
GRAHAM TAYLOR

LEARNING TO COMPARE

SCHOOL OF ENGINEERING
UNIVERSITY OF GUELPH

Deep Learning Summer School 2015
Montreal, Quebec

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

2

Overview: this talk

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

2

• Learning to compare examples

- it’s a big field!

- we will focus on methods inspired by
deep learning 
and representation learning  

Overview: this talk

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

2

• Learning to compare examples

- it’s a big field!

- we will focus on methods inspired by
deep learning 
and representation learning  

• Applications: finding similar documents,
pose-sensitive retrieval, zero-shot learning

Overview: this talk

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

3

• Pixel distance ≠
perceptual similarity

• Computing distances in
pixel space is also
computationally
expensive

• Learning parametric
embeddings that are
invariant to certain input
variability

Learning similarity

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

4

• Perceptually similar observations are mapped
to nearby points on a manifold

• Key question: where does similarity come from?

The setup

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

4

• Perceptually similar observations are mapped
to nearby points on a manifold

• Key question: where does similarity come from?

The setup

input code

xi
zif(x|�)

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

4

• Perceptually similar observations are mapped
to nearby points on a manifold

• Key question: where does similarity come from?

The setup

input code

xi
zif(x|�)

input code

f(x|�) zjxj

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

4

• Perceptually similar observations are mapped
to nearby points on a manifold

• Key question: where does similarity come from?

The setup

input code

xi
zif(x|�)

input code

f(x|�) zjxj

d(zi, zj)d(xi,xj)

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

5

• Surprisingly effective
(Boiman et al. 2008,
McCann and Lowe, 2012)

• Fast, especially when
combined with
Approximate Nearest
Neighbour or Hashing

• Generalize to new classes
at near-zero cost (Mensink
et al. 2013)

One motivation: nearest neighbour
methods

Figure 3. “Image-to-Image” vs. “Image-to-Class” distance. A
Ballet class with large variability and small number (three) of ‘la-
belled’ images (bottom row). Even though the “Query-to-Image”
distance is large to each individual ‘labelled’ image, the “Query-
to-Class” distance is small. Top right image: For each descrip-
tor at each point in Q we show (in color) the ‘labelled’ image
which gave it the highest descriptor likelihood. It is evident that
the new query configuration is more likely given the three images,
than each individual image seperately. (Images taken from [4].)

the entire class C (using all images I 2 C), we would
get better generalization capabilities than by employing in-
dividual “Image-to-Image” measurements. Such a direct
“Image-to-Class” distance can be obtained by computing
the KL-distance between the descriptor distributions of Q
and C. As can be seen in Fig. 3, even though the “Query-
to-Image” KL-distance is large for all the ‘labelled’ images
in the Ballet class, the “Query-to-Class” KL-distance may
still be small, enabling correct classification. Inferring new
image configurations by “composing pieces” from a set of
other images was previously shown useful in [17, 4].
We prove (Sec. 3) that under the Naive-Bayes assump-

tion, the optimal distance to use in image classification is
the KL “Image-to-Class” distance, and not the commonly
used “Image-to-Image” distribution distances (KL, ¬2, etc.)

3. Probabilistic Formulation
In this section we derive the optimal Naive-Bayes im-

age classifier, which is approximated by NBNN (Sec. 4).
Given a new query (test) image Q, we want to find its
class C. It is well known [7] that maximum-a-posteriori
(MAP) classifier minimizes the average classification er-
ror: ˆC = arg maxC p(C|Q). When the class prior p(C)

is uniform, the MAP classifier reduces to the Maximum-
Likelihood (ML) classifier:

ˆC = arg max

C
p(C|Q) = arg max

C
p(Q|C).

Let d1, ..., dn denote all the descriptors of the query im-
age Q. We assume the simplest (generative) probabilistic
model, which is the Naive-Bayes assumption (that the de-
scriptors d1, ..., dn ofQ are i.i.d. given its classC), namely:

p(Q|C) = p(d1, .., dn|C) =

nY

i=1

p(di|C)

Taking the log probability of the ML decision rule we get:

ˆC = arg max

C
log(p(C|Q)) = arg max

C

1

n

nX

i=1

log p(di|C)

(1)
The simple classifier implied by Eq. (1) is the optimal clas-
sification algorithm under the Naive-Bayes assumption. In
Sec 4 we show how this simple classifier can be accurately
approximated using a non-parametric NN-based algorithm
(without descriptor quantization).

Naive-Bayes classifier , Minimum “Image-to-Class”
KL-Distance: In Sec. 2.2 we discussed the generalization
benefits of using an “Image-to-Class” distance. We next
show that the above MAP classifier of Eq. (1) is equivalent
to minimizing “Query-to-Class” KL-distances.
Eq. (1) can be rewritten as:

ˆC = arg max

C

X

d

p(d|Q) log p(d|C)

where we sum over all possible descriptors d. We can sub-
tract a constant term independent of C from the right hand
side of the above equation, without affecting ˆC. By sub-
tracting

P
d p(d|Q) log p(d|Q), we get:

ˆC = arg max

C
(

X

d2D

p(d|Q) log

p(d|C)

p(d|Q)

)

= arg min

C
(KL(p(d|Q)kp(d|C))) (2)

where KL(·k·) is the KL-distance (divergence) between
two probability distributions. In other words, under the
Naive-Bayes assumption, the optimal MAP classifier mini-
mizes a “Query-to-Class” KL-distance between the descrip-
tor distributions of the query Q and the class C.
A similar relation between Naive-Bayes classification

and KL-distance was used in [28] for texture classifica-
tion, yet between pairs of images (i.e., “Image-to-Image”
distances and not “Image-to-Class” distances). Distances
between descriptor distributions for the purpose of classifi-
cation have also been used by others [6, 16, 20, 27, 30], but
again – between pairs of images.

4. The Approximation Algorithm Using NN
In this section we present the “NBNN” classifier, which

accurately approximates the optimal MAP Naive-Bayes im-
age classifier of Sec. 3.

Non-Parametric Descriptor Density Estimation:
The optimal MAP Naive-Bayes image classifier of Eq. (1)
requires computing the probability density p(d|C) of de-
scriptor d in a classC. Because the number of local descrip-
tors in an image database is huge (on the order of the num-
ber of pixels in the database), a Parzen density estimation

Image: Boiman et al. (2008)

Credit: Google Server Farm in Council Bluffs, Iowa (Wired)

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

7

Outline

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

7

Outline

Unsupervised

LSA, Semantic Hashing, Multi-index Hashing

Semantically

Similar

Documents

Document

Address Space

Semantic

Hashing

Function

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

7

Outline

Unsupervised

LSA, Semantic Hashing, Multi-index Hashing

Semantically

Similar

Documents

Document

Address Space

Semantic

Hashing

Function

Supervised

NCA, Nonlinear NCA, DrLIM, Triplet Embedding

€

x i

€

x j

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

high-dimensional to low-dimensional space. Finally we introduce a related but different objective
for our model based on DrLIM.

3.1 Neighbourhood Components Analysis

NCA (both linear and nonlinear) and DrLIM do not presuppose the existence of a meaningful and
computable distance metric in the input space. They only require that neighbourhood relationships
be defined between training samples. This is well-suited for learning a metric for non-parametric
classification (e.g. KNN) on high-dimensional data. If the original data does not contain discrete
class labels, but real-valued labels (e.g. pose information for images of people) one alternative is to
define neighbourhoods based on the distance in the real-valued label space and proceed as usual.
However, if classification is not our ultimate goal, we may wish to exploit the “soft” nature of the
labels and use an alternative objective (i.e. one that does not optimize KNN performance).

Suppose we are given a set of N labeled training cases {xi,yi}, i = 1, 2, . . . , N , where xi 2 RD,
and yi 2 Rl. For each training vector, xi, the probability that point i selects one of its neighbours j
is defined in the transformed feature space [12]:

pij =
exp(�d2ij)P
k 6=i exp(�d2ik)

, dij = ||zi � zj ||2 (1)

where we use a Euclidean distance metric dij and zi = f(xi|⇥) is the mapping (parametrized
by ⇥) from input space to feature space. For NCA this is typically linear, but it can be extended
to be nonlinear through back-propagation (for example in [32] it is a multi-layer neural network).
NCA assumes that the labels, yi are discrete yi 2 1, 2, . . . , C rather than real-valued and seeks to
maximize the expected number of correctly classified points on the training data which minimizes:

LNCA = �
NX

i=1

X

j:yi=yj

pij . (2)

The parameters are found by minimizing LNCA with respect to ⇥, back-propagating in the case of
a multi-layer parametrization. Instead of seeking to optimize KNN classification performance, we
can use the NCA regression (NCAR) objective [18]:

LNCAR =
NX

i=1

X

j

pij ||yi � yj ||22. (3)

Intuitively, if i and j are neighbours in feature space, then they should also lie close together in label
space. While we use the Euclidean distance in label space, our approach generalizes to other metrics
which may be more appropriate for a different domain.

Keller et al. [18] consider the linear case of NCAR, where ⇥ is a weight matrix and y is a scalar
representing Bellman error to map states with similar Bellman errors close together. Similar to
NCA, we can extend this objective to the nonlinear, multi-layer case. We simply need to compute
the derivative of LNCAR with respect to the output of the mapping, zi, and backpropagate through
the remaining layers of the network. The gradient can be computed efficiently as:

⇧LNCAR

⇧zi
=

X

j

(zi � zj)
⇥
pij

�
y2ij � �i

�
+ pji

�
y2ij � �j

�⇤
. (4)

where we use the shorthand y2ij = ||yi � yj ||22 and �i =
P

j pijy
2
ij .

