent in p

with respect to �. We say p ∗−−−→
A&U; �

p′ if for some k¿0, ∃ patterns p1; : : : ; pk such that

p−−−→
A&U; �

p1−−−→
A&U; �

· · ·pk −−−→
A&U; �

p′, and moreover, � is self-adjacent in p′.

We say that p−−→
A&U

p′ if p′ =p ↓ � for some � that is self-adjacent or directly nested

in p or if p ∗−−−→
A&U; �

p′ for some �. We say that p ∗→
A&U

p′ if p=p′ or ∃ patterns p1; : : : ; pk

such that p−−→
A&U

p1−−→
A&U

· · · spk −−→
A&U

p′. Pattern p is A&U if p ∗→
A&U

�.

Theorem 2. The A&U secondary structures are exactly the structures corresponding
to A&U patterns.

Proof. We include the direction that every A&U secondary structure corresponds to
an A&U pattern. Let R be an A&U secondary structure. Firstly, if R is pseudoknot
free, then its corresponding pattern is a pseudoknot free pattern, and therefore an A&U
pattern, since the −−→

A&U
relation generalizes the −→

PKF
relation.

Secondly, suppose that R is a simple pseudoknot, but is not pseudoknot free. Let p
be the pattern corresponding to R. Let p′ be obtained from p by repeatedly removing
any self-adjacent symbols and let R′ be the substructure of R obtained by removing
the base pairs corresponding to these self-adjacent symbols. Let � be the /rst symbol
in p′. Let i · j be the base pair of R′ corresponding to �. Then, since R′ is not pseu-
doknot free, by condition 1 of the de/nition of a simple pseudoknot it must be that
i6j′06j¡j0. Moreover, condition 1, together with the fact that p′ contains no self-
adjacent base pairs, implies that for all other base pairs i′ · j′, either (i) i¡i′¡j′¡j¡j0
or (ii) j′06i′¡j¡j06j′.
Let � be the symbol just to the left of the second occurrence of � in p′, and let

i′ · j′ be the base pair of R′ corresponding to �. Then, either i′ · j′ satis/es case (i)
of the last paragraph, in which case � is directly nested in p′ with respect to �, or
i′ · j′ satis/es case (ii) of the last paragraph, in which case ��� is a substring of p′.
In either case, � is A&U-adjacent to � in p′, and so p′−−−→

A&U; �
p′ ↓ �. Let p′′ =p′ ↓ �

and let �′ be the symbol just to the left of the second occurrence of � in p′′. If �′ 
= �,



42 A. Condon et al. / Theoretical Computer Science 320 (2004) 35–50

then by the same reasoning as for �, it must be that p′′−−−→
A&U; �

p′′ ↓ �′. Continuing in

this way, we conclude that p′ ∗−−−→
A&U; �

��.

Therefore, p ∗→
A&U

� by a series of steps in which /rst self-adjacent symbols are re-

moved, then symbols that are A&U adjacent to the /rst symbol � of p are removed,
and /nally ��−−→

A&U
�. Therefore, p is an A&U pattern.

Finally, suppose that R is an A&U secondary structure that is neither a simple pseu-
doknot nor pseudoknot free. Then, for some i0; k0; 16i0¡k06n; R=R′ ∪R′′ where
R′⊆ (Nn − [i0; k0])2, R′′⊆ [i0; k0]2, R′ is an A&U structure and R′′ is a nonempty
simple pseudoknot or pseudoknot free structure. Let p;p′, and p′′ be the patterns cor-
responding to R; R′, and R′′, respectively. A proof by induction can be used to show
that if p′ and p′′ are A&U patterns, then so is p; in fact p ∗→

A&U
p′ ∗→

A&U
�. Therefore R

corresponds to an A&U pattern.

