IFT 1065 – Démonstration 4

1. Démontrer les identités suivantes :

$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$$

 $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$

2. Démontrer

$$\begin{bmatrix}
-x \\
-x
\end{bmatrix} = \begin{bmatrix}
-x \\
-x
\end{bmatrix}$$

$$x \le 0 \Rightarrow |x| = -x$$

- 3. Soit la série géométrique $S = \sum_{k=0}^{n} x^{k}$. Montrer qu'on peut obtenir une expression explicite pour S à partir de la quantité xS.
- 4. Soit $f(x) = \sum_{k=0}^{\infty} x^k$ et $g(x) = \sum_{k=0}^{\infty} kx^k$. En reliant $g \ à f'$, montrer comment trouver une expression explicite pour g(x).
- 5. Établir une expression pour la série arithmétique $\sum_{k=1}^{n} k$ à partir de la série télescopique construite autour de $(k+1)^2 k^2$. Montrer comment généraliser cette technique à la série $\sum_{k=1}^{n} k^2$.
- 6. Sachant que série arithmétique $\sum_{k=1}^{n} k$ est égale à un polynôme du second degré $an^2 + bn + c$, trouver les coefficients de ce polynôme. Montrer comment généraliser cette technique à la série $\sum_{k=1}^{n} k^2$.
- 7. Si $f \in O(g)$, a-t-on $\lg(f) \in \lg(g)$? A-t-on $2^f \in O(2^g)$?
- 8. Montrer que $\lg n! \in \Theta(n \lg n)$.
- 9. Montrer que la série harmonique $H_n = \sum_{k=1}^n \in \Theta(\lg n)$.