3.2 Convolutional architectures
As [32] points out, nonlinear NCA was originally proposed in [12] but with the exception of a
modest success with a two-layer network in extracting 2D codes that explicitly represented the
size and orientation of face images, attempts to extract more complex properties using multi-layer
feature extraction were less successful. This was due, in part, to the difficulty in training multi-layer
networks and the fact that many data pairs are required to fit the large number of network parameters.

Though both [32] and [35] were successful in learning a multi-layer nonlinear mapping of the data,
there is still a fundamental limitation of using fully-connected networks that must be addressed.
Such an architecture can only be applied to relatively small image patches (typically less than 64⇥64
pixels), because they do not scale well with the size of the input. Salakhutdinov and Hinton escaped

3

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

7

Outline

Unsupervised

LSA, Semantic Hashing, Multi-index Hashing

Semantically

Similar

Documents

Document

Address Space

Semantic

Hashing

Function

Weakly supervised

Applications to pose-sensitive retrieval, zero-shot learning

Supervised

NCA, Nonlinear NCA, DrLIM, Triplet Embedding

€

x i

€

x j

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

high-dimensional to low-dimensional space. Finally we introduce a related but different objective
for our model based on DrLIM.

3.1 Neighbourhood Components Analysis

NCA (both linear and nonlinear) and DrLIM do not presuppose the existence of a meaningful and
computable distance metric in the input space. They only require that neighbourhood relationships
be defined between training samples. This is well-suited for learning a metric for non-parametric
classification (e.g. KNN) on high-dimensional data. If the original data does not contain discrete
class labels, but real-valued labels (e.g. pose information for images of people) one alternative is to
define neighbourhoods based on the distance in the real-valued label space and proceed as usual.
However, if classification is not our ultimate goal, we may wish to exploit the “soft” nature of the
labels and use an alternative objective (i.e. one that does not optimize KNN performance).

Suppose we are given a set of N labeled training cases {xi,yi}, i = 1, 2, . . . , N , where xi 2 RD,
and yi 2 Rl. For each training vector, xi, the probability that point i selects one of its neighbours j
is defined in the transformed feature space [12]:

pij =
exp(�d2ij)P
k 6=i exp(�d2ik)

, dij = ||zi � zj ||2 (1)

where we use a Euclidean distance metric dij and zi = f(xi|⇥) is the mapping (parametrized
by ⇥) from input space to feature space. For NCA this is typically linear, but it can be extended
to be nonlinear through back-propagation (for example in [32] it is a multi-layer neural network).
NCA assumes that the labels, yi are discrete yi 2 1, 2, . . . , C rather than real-valued and seeks to
maximize the expected number of correctly classified points on the training data which minimizes:

LNCA = �
NX

i=1

X

j:yi=yj

pij . (2)

The parameters are found by minimizing LNCA with respect to ⇥, back-propagating in the case of
a multi-layer parametrization. Instead of seeking to optimize KNN classification performance, we
can use the NCA regression (NCAR) objective [18]:

LNCAR =
NX

i=1

X

j

pij ||yi � yj ||22. (3)

Intuitively, if i and j are neighbours in feature space, then they should also lie close together in label
space. While we use the Euclidean distance in label space, our approach generalizes to other metrics
which may be more appropriate for a different domain.

Keller et al. [18] consider the linear case of NCAR, where ⇥ is a weight matrix and y is a scalar
representing Bellman error to map states with similar Bellman errors close together. Similar to
NCA, we can extend this objective to the nonlinear, multi-layer case. We simply need to compute
the derivative of LNCAR with respect to the output of the mapping, zi, and backpropagate through
the remaining layers of the network. The gradient can be computed efficiently as:

⇧LNCAR

⇧zi
=

X

j

(zi � zj)
⇥
pij

�
y2ij � �i

�
+ pji

�
y2ij � �j

�⇤
. (4)

where we use the shorthand y2ij = ||yi � yj ||22 and �i =
P

j pijy
2
ij .

3.2 Convolutional architectures
As [32] points out, nonlinear NCA was originally proposed in [12] but with the exception of a
modest success with a two-layer network in extracting 2D codes that explicitly represented the
size and orientation of face images, attempts to extract more complex properties using multi-layer
feature extraction were less successful. This was due, in part, to the difficulty in training multi-layer
networks and the fact that many data pairs are required to fit the large number of network parameters.

Though both [32] and [35] were successful in learning a multi-layer nonlinear mapping of the data,
there is still a fundamental limitation of using fully-connected networks that must be addressed.
Such an architecture can only be applied to relatively small image patches (typically less than 64⇥64
pixels), because they do not scale well with the size of the input. Salakhutdinov and Hinton escaped

3

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

8

Unsupervised approach

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

8

• Learn (possibly deep) representations completely unsupervised

- compute distances between top-level representations

- representations are usually low-dimensional

Unsupervised approach

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

8

• Learn (possibly deep) representations completely unsupervised

- compute distances between top-level representations

- representations are usually low-dimensional

• Classical methods: Latent Semantic Analysis (based on SVD), pLSA, LDA

- But directed models don’t seem like a natural fit

- fast inference is important for information retrieval

Unsupervised approach

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

8

• Learn (possibly deep) representations completely unsupervised

- compute distances between top-level representations

- representations are usually low-dimensional

• Classical methods: Latent Semantic Analysis (based on SVD), pLSA, LDA

- But directed models don’t seem like a natural fit

- fast inference is important for information retrieval

• Use undirected models in which exact inference is fast

- Single layer approach by generalizing RBMs: Welling et al. 2005

- Multi-layer approach: Salakhutdinov and Hinton 2007 “Semantic Hashing”

Unsupervised approach

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

9

• Visible layer represents word-count
vector of a document

- special RBM: 
 “Constrained Poisson Model”

• Learn Constrained Poisson ➛ Binary
first layer

• This allows you to represent each
document with a binary representation

• Forms the first layer of a deep model

Constrained Poisson model

v

h

W

Poisson

Binary

Constrained

Latent Topic Features

Observed Distribution

over Words over Words

N*W W
softmax

Reconstructed Distribution

(Figures from R. Salakhutdinov and G. Hinton)

Restricted Boltzmann Machine
(RBM)

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

10

Deep auto-encoders

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

10

Deep auto-encoders

input

x

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

10

Deep auto-encoders

input

x

• Learn one or more binary RBMs in a “greedy” fashion

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

10

Deep auto-encoders

input

x

• Learn one or more binary RBMs in a “greedy” fashion

CP-B
RBM

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

10

Deep auto-encoders

input

x

• Learn one or more binary RBMs in a “greedy” fashion

CP-B
RBM

B-B
RBM1

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

10

Deep auto-encoders

input

x

• Learn one or more binary RBMs in a “greedy” fashion

CP-B
RBM

B-B
RBM2

B-B
RBM1

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

10

Deep auto-encoders

input

x

encoder

• Learn one or more binary RBMs in a “greedy” fashion

CP-B
RBM

B-B
RBM2

B-B
RBM1

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

10

Deep auto-encoders

input

x

code

f(x)

encoder

• Learn one or more binary RBMs in a “greedy” fashion

CP-B
RBM

B-B
RBM2

B-B
RBM1

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

10

Deep auto-encoders

input

x

code

f(x)

encoder

• Learn one or more binary RBMs in a “greedy” fashion
• Unroll to a deep autoencoder and “fine-tune” w/ backprop

CP-B
RBM

B-B
RBM2

B-B
RBM1

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

10

Deep auto-encoders

input

x

code

f(x)

encoder

• Learn one or more binary RBMs in a “greedy” fashion
• Unroll to a deep autoencoder and “fine-tune” w/ backprop

CP-B
RBM

B-B
RBM2

B-B
RBM2 

(flipped)

B-B
RBM1

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

10

Deep auto-encoders

input

x

code

f(x)

encoder

• Learn one or more binary RBMs in a “greedy” fashion
• Unroll to a deep autoencoder and “fine-tune” w/ backprop

CP-B
RBM

B-B
RBM2

B-B
RBM2 

(flipped)

B-B
RBM 1

(flipped)

B-B
RBM1

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

10

Deep auto-encoders

input

x

code

f(x)

encoder

• Learn one or more binary RBMs in a “greedy” fashion
• Unroll to a deep autoencoder and “fine-tune” w/ backprop

CP-B
RBM

B-B
RBM2

B-B
RBM2 

(flipped)

B-B
RBM 1

(flipped)

CP-B
RBM

(flipped)

B-B
RBM1

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

10

Deep auto-encoders

input

x

code

f(x)

decoderencoder

• Learn one or more binary RBMs in a “greedy” fashion
• Unroll to a deep autoencoder and “fine-tune” w/ backprop

CP-B
RBM

B-B
RBM2

B-B
RBM2 

(flipped)

B-B
RBM 1

(flipped)

CP-B
RBM

(flipped)

B-B
RBM1

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

10

Deep auto-encoders

input

x

code

f(x)

decoderencoder

• Learn one or more binary RBMs in a “greedy” fashion
• Unroll to a deep autoencoder and “fine-tune” w/ backprop

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

10

Deep auto-encoders

input

x

code

f(x)

Error

reconstruction

r(x) = g(f(x))

x

decoderencoder

• Learn one or more binary RBMs in a “greedy” fashion
• Unroll to a deep autoencoder and “fine-tune” w/ backprop

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

10

Deep auto-encoders

input

x

code

f(x)

Error

reconstruction

r(x) = g(f(x))

x

decoderencoder

• Learn one or more binary RBMs in a “greedy” fashion
• Unroll to a deep autoencoder and “fine-tune” w/ backprop
- During fine-tuning add Gaussian noise to code layer
- This forces the codes to be close to binary

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

11

• Documents are mapped to 20-D binary codes

• Can retrieve similar documents stored at nearby
addresses with no search

• Binary LSA significantly reduces performance

- Not surprising: it has not been optimized to
make binary codes perform well

• One weakness: documents with similar
addresses have similar content but the converse
is not necessarily true

- Can we use external information (e.g. labels)
to pull together codes of similar documents?