3.3. D&P structures

As with the R&E structure class, the D&P structure class is also de/ned implicitly,
in this case by the recurrences of the algorithm of Dirks and Pierce [6]. We abstract
the form of the recurrences to de/ne the class of secondary structures that their class
can handle; this is done formally in the de/nition of D&P-algorithm patterns below,
which is in fact a restriction of the recurrences of Rivas and Eddy. (Our abstraction
does not capture certain features of their algorithm, that are important in the context
of their work, but not important in terms of de/ning the class of structures handled.)
Following this, we give our characterization of the D&P structure class.
A generalized pattern p over alphabet 
 is a generalized D&P-algorithm pattern if

at least one of the following conditions hold.
1. p= � or �g�, for some �∈
 and g∈{G; �}.
2. p=Gp′ or p′G where p′ is a generalized D&P-algorithm pattern.
3. p= �p1� for some �∈
, where p1 is a generalized D&P-algorithm pattern.
4. p=p1p2p3p4 where |p|¿4, p∈
∗, p1Gp3 and p2Gp4 are generalized D&P-

algorithm patterns, |p1Gp3|¡|p|, and |p2Gp4|¡|p|.
5. p=p1p2Gp3p4 where |p|¿4 and either

(a) p2Gp3p4 and p1 are generalized D&P-algorithm patterns, |p2Gp3p4|¡|p| and
|p1|¡|p|, or,

(b) p1p2Gp3 and p4 are generalized D&P-algorithm patterns, |p1p2Gp3|¡|p| and
|p4|¡|p|.

A generalized D&P-algorithm pattern p is a D&P-algorithm pattern if p does not
contain G. We say that secondary structure R is an D&P secondary structure it
corresponds to a D&P-algorithm pattern.
We next de/ne the class of D&P patterns. Let p be a string. We say that p−−→

D&P
p′ if

p′ =p ↓ � for some � that is self-adjacent or directly nested in p, or if p′ =(p ↓ �) ↓ �
for some symbols � and � such that the substring ���� is in p. p ∗−−→

D&P
p′ if p=p′



A. Condon et al. / Theoretical Computer Science 320 (2004) 35–50 43

or ∃ patterns p1; : : : ; pk such that p−−→
D&P

p1−−→
D&P
· · ·pk −−→

D&P
p′. Pattern p is D&P if

p ∗−−→
D&P

�.

Theorem 3. The D&P secondary structures are exactly the structures corresponding
to D&P patterns.

The proof of Theorem 3 is similar in spirit to that of Theorem 1.

3.4. L&P structures

LyngsH and Pedersen [8] outline a dynamic programming algorithm for a restricted
class of structures. The class includes structures of the form s1s2s′1s

′
2 where both

s1s′1 and s2s′2 are pseudoknot free. We call such structures L&P structures. Simi-
lar to the characterizations above, we can also describe the L&P structure class as
follows.
Let p be a string. We say that p−−→

D&P
p′ if p′ =p ↓ � for some � that is self-adjacent

or directly nested in p, or if p= ���� and p′ = �. p ∗→
L&P

p′ if p=p′ or ∃ patterns

p1; : : : ; pk such that p−−→
L&P

p1−−→
L&P
· · ·pk −−→

L&P
p′. Pattern p is L&P if p ∗→

L&P
�. Sec-

ondary structure R is a L&P secondary structure if it corresponds to a L&P pattern p.
The following theorem follows easily from the above de/nitions.

Theorem 4. The L&P structure class is exactly the set of L&P secondary structures.

The algorithm outlined by LyngsH and Pedersen can also handle structures of the
form s1s2s′1s

′
2s

′′
1 where both s1s′1s

′′
1 and s2s′2 are pseudoknot free. We call this class

L&P+. Lyngso and Pedersen [9] note that PKF⊂L&P+⊂R&E. However, L&P+ is
incomparable with the D&P and A&U classes, since ABACBC is in L&P+ but not in
A&U, while ABCDCDAB is in D&P but not in L&P+. In what follows, we work with
the simpler L&P class.

3.5. Containments between the classes

We can now prove the following theorem:

Theorem 5.

PKF ⊂ L&P ⊂ D&P ⊂ A&U ⊂ R&E:

Proof. Consider each of −→
PKF

, −−→
L&P

, −−→
D&P

, −−→
A&U

and −−→
R&E

as relations. Each relation is

speci/ed using rules that generalize that relation earlier in the above list.



