IFT 6504 : DEVOIR 1

Patrice Marcotte

$\grave{\mathbf{A}}$ remettre le lundi 10 février 2014

1 (15 :	$\mathbf{points})$
Soit X un ensemble convexe. On définit :	
$dist(x, X) = \min_{y \in X} x - y $	
$B(x;t) = \{y : y - x \le t\}$	
$X_t = \{x : \operatorname{dist}(x, X) \le t\}$	
$Y_t = \{x : B(x;t) \subseteq X\}.$	
Démontrer que les ensembles X_t et Y_t sont convexes. Ces résultats sont-ils si X n'est pas convexe?	s valides
2(15 :	\mathbf{points}
Soit le programme linéaire paramétrique	
$f(t) = \max \qquad (c+t)x$	
sujet à $Ax \leq b$.	
Démontrer que f est convexe et caractériser son sous-différentiel.	
Démontrer un résultat semblable pour le problème :	
$f(t) = \max cx$	
sujet à $Ax \leq b + t$.	
3 (15 :	\mathbf{points}
Exercice 4.18 dans le livre de Bazaara, Sherali et Shetty (page 176 , de édition).	euxième
4(15	\mathbf{points}
Exercice 5.1 dans le livre de Bazaara, Sherali et Shetty (page 195, de édition).	euxième

5 _____ (15 points)

Soit une matrice A semidéfinie positive, mais pas nécessairement symétrique. Démontrer qu'il existe toujours un vecteur $x \geq 0$ non nul tel que $Ax \geq 0$, en étudiant le programme linéaire

$$\max \sum_{j} x_{j}$$
s.t.
$$Ax \ge 0$$

$$x > 0$$

et son dual.

Si A est symétrique, montrer qu'on peut obtenir le même résultat à partir des conditions d'optimalité du programme quadratique

6 _____ (15 points)

Soient E_1, E_2, \ldots, E_n n ensembles convexes et fermés tels que $X^* = \bigcap_{i=1}^n E_i \neq \emptyset$. On cherche un point de X^* en projetant successivement le point courant sur l'ensemble le plus éloigné.

Faire le lien entre cet algorithme et l'algorithme de sous-gradient :

$$x^{k+1} = x^k - \frac{f(x) - f^*}{\|\xi\|^2} \xi^k,$$

où $\xi^k \in \partial f(x^k)$ et en déduire la convergence de la suite des itérés vers un point de X^* .

7 ______ (10 points)

Soit g une fonction convexe et non décroissante d'une seule variable et f une fonction convexe définie sur un sous-ensemble convexe C de \mathbb{R}^n . Montrer que la fonction g(f(x)) est convexe sur C. En déduire des conditions sur le scalaire a et la matrice Q pour que la fonction $\exp(ax^tQx)$ soit convexe.