Extremely fast retrieval

Semantically

Similar

Documents

Document

Address Space

Semantic

Hashing

Function

Accounts/Earnings

Government
Borrowing

European Community
Monetary/Economic

Disasters and
Accidents

Energy Markets

Figures from R. Salakhutdinov and G. Hinton

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

12

• If code lengths are > 32 bits, use
codes as direct indices (addresses)
into a hash table

- dramatic increase in search speed
compared to exhaustive linear
scan

• Code lengths are often much longer
in order to achieve good
performance

- but number of hash buckets to
examine grows near-
exponentially with search radius

Hashing longer codes
2

0 2 4 6 8 10
0

3

6

9

Hamming Radius

#
 H

a
sh

 B
u
ck

e
ts

 (
lo

g
1
0
)

32 bits
64 bits
128 bits
256 bits

1 10 100 1000
0

5

10

15

20

Near neighbors

H
a
m

m
in

g
 R

a
d
iu

s
n
e
e
d
e
d

64 bits
128 bits

Fig. 1. (Top) Curves show the (log10) number of distinct
hash table indices (buckets) within a Hamming ball of
radius r, for different code lengths. With 64-bit codes
there are about 1B buckets within a Hamming ball with
a 7-bit radius. Hence with fewer than 1B database items,
and a search radius of 7 or more, a hash table would be
less efficient than linear scan. Using hash tables with 128-
bit codes is prohibitive for radii larger than 6. (Bottom)
This plot shows the expected search radius required for
k-NN search as a function of k, based on a dataset of
1B SIFT descriptors. Binary codes with 64 and 128 bits
were obtained by random projections (LSH) from the SIFT
descriptors [18]. Standard deviation bars help show that
large search radii are often required.

of a query g (e.g., [35]). For binary codes of q bits, the
number of distinct hash buckets to examine is

L(q, r) =

rX

z=0

✓
q

z

◆
. (1)

As shown in Fig. 1 (top), L(q, r) grows very rapidly with
r. Thus, this approach is only practical for small radii
or short code lengths. Some vision applications restrict
search to exact matches (i.e., r = 0) or a small search
radius (e.g., [14], [37]), but in most cases of interest the
desired search radius is larger than is currently feasible
(e.g., see Fig. 1 (bottom)).

Our work is inspired in part by the multi-index hash-
ing results of Greene, Parnas, and Yao [13]. Building
on the classical Turan problem for hypergraphs, they
construct a set of over-lapping binary substrings such
that any two codes that differ by at most r bits are guar-
anteed to be identical in at least one of the constructed
substrings. Accordingly, they propose an exact method
for finding all r-neighbors of a query using multiple hash
tables, one for each substring. At query time, candidate
r-neighbors are found by using query substrings as in-
dices into their corresponding hash tables. As explained

below, while run-time efficient, the main drawback of
their approach is the prohibitive storage required for
the requisite number of hash tables. By comparison, the
method we propose requires much less storage, and is
only marginally slower in search performance.

While we focus on exact search, there also exist al-
gorithms for finding approximate r-neighbors (✏-PLEB),
or approximate nearest neighbors (✏-NN) in Hamming
distance. One example is Hamming Locality Sensi-
tive Hashing [15], [10], which aims to solve the (r, ✏)-
neighbors decision problem: determine whether there
exists a binary code h 2 H such that kh � gkH r,
or whether all codes in H differ from g in (1 + ✏)r
bits or more. Approximate methods are interesting, and
the approach below could be made faster by allowing
misses. Nonetheless, this paper will focus on the exact
search problem.

This paper proposes a data-structure that applies to
both kNN and r-neighbor search in Hamming space. We
prove that for uniformly distributed binary codes of q
bits, and a search radius of r bits when r/q is small,
our query time is sub-linear in the size of dataset. We
also demonstrate impressive performance on real-world
datasets. To our knowledge this is the first practical data-
structure solving exact kNN in Hamming distance.

Section 2 describes a multi-index hashing algorithm
for r-neighbor search in Hamming space, followed by
run-time and memory analysis in Section 3. Section
Section 4 describes our algorithm for k-nearest neighbor
search, and Section Section 5 reports results on empirical
datasets.

2 MULTI-INDEX HASHING

Our approach is called multi-index hashing, as binary
codes from the database are indexed m times into m
different hash tables, based on m disjoint substrings.
Given a query code, entries that fall close to the query in
at least one such substring are considered neighbor candi-
dates. Candidates are then checked for validity using the
entire binary code, to remove any non-r-neighbors. To be
practical for large-scale datasets, the substrings must be
chosen so that the set of candidates is small, and storage
requirements are reasonable. We also require that all true
neighbors will be found.

The key idea here stems from the fact that, with n
binary codes of q bits, the vast majority of the 2

q possible
buckets in a full hash table will be empty, since 2

q � n.
It seems expensive to examine all L(q, r) buckets within
r bits of a query, since most of them contain no items.
Instead, we merge many buckets together (most of which
are empty) by marginalizing over different dimensions
of the Hamming space. We do this by creating hash
tables on substrings of the binary codes. The distribu-
tion of the code substring comprising the first s bits is
the outcome of marginalizing the distribution of binary
codes over the last q� s bits. As such, a given bucket of
the substring hash table includes all codes with the same

Figures: Norouzi et al. (2014)

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

13

• When hash codes are > 32 bits, use Multi-index hashing

• Provably sub-linear search complexity for uniformly distributed
codes

• Binary codes are indexed m times into m different hash tables,
based on m disjoint substrings

• Given a query code, entries that fall close to the query in at least
one such substring are considered neighbour candidates

• Candidates then checked for validity using entire binary code

• Guaranteed that all true neighbours will be found

Multi-index hashing
(Norouzi et al. 2012, 2014)

https://github.com/norouzi/mih

https://github.com/norouzi/mih

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

15

Learning embeddings with a
Siamese network

f(·|✓) f(·|✓)

d(·, ·) = SMALL

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

15

Learning embeddings with a
Siamese network

f(·|✓) f(·|✓)

d(·, ·) = SMALL

Identical
pathways

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

15

Learning embeddings with a
Siamese network

f(·|✓) f(·|✓)

d(·, ·) = SMALL

WEBf(·|✓) f(·|✓)

d(·, ·) = BIG

Identical
pathways

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

16

(Bromley, Guyon, LeCun, Sackinger, and Shah 1994)

• Architecture proposed for signature
verification

- didn’t really get the distance function right

- learning unstable

- small (by today’s standards) training set

• 1D convolution (TDNN)

• Developed independently elsewhere:

- Baldi and Chauvin, 1992: fingerprint
verification

- Becker and Hinton, 1992 - discovering depth
in random-dot stereograms

Not a new idea!

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

Credit: Marc’Aurelio Ranzato17

Convnets: single stage

Convolutional 
Layer Pooling

Rectification +
Contrast

Normalization

Image credit: Koray Kavukcuoglu

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

Credit: Marc’Aurelio Ranzato18

Convnets: typical architecture

Convolutional 
Layer Pooling

Rectification +
Contrast

Normalization

Single stage

C R/
N P

Whole system
Input
image

Class
labels

1st
stage

2nd
stage

3rd
stage

C R/
N P C R/

N P

Fully-
connected
Layers

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

19

Embedding with a Siamese
convnet

Input:
128×128

Layer 1:
16×120×120

Layer 2:
16×24×24

Layer 3:
32×16×16

Layer 4:
32×4×4

Output:
32×1×1

Convolutions,
tanh(), abs()

Average
pooling

Convolutions,
tanh(), abs()

Average
pooling

Fully connected

€

x i

€

x j

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

high-dimensional to low-dimensional space. Finally we introduce a related but different objective
for our model based on DrLIM.

3.1 Neighbourhood Components Analysis

NCA (both linear and nonlinear) and DrLIM do not presuppose the existence of a meaningful and
computable distance metric in the input space. They only require that neighbourhood relationships
be defined between training samples. This is well-suited for learning a metric for non-parametric
classification (e.g. KNN) on high-dimensional data. If the original data does not contain discrete
class labels, but real-valued labels (e.g. pose information for images of people) one alternative is to
define neighbourhoods based on the distance in the real-valued label space and proceed as usual.
However, if classification is not our ultimate goal, we may wish to exploit the “soft” nature of the
labels and use an alternative objective (i.e. one that does not optimize KNN performance).

Suppose we are given a set of N labeled training cases {xi,yi}, i = 1, 2, . . . , N , where xi 2 RD,
and yi 2 Rl. For each training vector, xi, the probability that point i selects one of its neighbours j
is defined in the transformed feature space [12]:

pij =
exp(�d2ij)P
k 6=i exp(�d2ik)

, dij = ||zi � zj ||2 (1)

where we use a Euclidean distance metric dij and zi = f(xi|⇥) is the mapping (parametrized
by ⇥) from input space to feature space. For NCA this is typically linear, but it can be extended
to be nonlinear through back-propagation (for example in [32] it is a multi-layer neural network).
NCA assumes that the labels, yi are discrete yi 2 1, 2, . . . , C rather than real-valued and seeks to
maximize the expected number of correctly classified points on the training data which minimizes:

LNCA = �
NX

i=1

X

j:yi=yj

pij . (2)

The parameters are found by minimizing LNCA with respect to ⇥, back-propagating in the case of
a multi-layer parametrization. Instead of seeking to optimize KNN classification performance, we
can use the NCA regression (NCAR) objective [18]:

LNCAR =
NX

i=1

X

j

pij ||yi � yj ||22. (3)

Intuitively, if i and j are neighbours in feature space, then they should also lie close together in label
space. While we use the Euclidean distance in label space, our approach generalizes to other metrics
which may be more appropriate for a different domain.