44 A. Condon et al. / Theoretical Computer Science 320 (2004) 35–50

Therefore,

p ∗−−→
PKF

p′ ⇒ p ∗→
L&P

p′ ⇒ p ∗−−→
D&P

p′ ⇒ p ∗→
A&U

p′ ⇒ p ∗−−→
R&E

p′:

From our characterizations, it follows that the following patterns separate the classes
(details omitted): (i) ABAB is in L&P - PKF, (ii) ABCBCA is D&P - L&P,
(iii) ABCBDADC is A&U - D&P [6], and (iv) ABCABC is R&E - A&U [6]. Also,
ABCADBECDE is not R&E [11].

4. Testing membership in structure classes

We have developed linear-time tests for membership in the R&E, D&P, and the
L&P classes. Here, we describe the algorithms, and report on the results of applying
the algorithms on several biological structures.

4.1. A linear time algorithm to recognize R&E structures

Algorithm 1 tests if a pattern over some /xed alphabet 
 is a R&E pattern. The
pattern is scanned from the left and the −−→

R&E
operation is applied when possible. In

the algorithm, � is a symbol variable over 
∪{�} and pL and pR are string variables
over 
∗. Let s and s′ be string variables over 
∗. If s′ = �′1�

′
2 · · · �′k with all �′i ∈
 and

k¿1, then we de/ne the operation �s← s′ to set � to �′1 and s to �′2 · · · �′k . Similarly,
the operation s� ← s′ sets � to �′k and s to �′1 · · · �′k−1. If s

′ = � then the operations
�s← s′ and s�← s′ set �= s= �.

Algorithm 1. A test for R&E patterns

algorithm R&E-Pattern-Test
input: pattern p= �1�2 · · · s�k ∈
k with k¿2
output: yes, if p is an R&E pattern and no otherwise

pL ← �; �← �1; pR ← �2 · · · s�k ;
repeat
if some � is directly adjacent to � then
arbitrarily choose any such �;
pL ← pL ↓ �; pR ← pR ↓ �;

elseif � is self-adjacent or directly adjacent then
p′
L ← pL ↓ �; p′

R ← pR ↓ �;
if p′

L 
= � then pL�← p′
L; pR ← p′

R
else �pR ← p′

R; pL ← p′
L;

else pL ← pL�; �pR ← pR;
until �= �;
if pL= � then return yes else return no



A. Condon et al. / Theoretical Computer Science 320 (2004) 35–50 45

If the pattern is stored as a doubly linked list of symbols, with additional links
between the two instances of each symbol, then each iteration of the repeat loop
can be implemented in O(1) time. Thus, the total time is O(k) on an input pat-
tern of length k. In Theorem 6, we prove that algorithm R&E-Pattern-test recog-
nizes exactly the R&E patterns. The following lemma is key to the
proof:

Lemma 1. Let p be a R&E pattern and let p−−→
R&E

p ↓ �. Then p ↓ � is R&E.

Proof. Suppose that p=p0−−→
R&E

p1 · · · −−→
R&E

pk −−→
R&E

�. Let i be such that pi =pi−1 ↓ �.
The proof is given in two cases.
First, suppose that � is self-adjacent in p, or that � is directly adjacent to  in p,

where  ∈pi. Then we claim that

p ↓ � = p0 ↓ �−−→
R&E

p1 ↓ �−−→
R&E
· · · spi−1 ↓ � = pi−−→

R&E
· · · spk ↓ �−−→

R&E
�; (1)

from which the lemma follows. To see why (1) is true, /x any j; 16j¡i and let
pj =pj−1 ↓ �. We need to show that pj−1 ↓ �−−→

R&E
pj ↓ �. If � is self-adjacent or di-

rectly adjacent to some  
= � in pj−1, then it is also the case that � is self-adjacent
or directly adjacent to some  
= � in pj−1 ↓ �, and so pj−1 ↓ �−−→

R&E
pj ↓ �. Other-

wise, it must be that � is directly adjacent to � in pj−1. Then if � is self-adjacent
in p, ���� is a substring of pj−1, in which case � is self-adjacent in pj−1 ↓ �. If
� � is a substring of p for some  , then � � is a substring of pj−1 ↓ �, in which
case � is directly adjacent in pj−1 ↓ �. Finally, if p contains two disjoint substrings
x; y, both of length 2, such that for some  ,  and � are both in x and  and �
are both in y, and  ∈pi then pj−1 ↓ � must contain two substrings x; y, both of
length 2, such that � and  are both in x and � and  are both in y, in which
case again � is directly adjacent to  in pj−1 ↓ �. In all cases, we can conclude that
pj−1 ↓ �−−→

R&E
pj ↓ �.