Keller et al. [18] consider the linear case of NCAR, where ⇥ is a weight matrix and y is a scalar
representing Bellman error to map states with similar Bellman errors close together. Similar to
NCA, we can extend this objective to the nonlinear, multi-layer case. We simply need to compute
the derivative of LNCAR with respect to the output of the mapping, zi, and backpropagate through
the remaining layers of the network. The gradient can be computed efficiently as:

⇧LNCAR

⇧zi
=

X

j

(zi � zj)
⇥
pij

�
y2ij � �i

�
+ pji

�
y2ij � �j

�⇤
. (4)

where we use the shorthand y2ij = ||yi � yj ||22 and �i =
P

j pijy
2
ij .

3.2 Convolutional architectures
As [32] points out, nonlinear NCA was originally proposed in [12] but with the exception of a
modest success with a two-layer network in extracting 2D codes that explicitly represented the
size and orientation of face images, attempts to extract more complex properties using multi-layer
feature extraction were less successful. This was due, in part, to the difficulty in training multi-layer
networks and the fact that many data pairs are required to fit the large number of network parameters.

Though both [32] and [35] were successful in learning a multi-layer nonlinear mapping of the data,
there is still a fundamental limitation of using fully-connected networks that must be addressed.
Such an architecture can only be applied to relatively small image patches (typically less than 64⇥64
pixels), because they do not scale well with the size of the input. Salakhutdinov and Hinton escaped

3

Image
pairs

Distance in low-
dimensional space

What’s the objective function?
-needs to pull together semantically similar pairs
-needs to push apart semantically dissimilar pairs

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

20

• Siamese nets can be trained by error backpropagation,
just need to define an objective function:

- Neighbourhood Component Analysis (Goldberger et
al. 2004)

- Dimensionality Reduction by Learning an Invariant
Mapping (Hadsell et al. 2006)

- Triplet-based Criterion (Chechik et al. 2010)

- Quadruplet-based Criterion (Law et al. 2013)

Training Siamese nets
(Bromley, Guyon, LeCun, Sackinger, and Shah 1994)

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

Credit: Sam Roweis21

Neighbourhood components
analysis (NCA)

Cross Validation for Metric Learning?

• Consider K-NN classification as an example.

• Q: What is the right distance metric for KNN classification?
A: The one that optimizes test error!

• Let’s try to approximate this by
the one which optimizes training error,
defined using leave-one-out cross validation.

?

• So if I gave you a finite set of distance metrics to chose between
(and I told you K), you could pick the best one.

• Obvious next question: if I gave you a continuously
parameterized family of metrics to search through, could you
find the one which maximizes LOO classification performance?

• And what about K...?

(Goldberger et al. 2004)

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

Credit: Sam Roweis21

• Learn a metric which minimizes KNN
classification error

Neighbourhood components
analysis (NCA)

Cross Validation for Metric Learning?

• Consider K-NN classification as an example.

• Q: What is the right distance metric for KNN classification?
A: The one that optimizes test error!

• Let’s try to approximate this by
the one which optimizes training error,
defined using leave-one-out cross validation.

?

• So if I gave you a finite set of distance metrics to chose between
(and I told you K), you could pick the best one.

• Obvious next question: if I gave you a continuously
parameterized family of metrics to search through, could you
find the one which maximizes LOO classification performance?

• And what about K...?

(Goldberger et al. 2004)

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

Credit: Sam Roweis21

• Learn a metric which minimizes KNN
classification error

• Two problems:

Neighbourhood components
analysis (NCA)

Cross Validation for Metric Learning?

• Consider K-NN classification as an example.

• Q: What is the right distance metric for KNN classification?
A: The one that optimizes test error!

• Let’s try to approximate this by
the one which optimizes training error,
defined using leave-one-out cross validation.

?

• So if I gave you a finite set of distance metrics to chose between
(and I told you K), you could pick the best one.

• Obvious next question: if I gave you a continuously
parameterized family of metrics to search through, could you
find the one which maximizes LOO classification performance?

• And what about K...?

(Goldberger et al. 2004)

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

Credit: Sam Roweis21

• Learn a metric which minimizes KNN
classification error

• Two problems:

- Error is a highly discontinuous
function of the distance metric

Neighbourhood components
analysis (NCA)

Cross Validation for Metric Learning?

• Consider K-NN classification as an example.

• Q: What is the right distance metric for KNN classification?
A: The one that optimizes test error!

• Let’s try to approximate this by
the one which optimizes training error,
defined using leave-one-out cross validation.

?

• So if I gave you a finite set of distance metrics to chose between
(and I told you K), you could pick the best one.

• Obvious next question: if I gave you a continuously
parameterized family of metrics to search through, could you
find the one which maximizes LOO classification performance?

• And what about K...?

(Goldberger et al. 2004)

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

Credit: Sam Roweis21

• Learn a metric which minimizes KNN
classification error

• Two problems:

- Error is a highly discontinuous
function of the distance metric

- We still need to choose K

Neighbourhood components
analysis (NCA)

Cross Validation for Metric Learning?

• Consider K-NN classification as an example.

• Q: What is the right distance metric for KNN classification?
A: The one that optimizes test error!

• Let’s try to approximate this by
the one which optimizes training error,
defined using leave-one-out cross validation.

?

• So if I gave you a finite set of distance metrics to chose between
(and I told you K), you could pick the best one.

• Obvious next question: if I gave you a continuously
parameterized family of metrics to search through, could you
find the one which maximizes LOO classification performance?

• And what about K...?

(Goldberger et al. 2004)

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

Credit: Sam Roweis21

• Learn a metric which minimizes KNN
classification error

• Two problems:

- Error is a highly discontinuous
function of the distance metric

- We still need to choose K

• Look for a smoother (or at least
continuous) cost function

Neighbourhood components
analysis (NCA)

Cross Validation for Metric Learning?

• Consider K-NN classification as an example.

• Q: What is the right distance metric for KNN classification?
A: The one that optimizes test error!

• Let’s try to approximate this by
the one which optimizes training error,
defined using leave-one-out cross validation.

?

• So if I gave you a finite set of distance metrics to chose between
(and I told you K), you could pick the best one.

• Obvious next question: if I gave you a continuously
parameterized family of metrics to search through, could you
find the one which maximizes LOO classification performance?

• And what about K...?

(Goldberger et al. 2004)

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

22

Stochastic nearest neighbour

Figure: Sam Roweis

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

22

• Instead picking from a fixed set of nearest neighbours,
select a single neighbour stochastically

Stochastic nearest neighbour

Stochastic Neighbour Selection

• Idea: instead of picking a fixed number
K of nearest neighbours, and voting
their classes, select a single neighbour
stochastically, and look at the expected
votes for each class.

xj

xk

xi
pij

• Imagine that each point i selects other points j as its neighbour
with a probability pij based on the softmax of the distance dij:

pij =
e−dij

∑

k ̸=i e
−dik

pii = 0

• The fraction of the time that i will be correctly labeled is:

p+
i =

∑

j∈Ci

pij

K

Figure: Sam Roweis

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

22

• Instead picking from a fixed set of nearest neighbours,
select a single neighbour stochastically

• Let each point select other points as its neighbour with
probability based on the softmax of the distance :

Stochastic nearest neighbour

Stochastic Neighbour Selection

• Idea: instead of picking a fixed number
K of nearest neighbours, and voting
their classes, select a single neighbour
stochastically, and look at the expected
votes for each class.

xj

xk

xi
pij

• Imagine that each point i selects other points j as its neighbour
with a probability pij based on the softmax of the distance dij:

pij =
e−dij

∑

k ̸=i e
−dik

pii = 0

• The fraction of the time that i will be correctly labeled is:

p+
i =

∑

j∈Ci

pij

i j

dijpij

K

pij =
exp(�d2ij)P
k 6=i exp(�d2ik)

dij = ||zi � zj ||2
zi = f(xi|�)

where:

Figure: Sam Roweis

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

23

• Maximize the expected number of points
correctly classified under this scheme

• This is much smoother than the actual
leave-one-out cross-validation error!

• In fact, it is differentiable w.r.t.
parameters of mapping

- can use SGD or other gradient-based
optimizer

• And there is no explicit parameter

- See (Tarlow et al. 2013) for  
objective

NCA: loss

Minimize loss w.r.t.

LNCA = �
NX

i=1

X

j:yi=yj

pij

K

K > 1

✓

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

24

Linear NCA: embeddings
PCA

Linear
Discriminant

Analysis (LDA)
NCA

Concentric rings 
(D=3)

Wine 
(D=13)

Faces
(D=560)

USPS Digits
(D=256)

f(x|✓ = A) = Ax

Figures: Goldberger et al.

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

25

NCA: MNIST

MNIST
(D=784)

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

26

• The original NCA paper (Goldberger et al. 2004) points
out that need not be a linear mapping

• Salakhutdinov and Hinton (2007) pre-train with an RBM,
then fine-tune with the NCA objective

• Can combine the NCA objective with an Autoencoder
objective to regularize:  
 

• Can take advantage of unlabeled data!

Nonlinear NCA

f(xi|✓)

C = �LNCA + (1� �)LAE

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

27

Learning nonlinear NCA

W

W

W

W

2

1

500

500

500

500

2000

2000

RBM

RBM

3

4

30

RBM
Top

RBM

W +ε

W +ε

W +ε

W +ε

W +ε

W +ε

W +ε

W +ε

W +ε

W +ε

W +ε

W +ε

W +ε

W +ε

W +ε

W +ε

500

500

2000

2000

500

500

2 2

3 3

1 1

4 4

4
T

5

3
T

6

2
T

7

1
T

8

500

500

2000

2000

500

500

2 2

3 3

1 1

4 4

4
T

5

3
T

6

2
T

7

1
T

8

3030

Encoder

Decoder

�LNCA

(1� �)LAE

Pre-training Mixed-objective fine-tuning

Figure: Salakhutdinov and Hinton

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

28

• Despite very nice embeddings (see right) NCA
has a quadratic normalization term (must
consider all pairs)

- mini-batch training (approximate)

- objectives that don’t require normalization

• What about continuous labels?

- (Goldberger et al. 2004) describe a “soft” form
of NCA that can use continuous labels

Limitations of NCA

1

2
3

4

5
6

7

8
9

0

(Figures from R. Salakhutdinov and G. Hinton)

Noninear NCA (MNIST)

Linear NCA (MNIST)

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

29

Class-conditional metric learning

Daniel Im (here at DLSS!)

(Im and Taylor - In submission)

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

29

• Optimize Image-to-Class
distance (Boiman et al. 2008)

Class-conditional metric learning

Daniel Im (here at DLSS!)

(Im and Taylor - In submission)

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

29

• Optimize Image-to-Class
distance (Boiman et al. 2008)

• Stochastic neighbour
selection rule:

Class-conditional metric learning

pCi =

exp

⇣
� 1

k

Pk
j=1 ||zi �NN

C
j (zi)||2

⌘

P
C0 exp

⇣
� 1

k

Pk
j=1 ||zi �NN

C0

j (zi)||2
⌘ ,

Daniel Im (here at DLSS!)

(Im and Taylor - In submission)

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

29

• Optimize Image-to-Class
distance (Boiman et al. 2008)

• Stochastic neighbour
selection rule:

Class-conditional metric learning

pCi =

exp

⇣
� 1

k

Pk
j=1 ||zi �NN

C
j (zi)||2

⌘

P
C0 exp

⇣
� 1

k

Pk
j=1 ||zi �NN

C0

j (zi)||2
⌘ ,

Daniel Im (here at DLSS!)

(Im and Taylor - In submission)

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

30

• The similarity loss “pushes together” similar points

• The dissimilarity loss “pulls apart” dissimilar points

- but only if their distance is within some margin,

DrLIM (Dimensionality reduction
by learning an invariant mapping)

Margin ↵

Similarity loss Dissimilarity loss

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

d
ij

mn

L
o
ss

is a binary indicatorsij

L = sijLS(xi,xj) + (1� sij)LD(xi,xj)

LS(xi,xj) =
1

2
(dij)

2

LD(xi,xj) =
1

2

[max(0,↵� dij)]
2

↵

Hadsell, Chopra and LeCun 2006

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

31

• Solid dots are points that are similar
to the point in the centre

• Hollow dots are points that are
dissimilar to the point in the centre

• Forces acting on the points are
shown in blue

- The length of the arrow represents
the strength of the force

• Radius represents the margin,

Spring analogy

↵

Figures from Hadsell et al.

Figures from Hadsell et al.

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

33

Triplet-based embedding

D
�
f (xi) , f

�
x

+
i

��
< D

�
f (xi) , f

�
x

�
i

��

8xi,x
+
i ,x

�
i such that S(xi,x

+
i) > S(xi,x

�
i)

Given a similarity score S(xi,xj) for inputs xi,xj

We want to learn an embedding f(x) such that

is a distance measure, commonlyD (f (xi) , f (xj))

D (f (xi) , f (xj)) = ||f (xi)� f (xj) ||2

“triplet”

(Chechik et al. 2010)

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

34

Learning fine-grained image
similarity with deep ranking

(Wang et al. 2014)

Im
a

g
e

225 x 225

S
u

b
S

a
m

p
le

S
u

b
S

a
m

p
le

C
o

n
vo

lu
tio

n
C

o
n

vo
lu

tio
n

4:1

8:1

M
a

x p
o

o
lin

g
M

a
x p

o
o

lin
g

5
7

 X
 5

7
2

9
 X

 2
9

8
 x 8

 x 9
6

l2
 N

o
rm

a
liza

tio
n

Linear Em
bedding

l2

N
o

rm
a

liza
tio

n

8 x 8: 4x4

8 x 8: 4x4

3 x 3: 2x2

7 x 7: 4x4

1
5

 x 1
5

 x 9
6

4
 x 4

 x 9
6

4
 x 4

 x 9
6

3
0

7
4

4
0

9
6

4
0

9
6

4
0

9
6

ConvNet
l2

 N
o

rm
a

liza
tio

n

4
0

9
6

Figure 3. The multiscale network structure. Ech input image goes

through three paths. The top green box (ConvNet) has the same

architecture as the deep convolutional neural network in [15]. The

bottom parts are two low-resolution paths that extracts low resolu-

tion visual features. Finally, we normalize the features from both

parts, and use a linear embedding to combine them. The number

shown on the top of a arrow is the size of the output image or

feature. The number shown on the top of a box is the size of the

kernels for the corresponding layer.

generate k feature maps. The convolutional layer can be
considered as a set of local feature detectors.

A max pooling layer performs max pooling over a local
neighborhood around a pixel. The max pooling layer makes
the feature maps robust to small translations.

A local normalization layer normalizes the feature map
around a local neighborhood to have unit norm and zero
mean. It leads to feature maps that are robust to the differ-
ences in illumination and contrast.

The stacked convolutional layers, max-pooling layer and
local normalization layers act as translational and contrast
robust local feature detectors. A fully connected layer com-
putes a non-linear transformation from the feature maps of
these local feature detectors.

Although ConvNet achieves very good performance for
image classification, the strong invariance encoded in its ar-
chitecture can be harmful for fine-grained image similarity
tasks. The experiments show that the multiscale network ar-
chitecture outperforms single scale ConvNet in fine-grained
image similarity task.

5. Optimization

Training a deep neural network usually needs a large
amount of training data, which may not fit into the mem-
ory of a single computer. Thus, we employ the distributed
asynchronized stochastic gradient algorithm proposed in [5]
with momentum algorithm [21]. The momentum algo-
rithm is a stochastic variant of Nesterov’s accelerated gra-
dient method [18], which converges faster than traditional
stochastic gradient methods.

Back-propagation scheme is used to compute the gradi-

ent. A deep network can be represented as the composition
of the functions of each layer.

f(.) = gn(gn−1(gn−2(· · · g1(.) · · ·))) (5)

where gl(.) is the forward transfer function of the l-th layer.
The parameters of the transfer function gl is denoted as wl.

Then the gradient
∂f(.)
∂wl

can be written as:
∂f(.)
∂gl

× ∂gl
∂wl

,

and
∂f(.)
∂gl

can be efficiently computed in an iterative way:
∂f(.)
∂gl+1

× ∂gl+1(.)
∂gl

. Thus, we only need to compute the gradi-

ents ∂gl
∂wl

and ∂gl
∂gl−1

for the function gl(.). More details of

the optimization can be found in the supplemental materi-
als.

To avoid overfitting, dropout [13] with keeping probabil-
ity 0.6 is applied to all the fully connected layers. Random
pixel shift is applied to the input images for data augmenta-
tion.

5.1. Triplet Sampling

To avoid overfitting, it is desirable to utilize a large va-
riety of images. However, the number of possible triplets
increases cubically with the number of images. It is compu-
tationally prohibitive and sub-optimal to use all the triplets.
For example, the training dataset in this paper contains 12
million images. The number of all possible triplets in this
dataset is approximately (1.2×107)3 = 1.728×1021. This
is an extermely large number that can not be enumerated.
If the proposed triplet sampling algorithm is employed, we
find the optimization converges with about 24 million triplet
samples, which is a lot smaller than the number of possible
triplets in our dataset.

It is crucial to choose an effective triplet sampling strat-
egy to select the most important triplets for rank learning.
Uniformly sampling of the triplets is sub-optimal, because
we are more interested in the top-ranked results returned by
the ranking model. In this paper, we employ an online im-
portance sampling scheme to sample triplets.

Suppose we have a set of images P , and their pairwise
relevance scores ri,j = r(pi, pj). Each image pi belongs to
a category, denoted by ci. Let the total relevance score of
an image ri defined as

ri =
∑

j:cj=ci,j ̸=i

ri,j (6)

The total relevance score of an image pi reflects how rele-
vant the image is in terms of its relevance to the other im-
ages in the same category.

To sample a triplet, we first sample a query image pi
from P according to its total relevance score. The probabil-
ity of an image being chosen as query image is proportional
to its total relevance score.

4

Objective:

Figures from Wang et al. 2014

g

✓

�

⇠i

min

X

i

⇠i + �||✓||2

s.t.:max

�
0, g +D

�
f (xi) , f

�
x

+
i

��
�D

�
f (xi) , f

�
x

�
i

���
 ⇠i

8xi,x
+
i ,x

�
i s.t. S(xi,x

+
i) > S(xi,x

�
i)

penalty

gap (hyperparameter)

weights in network

regularization 
strength (hyperparameter)

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

35

How to: triplet sampling

Figures from Wang et al. 2014

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

35

• # of possible triplets increases cubically with # of images

• e.g. 12M images, 1.728 x 10^21 triplets!