Second, suppose that p contains two disjoint substrings x; y, both of length 2, such
that for some  ,  and � are both in x,  and � are both in y, and  is not in pi.
Let h be such that ph=ph−1 ↓  , where h¡i. For h6l6i − 1, let p′

h be obtained by
replacing � with  . Note that ph−1 ↓ �=p′

h and p′
i−1−−→R&E

p′
i−1 ↓  =pi. In this case

we claim that

p ↓ �=p0 ↓ �−−→
R&E

: : : ph−1 ↓ �

=p′
h−−→R&E

p′
h+1−−→R&E

· · ·p′
i−1−−→R&E

pi−−→
R&E

pi+1−−→
R&E
· · ·pk ↓ �−−→

R&E
�:

To see why, for j¡h, the argument that pj−1 ↓ �−−→
R&E

pj ↓ � is as in the /rst case

above. It remains to show that for h¡j6i − 1, p′
j−1−−→R&E

p′
j. Fix any such j. Let



46 A. Condon et al. / Theoretical Computer Science 320 (2004) 35–50

pj =pj−1 ↓ �, (so that also p′
j =p′

j−1 ↓ �). If � is directly adjacent to � in pj−1, then
� is directly adjacent to  in p′

j−1, in which case p′
j−1−−→R&E

p′
j.

Theorem 6. Algorithm R&E-pattern-test outputs yes on input p if and only if p is
R&E.

Proof. Let p(i)
L , �(i), and p(i)

R be the values of variables pL; �, and pR at the end of the
ith iteration of the repeat loop. Let l be the total number of iterations of the repeat loop
(since at every iteration, either |pR| or |pL| decreases, the algorithm must halt). It is
straightforward to show that for each i, 16i6l, either p(i−1)

L �(i−1)p(i−1)
R =p(i)

L �(i)p(i)
R or

p(i−1)
L �(i−1)p(i−1)

R −−→
R&E

p(i)
L �(i)p(i)

R .

Also, if the algorithm returns yes, then p(l)
L �(l)p(l)

R = �. Therefore, if the algorithm
returns yes, p is R&E.
If the algorithm returns no, then |p(l)

L |¿0 and also �(l)p(l)
R = �. Therefore, p ∗−−→

R&E
p(l)
L .

From Lemma 1 it follows that if p(l)
L is not R&E, then p is not R&E. To show that

p(l)
L is not R&E we show that the following invariant is true for each i; 06i6l.
Invariant: No symbol is self-adjacent in p(i)

L , and if any symbol � is directly adjacent
in p(i)

L then ��(i)� is a substring of p(i)
L .

Since p(0)
L = �, the invariant is true for i=0. Suppose the invariant is true for

i − 1. We show that it is true for i. It is straightforward to show that if p(i)
L is a

pre/x of p(i−1)
L , then the invariant holds for i. Otherwise, it must be the case that

for some �, either ��(i−1) or �(i−1)� (or both) is in p(i−1)
L , p(i)

L =p(i−1)
L ↓ �, and

�(i) = �(i−1).
Let # and $ be the symbols (if any) just before and just after �(i−1) in p(i)

L . Then #
and $ are the only symbols which could possibly be self-adjacent or directly adjacent
in p(i)

L but not in p(i−1)
L . Since the only change to # and $ is that now �(i−1) is their

neighbour, and since neither # nor $ can equal �(i−1), they cannot be self-adjacent.
However, if #= $ then # is directly adjacent to �(i−1), because #�i−1# is a substring
of p(i)

L . Therefore, since �(i) = �(i−1), the invariant holds for i. From the invariant, we
conclude that no symbol in p(l)

L is self-adjacent or directly adjacent. Therefore, p(l)
L is

not R&E.

4.2. Linear time algorithms to recognize D&P and L&P structures

Algorithms 2 and 3 test for membership in the D&P and L&P structure classes,
respectively. They are very similar to Algorithm 1, and their correctness proofs are
also similar (details omitted).