• Optimization converges in ~24M triplet samples

• Uniformly sampling triplets is sub-optimal

How to: triplet sampling
We employ the pairwise ranking model to learn image

similarity ranking models, partially motivated by [3, 19].
Suppose we have a set of images P , and ri,j = r(pi, pj)
is a pairwise relevance score which states how similar the
image pi ∈ P and pj ∈ P are. The more similar two images
are, the higher their relevance score is. Our goal is to learn
an embedding function f(.) that assigns smaller distance to
more similar image pairs, which can be expressed as:

D(f(pi), f(p
+
i)) < D(f(pi), f(p

−
i)),

∀pi, p
+
i , p

−
i such that r(pi, p

+
i) > r(pi, p

−
i)

(2)

We call ti = (pi, p
+
i , p

−
i) a triplet, where pi, p

+
i , p

−
i are the

query image, positive image, and negative image, respec-
tively. A triplet characterizes a relative similarity ranking
order for the images pi, p

+
i , p

−
i . We can define the follow-

ing hinge loss for a triplet: ti = (pi, p
+
i , p

−
i):

l(pi, p
+
i , p

−
i) =

max{0, g +D(f(pi), f(p
+
i))−D(f(pi), f(p

−
i))}

(3)

where g is a gap parameter that regularizes the gap between
the distance of the two image pairs: (pi, p

+
i) and (pi, p

−
i).

The hinge loss is a convex approximation to the 0-1 rank-
ing error loss, which measures the model’s violation of the
ranking order specified in the triplet. Our objective function
is:

min
∑

i

ξi + λ∥W ∥22

s.t. : max{0, g +D(f(pi), f(p
+
i))−D(f(pi), f(p

−
i))} ≤ ξi

∀pi, p
+
i , p

−
i such that r(pi, p

+
i) > r(pi, p

−
i)

(4)
where λ is a regularization parameter that controls the mar-
gin of the learned ranker to improve its generalization. W
is the parameters of the embedding function f(.). We em-
ploy λ = 0.001 in this paper. (4) can be converted to an
unconstrained optimization by replacing ξi = max{0, g +
D(f(pi), f(p

+
i))−D(f(pi), f(p

−
i))}.

In this model, the most crucial component is to learn an
image embedding function f(.). Traditional methods typi-
cally employ hand-crafted visual features, and learn linear
or nonlinear transformations to obtain the image embed-
ding function. In this paper, we employ the deep learning
technique to learn image similarity models directly from
images. We will describe the network architecture of the
triple-based ranking loss function in (4) and an efficient op-
timization algorithm to minimize this objective function in
the following sections.

4. Network Architecture

A triplet-based network architecture is proposed for the
ranking loss function (4), illustrated in Fig. 2. This net-

Q P N

Triplet Sampling Layer

....

Images

....

Ranking Layer

p
i

p
i

-
p

i

+

f(p
i
) f(p

i
) f(p

i
)+ -

Figure 2. The network architecture of deep ranking model.

work takes image triplets as input. One image triplet con-
tains a query image pi, a positive image p+i and a negative
image p−i , which are fed independently into three identi-
cal deep neural networks f(.) with shared architecture and
parameters. A triplet characterizes the relative similarity re-
lationship for the three images. The deep neural network
f(.) computes the embedding of an image pi: f(pi) ∈ Rd,
where d is the dimension of the feature embedding.

A ranking layer on the top evaluates the hinge loss (3)
of a triplet. The ranking layer does not have any parame-
ter. During learning, it evaluates the model’s violation of
the ranking order, and back-propagates the gradients to the
lower layers so that the lower layers can adjust their param-
eters to minimize the ranking loss (3).

We design a novel multiscale deep neural network archi-
tecture that employs different levels of invariance at differ-
ent scales, inspired by [8], shown in Fig. 3. The ConvNet
in this figure has the same architecture as the convolutional
deep neural network in [15]. The ConvNet encodes strong
invariance and captures the image semantics. The other two
parts of the network takes down-sampled images and use
shallower network architecture. Those two parts have less
invariance and capture the visual appearance. Finally, we
normalize the embeddings from the three parts, and com-
bine them with a linear embedding layer. In this paper, The
dimension of the embedding is 4096.

We start with a convolutional network (ConvNet) archi-
tecture for each individual network, motivated by the recent
success of ConvNet in terms of scalability and generaliz-
ability for image classification [15]. The ConvNet contains
stacked convolutional layers, max-pooling layer, local nor-

malization layers and fully-connected layers. The readers
can refer to [15] or the supplemental materials for more de-
tails.

A convolutional layer takes an image or the feature maps
of another layer as input, convolves it with a set of k learn-
able kernels, and puts through the activation function to

3

xi xi+ xi-

f(xi) f(xi+) f(xi-)

Figures from Wang et al. 2014

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

35

• # of possible triplets increases cubically with # of images

• e.g. 12M images, 1.728 x 10^21 triplets!

• Optimization converges in ~24M triplet samples

• Uniformly sampling triplets is sub-optimal

• Propose an online triplet sampling algorithm (more
details in paper):

- Sample an image according to its “relevance” to a
category

- Sample a positive image with high relevance

- Sample “out-of-class” negatives uniformly

- Sample “in-class” relevant negatives but ensure a
margin between positive and negative examples

How to: triplet sampling

Then, we sample a positive image p+i from the images
sharing the same categories as pi. Since we are more in-
terested in the top-ranked images, we should sample more
positive images p+i with high relevance scores ri,i+ . The
probability of choosing an image p+i as positive image is:

P (p+i) =
min{Tp, ri,i+}

Zi
(7)

where Tp is a threshold parameter, and the normalization
constant Zi equals

∑
i+ P (p+i) for all the p+i sharing the

the same categories with pi.
We have two types of negative image samples. The first

type is out-of-class negative samples, which are the negative
samples that are in a different category from query image pi.
They are drawn uniformly from all the images with differ-
ent categories with pi. The second type is in-class negative
samples, which are the negative samples that are in the same
category as pi but is less relevant to pi than p+i . Since we
are more interested in the top-ranked images, we draw in-
class negative samples p−i with the same distribution as (7).
In order to ensure robust ordering between p+i and p−i in
a triplet ti = (pi, p

+
i , p

−
i), we also require that the margin

between the relevance score ri,i+ and ri,i− should be larger
than Tr, i.e.,

ri,i+ − ri,i− ≥ Tr, ∀ti = (pi, p
+
i , p

−
i) (8)

We reject the triplets that do not satisfy this condition. If
the number of failure trails for one example exceeds a given
threshold, we simply discard this example.

Learning deep ranking models requires large amount of
data, which cannot be loaded into main memory. The sam-
pling algorithms that require random access to all the ex-
amples in the dataset are not applicable. In this section, we
propose an efficient online triplet sampling algorithm based
on reservoir sampling [7].

We have a set of buffers to store images. Each buffer has
a fixed capacity, and it stores images from the same cate-
gory. When we have one new image pj , we compute its key

kj = u
(1/rj)
j ,where rj is its total relevance score defined in

(6) and uj = uniform(0, 1) is a uniformly sampled number.
The buffer corresponding to the image pj’s can be found ac-
cording to its category cj . If the buffer is not full, we insert
the image pj into the buffer with key kj . Otherwise, we find
the image p′j with smallest key k′j in the buffer. If kj > k′j ,
we replace the image p′j with image pj in the buffer. Other-
wise, the imgage example pj is discarded. If this replacing
scheme is employed, uniformly sampling from a buffer is
equivalent to drawing samples with probability proportional
to the total relevance score rj .

One image pi is uniformly sampled from all the im-
ages in the buffer of category cj as the query image. We
then uniformly generate one image p+i from all the images

Buffers for queries

Image sample

Find buffer
of the query

Triplets

Query

Positive

Negative

Figure 4. Illustration of the online triplet sampling algorithm. The

negative image in this example is an out-of-class negative. We

have one buffer for each category. When we get a new image

sample, we insert it into the buffer of the corresponding category

with prescribed probability. The query and positive examples are

sampled from the same buffer, while the negative image is sampled

from a different buffer.

in the buffer of category cj , and accept it with probabil-
ity min(1, ri,i+/ri+), which corresponds to the sampling
probability (7). Sampling is continued until one example is
accepted. This image example acts as the positive image.

Finally, we draw a negative image sample. If we are
drawing out-of-class negative image sample, we draw a im-
age p−i uniformly from all the images in the other buffers.
If we are drawing in-class negative image samples, we use
the positive example’s drawing method to generate a nega-
tive sample, and accept the negative sample only if it satis-
fies the margin constraint (8). Whether we sample in-class
or out-of-class negative samples is controlled by a out-of-
class sample ratio parameter. An illustration of this sam-
pling method is shown in Fig. 4 The outline of reservoir
importance sampling algorithm is shown in the supplemen-
tal materials.

6. Experiments

6.1. Training Data

We use two sets of training data to train our model. The
first training data is ImageNet ILSVRC-2012 dataset [1],
which contains roughly 1000 images in each of 1000 cate-
gories. In total, there are about 1.2 million training images,
and 50,000 validation images. This dataset is utilized to
learn image semantic information. We use it to pre-train the
“ConvNet” part of our model using soft-max cost function
as the top layer.

The second training data is relevance training data, re-
sponsible for learning fine-grained visual similarity. The
data is generated in a bootstrapping fashion. It is collected
from 100,000 search queries (using Google image search),
with the top 140 image results from each query. There are
about 14 million images. We employ a golden feature to
compute the relevance ri,j for the images from the same
search query, and set ri,j = 0 to the images from different

5

We employ the pairwise ranking model to learn image
similarity ranking models, partially motivated by [3, 19].
Suppose we have a set of images P , and ri,j = r(pi, pj)
is a pairwise relevance score which states how similar the
image pi ∈ P and pj ∈ P are. The more similar two images
are, the higher their relevance score is. Our goal is to learn
an embedding function f(.) that assigns smaller distance to
more similar image pairs, which can be expressed as:

D(f(pi), f(p
+
i)) < D(f(pi), f(p

−
i)),

∀pi, p
+
i , p

−
i such that r(pi, p

+
i) > r(pi, p

−
i)

(2)

We call ti = (pi, p
+
i , p

−
i) a triplet, where pi, p

+
i , p

−
i are the

query image, positive image, and negative image, respec-
tively. A triplet characterizes a relative similarity ranking
order for the images pi, p

+
i , p

−
i . We can define the follow-

ing hinge loss for a triplet: ti = (pi, p
+
i , p

−
i):

l(pi, p
+
i , p

−
i) =

max{0, g +D(f(pi), f(p
+
i))−D(f(pi), f(p

−
i))}

(3)

where g is a gap parameter that regularizes the gap between
the distance of the two image pairs: (pi, p

+
i) and (pi, p

−
i).

The hinge loss is a convex approximation to the 0-1 rank-
ing error loss, which measures the model’s violation of the
ranking order specified in the triplet. Our objective function
is:

min
∑

i

ξi + λ∥W ∥22

s.t. : max{0, g +D(f(pi), f(p
+
i))−D(f(pi), f(p

−
i))} ≤ ξi

∀pi, p
+
i , p

−
i such that r(pi, p

+
i) > r(pi, p

−
i)

(4)
where λ is a regularization parameter that controls the mar-
gin of the learned ranker to improve its generalization. W
is the parameters of the embedding function f(.). We em-
ploy λ = 0.001 in this paper. (4) can be converted to an
unconstrained optimization by replacing ξi = max{0, g +
D(f(pi), f(p

+
i))−D(f(pi), f(p

−
i))}.

In this model, the most crucial component is to learn an
image embedding function f(.). Traditional methods typi-
cally employ hand-crafted visual features, and learn linear
or nonlinear transformations to obtain the image embed-
ding function. In this paper, we employ the deep learning
technique to learn image similarity models directly from
images. We will describe the network architecture of the
triple-based ranking loss function in (4) and an efficient op-
timization algorithm to minimize this objective function in
the following sections.

4. Network Architecture

A triplet-based network architecture is proposed for the
ranking loss function (4), illustrated in Fig. 2. This net-

Q P N

Triplet Sampling Layer

....

Images

....

Ranking Layer

p
i

p
i

-
p

i

+

f(p
i
) f(p

i
) f(p

i
)+ -

Figure 2. The network architecture of deep ranking model.

work takes image triplets as input. One image triplet con-
tains a query image pi, a positive image p+i and a negative
image p−i , which are fed independently into three identi-
cal deep neural networks f(.) with shared architecture and
parameters. A triplet characterizes the relative similarity re-
lationship for the three images. The deep neural network
f(.) computes the embedding of an image pi: f(pi) ∈ Rd,
where d is the dimension of the feature embedding.

A ranking layer on the top evaluates the hinge loss (3)
of a triplet. The ranking layer does not have any parame-
ter. During learning, it evaluates the model’s violation of
the ranking order, and back-propagates the gradients to the
lower layers so that the lower layers can adjust their param-
eters to minimize the ranking loss (3).

We design a novel multiscale deep neural network archi-
tecture that employs different levels of invariance at differ-
ent scales, inspired by [8], shown in Fig. 3. The ConvNet
in this figure has the same architecture as the convolutional
deep neural network in [15]. The ConvNet encodes strong
invariance and captures the image semantics. The other two
parts of the network takes down-sampled images and use
shallower network architecture. Those two parts have less
invariance and capture the visual appearance. Finally, we
normalize the embeddings from the three parts, and com-
bine them with a linear embedding layer. In this paper, The
dimension of the embedding is 4096.

We start with a convolutional network (ConvNet) archi-
tecture for each individual network, motivated by the recent
success of ConvNet in terms of scalability and generaliz-
ability for image classification [15]. The ConvNet contains
stacked convolutional layers, max-pooling layer, local nor-

malization layers and fully-connected layers. The readers
can refer to [15] or the supplemental materials for more de-
tails.

A convolutional layer takes an image or the feature maps
of another layer as input, convolves it with a set of k learn-
able kernels, and puts through the activation function to

3

xi xi+ xi-

f(xi) f(xi+) f(xi-)

Figures from Wang et al. 2014

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

36

Finding similarity data

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

36

• NCA, DrLIM: binary notion of similarity typically defined by class membership or
explicitly constructed neighbourhood graph

Finding similarity data

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

36

• NCA, DrLIM: binary notion of similarity typically defined by class membership or
explicitly constructed neighbourhood graph

• Defining pairwise similarity is difficult and inconsistent across observers;
Google used “Golden Feature” - weighted linear combination of 27 features

Finding similarity data

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

36

• NCA, DrLIM: binary notion of similarity typically defined by class membership or
explicitly constructed neighbourhood graph

• Defining pairwise similarity is difficult and inconsistent across observers;
Google used “Golden Feature” - weighted linear combination of 27 features

• Despite crowd-sourcing platforms (e.g. Amazon Mechanical Turk) gathering
semantically similar pairs of images is expensive

Finding similarity data

WEB

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

37

• One solution is to turn to
synthetic data (e.g.
Shakhnarovich et al. 2003,
Jain et al. 2008)

• Difficult to generalize to real
(e.g. “YouTube” settings)

• Another solution: ask people
to label heads and hands
(Spiro et al. 2010) or
superimpose articulated
skeletons (Bourdev et al. 2009)

Hands by hand

(Spiro et al. 2010)

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

37

• One solution is to turn to
synthetic data (e.g.
Shakhnarovich et al. 2003,
Jain et al. 2008)

• Difficult to generalize to real
(e.g. “YouTube” settings)

• Another solution: ask people
to label heads and hands
(Spiro et al. 2010) or
superimpose articulated
skeletons (Bourdev et al. 2009)

Hands by hand

(Spiro et al. 2010)

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

38

Pose-sensitive embeddings
(Taylor et al. 2010)

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

38

Database

Pose-sensitive embeddings
(Taylor et al. 2010)

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

38

Database

Pose-sensitive embeddings
(Taylor et al. 2010)

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

38

Database• If we have a database of
images labeled with 2D or 3D
pose information - we can do
non-parametric pose
estimation

Pose-sensitive embeddings
(Taylor et al. 2010)

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

38

Find
nearest

neighbor
Copy
pose

Query

Database• If we have a database of
images labeled with 2D or 3D
pose information - we can do
non-parametric pose
estimation

Pose-sensitive embeddings
(Taylor et al. 2010)

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

38

Find
nearest

neighbor
Copy
pose

Query

Database• If we have a database of
images labeled with 2D or 3D
pose information - we can do
non-parametric pose
estimation

• Nearest neighbor lookup
must be quick (e.g. performed
in a low-dimensional space)

Pose-sensitive embeddings
(Taylor et al. 2010)

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

38

Find
nearest

neighbor
Copy
pose

Query

Database• If we have a database of
images labeled with 2D or 3D
pose information - we can do
non-parametric pose
estimation

• Nearest neighbor lookup
must be quick (e.g. performed
in a low-dimensional space)

• It also must be informative of
pose and invariant to
clothing, lighting, scale, and
other appearance changes

Pose-sensitive embeddings
(Taylor et al. 2010)

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

xi

yi = yj

xjPay a high cost for “neighbours” in
feature space that are far away in
pose space

yi = [48.2, 46.3, . . . , 63.3]T

yi = [54.4, 45.8, . . . , 64.1]T

LNCAR =
NX

i=1

X

j

pij ||yi � yj ||22

✓

39

NCA regression

Minimize loss w.r.t.

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

40

• We digitally recorded all contributing and
invited speakers at the 2010 Snowbird
workshop

• After each session of talks, blocks of 150 frames
were distributed as Human Intelligence Tasks
(HITs) on Amazon Mechanical Turk

• Split speakers into 39k training examples, 37k
test examples (no overlap in identity)

Snowbird dataset

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

Pixel distance Not practical

GIST •Global representation of image
•Still not practical

Linear NCA regression (NCAR) •Applied to pre-computed GIST
•Fit by conjugate gradient

Convolutional NCAR (C-NCAR) •Convolutions applied to pixels
•Tanh(),Abs(),Average downsampling

DrLIM Regression (DrLIMR) •Similar to NCAR but adds an explicit
contrastive loss

Convolutional DrLIMR (C-DrLIMR) •Similar to C-NCAR but adds an explicit
contrastive loss

41

Comparison of Approaches

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

Pixel distance Not practical

GIST •Global representation of image
•Still not practical

Linear NCA regression (NCAR) •Applied to pre-computed GIST
•Fit by conjugate gradient

Convolutional NCAR (C-NCAR) •Convolutions applied to pixels
•Tanh(),Abs(),Average downsampling

DrLIM Regression (DrLIMR) •Similar to NCAR but adds an explicit
contrastive loss

Convolutional DrLIMR (C-DrLIMR) •Similar to C-NCAR but adds an explicit
contrastive loss

€

x i

€

x j

41

Comparison of Approaches

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

Pixel distance Not practical

GIST •Global representation of image
•Still not practical

Linear NCA regression (NCAR) •Applied to pre-computed GIST
•Fit by conjugate gradient

Convolutional NCAR (C-NCAR) •Convolutions applied to pixels
•Tanh(),Abs(),Average downsampling

DrLIM Regression (DrLIMR) •Similar to NCAR but adds an explicit
contrastive loss

Convolutional DrLIMR (C-DrLIMR) •Similar to C-NCAR but adds an explicit
contrastive loss