A. Condon et al. / Theoretical Computer Science 320 (2004) 35–50 47

Algorithm 2. A test for D&P patterns

algorithm D&P-Pattern-Test
input: pattern p= �1�2 : : : �k ∈
k with k¿2
output: yes, if p is a D&P pattern and no otherwise

pL ← �; �← �1; pR ← �2 : : : �k ;
repeat

if some � is directly nested with respect to � then
pL ← pL ↓ �; pR ← pR ↓ �;

elseif � is self-adjacent then
p′
L ← pL ↓ �; p′

R ← pR ↓ �;
if p′

L 
= � then pL�← p′
L; pR ← p′

R
else �pR ← p′

R; pL ← p′
L;

else if ��� is a suRx of pL for some � then
p′
L ← (pL ↓ �) ↓ �;

if p′
L 
= � then pL�← p′

L; pR ← p′
R

else �pR ← p′
R; pL ← p′

L;

else pL ← pL�; �pR ← pR;
until �= �;
if pL= � then return yes else return no.

Algorithm 3. A test for L&P patterns

algorithm L&P-Pattern-Test
input: pattern p= �1�2 : : : �k ∈
k with k¿2
output: yes, if p is an L&P pattern and no otherwise

pL ← �; �← �1; pR ← �2 : : : �k ;
repeat

if some � is directly nested with respect to � then
pL ← pL ↓ �; pR ← pR ↓ �;

elseif � is self-adjacent then
p′
L ← pL ↓ �; p′

R ← pR ↓ �;
if p′

L 
= � then pL�← p′
L; pR ← p′

R
else �pR ← p′

R; pL ← p′
L;

else pL ← pL�; �pR ← pR;
until �= �;
if pL= � or |pL|=4 then return yes else return no.



48 A. Condon et al. / Theoretical Computer Science 320 (2004) 35–50

Table 1
Structure classi/cation

PBase 16S 23S Gp I Gp II NDB
Intron Intron

(a) For structures with isolated base pairs not removed
No. of Strs 240 152 69 10 3 12
Avg.
No. of Bps 14.2 466 763.1 128.9 209 312.4
PKF 0 0 14 0 0 1
L&P 231 12 14 10 0 1
D&P 232 150 14 10 0 5
R&E 240 152 25 10 0 7

(b) For structures with isolated base pairs removed
No. of Strs 240 152 69 10 3 12
Avg.
No. of Bps 14.1 455.6 733 126.1 207 268
PKF 0 0 21 0 0 6
L&P 231 12 21 10 0 6
D&P 232 152 21 10 0 11
R&E 240 152 69 10 0 12

In each part, columns 2–7 present data for each RNA data set. For each data set (column), the entry in
/rst row lists the number of structures in the data set. The second row lists the average number of base pairs
in the structures once isolated base pairs are removed. The remaining rows list the number of structures of
the data set that are in the PKF, L&P, D&P, and R&E classes, respectively.

4.3. Classi9cation of biological structures

We applied our algorithms to classify secondary structures from PseudoBase (PBase)
[2], the Nucleic Acids Database (NDB) [3], 16S and 23S ribosomal RNA and Groups I
and II Introns from the Gutell Database [4]. (We also considered 5S RNA secondary
structures, and all were pseudoknot free.) We considered only secondary structures
with no occurrences of triple base stacking. Structures in these data sets may con-
tain isolated base pairs, namely base pairs i · j such that neither (i + 1) · (j − 1) nor
(i − 1) · (j + 1) is in the structure. Since isolated base pairs are sometimes consid-
ered to be tertiary rather than secondary structure, we classi/ed the structures be-
fore and after removal of the isolated base pairs. Our results are presented in
Table 1.
The R&E structure class is indeed very general, containing all of the secondary

structures with isolated base pairs removed except for three (long) Group II Intron
sequences. The D&P class does not contain most of the 23S rRNA structures, and
contains eight fewer PseudoBase structures than the R&E class, but otherwise compares
well with the R&E class. The L&P class additionally misses almost all of the 16S rRNA
structures, yet still contains almost all of the structures in PseudoBase.



A. Condon et al. / Theoretical Computer Science 320 (2004) 35–50 49

5. Conclusions

Our characterizations of structure classes handled by RNA secondary structure pre-
diction algorithms, and our tests for membership in these classes, provide the /rst means
for evaluating the generality of current algorithms. The results show that
current algorithms do in fact handle a wide range of known biological structures,
though not all such structures.
There is a trade-oG between algorithm complexity and the generality of the class

of structures that can be handled by the algorithm. An interesting question is whether
faster algorithms can be found for any of the classes L&P, D&P, A&U, or R&E, or
whether algorithms with comparable running times but that handle a more general (and
biologically interesting) class of structures can be obtained.
In future work, we will develop a linear time algorithm for characterizing the A&U

structure class.

Acknowledgements

We thank Mirela Andronescu, Matthew Cook, Robert Dirks, Holger Hoos, Niles
Pierce, Joseph SchaeGer, Dan Tulpan, and Erik Winfree for valuable feedback on earlier
versions of this work.

References

[1] T. Akutsu, Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots,
Discrete Appl. Math. 104 (2000) 45–62.

[2] F.H.D. Batenburg, A.P. van, Gu. ltyaev, C.W.A. Pleij, J. Ng, J. Oliehoek, Pseudobase: a database with
RNA pseudoknots, Nucl. Acids Res. 28 (1) (2000) 201–204.

[3] H.M. Berman, et al., The mucleic acid database: a comprehensive relational database of
three-dimensional structures of nucleic acids, Biophys. J. 63 (1992) 751–759.

[4] J.J. Cannone, et al., The comparative RNA web (CRW) site: an online database of comparative sequence
and structure information for ribosomal, intron, and other RNAs, BioMed Central Bioinformatics
3 (2002) 2 (correction: BioMed Central Bioinformatics 3 (2002) 15).

[5] C. Dennis, The brave new world of RNA, Nature 418 (11) (2002) 122–124.
[6] R.M. Dirks, N.A. Pierce, A partition function algorithm for nucleic acid secondary structure including

pseudoknots, J. Comput. Chem. 24 (13) (2003) 1664–1677.
[7] I.L. Hofacker, W. Fontana, P.F. Stadler, S.L. BonhoeGer, M. Tacker, P. Schuster, Fast folding and

comparison of RNA secondary structures, Monatsh. Chem. 125 (1994) 167–188.
[8] R.B. LyngsH, C.N. Pedersen, Pseudoknots in RNA secondary structures, Proc. 4th Ann. Internat. Conf.

on Computational Molecular Biology (RECOMB), 2000, pp. 201–209.
[9] R.B. LyngsH, C.N. Pedersen, RNA pseudoknot prediction in energy-based models, J. Comput. Biol.

7 (3) (2000) 409–427.
[10] D.H. Mathews, J. Sabina, M. Zuker, D.H. Turner, Expanded sequence dependence of thermodynamic

parameters improves prediction of RNA secondary structure, J. Mol. Biol. 288 (1999) 911–940.
[11] E. Rivas, E.S.R. Eddy, A dynamic programming algorithm for RNA structure prediction including

pseudoknots, J. Mol. Biol. 285 (1999) 2053–2068.
[12] E. Rivas, S.R. Eddy, The language of RNA: A formal grammar that includes pseudoknots,

Bioinformatics 16 (2000) 334–340.



50 A. Condon et al. / Theoretical Computer Science 320 (2004) 35–50

[13] Y. Uemura, A. Hasegawa, S. Kobayashi, T. Yokomori, Tree adjoining grammars for RNA structure
prediction, Theoret. Comput. Sci. 210 (1999) 277–303.

[14] M. Zuker, P. Steigler, Optimal computer folding of large RNA sequences using thermodynamics and
auxiliary information, Nucleic Acids Res. 9 (1981) 1330–1348.


	Classifying RNA pseudoknotted structures
	Introduction
	Secondary structure background
	Structure classes
	R&E structures
	A&U et al. structures
	D&P structures
	L&P structures
	Containments between the classes

	Testing membership in structure classes
	A linear time algorithm to recognize R&E structures
	Linear time algorithms to recognize D&P and L&P structures
	Classification of biological structures

	Conclusions
	Acknowledgements
	References