41

Comparison of Approaches

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

42

E=1.53 E=6.74 E=10.55 E=9.91 E=9.91

E=1.02 E=3.78 E=23.88 E=30.48 E=17.14

E=2.89 E=4.54 E=8.91 E=9.52 E=9.52

E=3.46 E=1.98 E=9.56 E=10.97

E=4.17

E=2.39

E=2.45 E=6.54 E=5.07 E=7.75

E=3.06 E=2.31 E=7.17 E=11.95 E=11.95

E=3.30 E=2.60 E=20.06 E=25.44 E=22.87

E=6.00 E=2.42 E=21.15 E=20.05 E=16.86

Query Our method (1) Linear method GIST PixelsOur method (2)

• Both Pixel-based
matching and GIST focus
on scene content,
lighting

• Our method learns
invariance to
background, focuses on
pose

• Though trained on hands
relative to head, seems
to capture something
more substantial about
body pose

Results 
(qualitative)

Query C-NCAR C-DrLIM Linear NCAR GIST Pixels

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

43

Results (quantitative)

Embedding Input Code size Err-SY Err-RE

None Pixels 16384 32.86 25.12

None GIST 512 47.41 25.3

PCA GIST 128 47.17 24.85

PCA GIST 32 48.99 25.74

NCAR GIST 32 34.21 24.93

NCAR LCN+GIST 32 32.9 23.15

S-DrLIM GIST 32 37.8 25.19

Boost-SSC LCN+GIST 32 34.8 22.65

C-NCAR LCN 32 28.95 16.41

C-DRLIM LCN 32 25.4 19.61

16.41 px

25.40 px

16.41 px

25.40 px25.4 pixel error

16.4 pixel error

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

44

• Addresses
appearance
variability and
complexity

• YouTube as a data
source

• Many activities,
indoor and outdoor
scenes, variety of
imaging conditions

MPII Human Pose
(Andriluka et al. 2014)

bicycling conditioning exercise dancing fishing and hunting
bicycling, BMX ski machine ballroom fish. from river bank

home activities home repair inactivity quiet lawn and garden
tanning hides carpentry sitting quietly driving tractor

miscellaneous music playing occupation religious activities
standing violin, sitting horse grooming sit., playing instrum.

running self care sports transportation
running, stairs, up taking medication soccer riding in a bus

volunteer activities walking water activities winter activities
playing with children bird watching snorkeling skating, ice dancing

Figure 1. Randomly chosen images from each of 20 activity cat-
egories of the proposed “MPII Human Pose” dataset. Image cap-
tions indicate activity category (1st row) and activity (2nd row). To
view the full dataset visit human-pose.mpi-inf.mpg.de.

Some efforts have been made to collect larger sets of
images. For example [13] extends the LSP dataset to
10, 000 images of people performing gymnastics, athletics
and parkour. [2] proposes a large “FashionPose” dataset
collected from fashion blogs. This dataset aims to cover
a wide variety in people clothing. The LSP and Fashion-
Pose datasets are complementary and focus on two different
challenges for human pose estimation: pose variability and
variability of people appearance. However since they are
collected with a specific focus in mind, these datasets do
not cover real-life challenges such as truncation, occlusions
by scene objects and variability of imaging conditions.

The works of [6] and [9] propose a challenging dataset
building on the PASCAL VOC image collection. Results
reported in [9] indicate that the best performing approaches
for pose estimation of people in the presence of occlusion
and complex appearance are under-performing on sport-
oriented datasets such as LSP [12] and vice versa. There are
qualitative differences between methods that work well for
LSP and “Armlets” datasets. On LSP the best performing
methods are typically based on flexible part-based models
that are well suited for capturing pose variability. In con-
trary on the “Armlets” dataset the best performing approach
[9] uses a set of rigid detectors for groups of parts, that are
more robust to the variability in appearance.

Our dataset is complementary to the J-HMDB dataset
[11] and provides more images and a wider coverage of ac-

Dataset #training #test img. type

Full body pose datasets
Parse [16] 100 205 diverse
LSP [12] 1,000 1,000 sports (8 types)
PASCAL Person Layout [6] 850 849 everyday
Sport [21] 649 650 sports
UIUC people [21] 346 247 sports (2 types)
LSP extended [13] 10,000 - sports (3 types)
FashionPose [2] 6,530 775 fashion blogs
J-HMDB [11] 31,838 - diverse (21 act.)

Upper body pose datasets
Buffy Stickmen [8] 472 276 TV show (Buffy)
ETHZ PASCAL Stickmen [3] - 549 PASCAL VOC
Human Obj. Int. (HOI) [23] 180 120 sports (6 types)
We Are Family [5] 350 imgs. 175 imgs. group photos
Video Pose 2 [18] 766 519 TV show (Friends)
FLIC [17] 6,543 1,016 feature movies
Sync. Activities [4] - 357 imgs. dance / aerobics
Armlets [9] 9,593 2,996 PASCAL VOC/Flickr

MPII Human Pose (this paper) 28,821 11,701 diverse (491 act.)

Table 1. Overview of the publicly available datasets for articulated
human pose estimation. For each dataset we report the number of
annotated people in training and test sets and the type of images the
set include. The numbers indicate the number of unique annotated
people without mirroring.

tivities (491 in our dataset vs. 21 in J-HMDB), whereas
J-HMDB provides densely annotated image sequences and
larger number of videos for each activity. Our dataset
also addresses a different set of challenges compared to the
datasets such as “HumanEva” [19] and “Human3.6M” [10]
that include images and 3D poses of people but are captured
in the controlled indoor environments, whereas our dataset
includes real-world images but provides 2D poses only.

2. Dataset
In this paper we introduce a large dataset of images that

covers a wide variety of human poses and clothing types
and includes people interacting with various objects and en-
vironments. The key rationale behind our data collection
strategy is that we want to represent both common and rare
human poses that might be missed when simply collecting
more images without aiming for good coverage. To this end,
we use a two-level hierarchy of human activities proposed
in [1] to guide the collection process. This hierarchy was
developed for the assignment of standardized energy levels
during physical activity surveys and includes 823 activities
in total of 21 different activity categories. The activities at
the first level of the hierarchy correspond to thematically re-
lated groups of activities such as “Home Activities”, “Lawn
and Garden” or “Sports”. The activities at the second level
then correspond to individual activities such as “Washing
windows”, “Picking fruit” or “Rock climbing”. Note that
using the activity hierarchy for collection has an additional
advantage that all images have an associated activity label.
As a result one can assess and analyze any performance
measure also on subsets of activities or activity categories.

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

45

• Similar to (Taylor et al.
2010), but uses:

- MPII database: 2D
locations of 16 body
joints

- Triplet-style learning

- Modern, “Inception”-
style convnet

Pose embeddings
(Mori et al. 2015)

input

Conv
7x7+2(S)

MaxPool
3x3+2(S)

LocalRespNorm

Conv
1x1+1(V)

Conv
3x3+1(S)

LocalRespNorm

MaxPool
3x3+2(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

MaxPool
3x3+2(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

AveragePool
5x5+3(V)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

AveragePool
5x5+3(V)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

MaxPool
3x3+2(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

AveragePool
7x7+1(V)

FC

Conv
1x1+1(S)

FC

FC

SoftmaxActivation

softmax0

Conv
1x1+1(S)

FC

FC

SoftmaxActivation

softmax1

SoftmaxActivation

softmax2

Figure 3: GoogLeNet network with all the bells and whistles

7

Can we avoid explicit labeling of body parts?

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

47

Weakly-supervised embeddings
(Taylor et al. 2011)

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

47

• Have people imitate frames
from a video:

- imitated frames, though
different in appearance,
should be embedded
nearby

Weakly-supervised embeddings

{seed ...

se
ed

(Taylor et al. 2011)

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

47

• Have people imitate frames
from a video:

- imitated frames, though
different in appearance,
should be embedded
nearby

Weakly-supervised embeddings

im
ita
tio
ns

im
ita

tio
ns

{seed ...

se
ed

(Taylor et al. 2011)

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

47

• Have people imitate frames
from a video:

- imitated frames, though
different in appearance,
should be embedded
nearby

• Use temporal coherence as a
similarity signal:

- i.e. frames which are
close together in time
should be embedded
nearby

Weakly-supervised embeddings

im
ita
tio
ns

im
ita

tio
ns

{seed ...

se
ed

(Taylor et al. 2011)

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

48

Zero-shot learning
Test Image Softmax Baseline [7] DeViSE [6] ConSE (10)

wig
fur coat
Saluki, gazelle hound
Afghan hound, Afghan
stole

water spaniel
tea gown
bridal gown, wedding gown
spaniel
tights, leotards

business suit
dress, frock

hairpiece, false hair, postiche
swimsuit, swimwear, bathing suit
kit, outfit

ostrich, Struthio camelus
black stork, Ciconia nigra
vulture
crane
peacock

heron
owl, bird of Minerva, bird of night
hawk
bird of prey, raptor, raptorial bird
finch

ratite, ratite bird, flightless bird

peafowl, bird of Juno
common spoonbill
New World vulture, cathartid
Greek partridge, rock partridge

sea lion
plane, carpenter’s plane
cowboy boot
loggerhead, loggerhead turtle
goose

elephant
turtle
turtleneck, turtle, polo-neck
flip-flop, thong
handcart, pushcart, cart, go-cart

California sea lion
Steller sea lion

Australian sea lion
South American sea lion
eared seal

hamster
broccoli
Pomeranian
capuchin, ringtail
weasel

golden hamster, Syrian hamster

rhesus, rhesus monkey
pipe
shaker
American mink, Mustela vison

golden hamster, Syrian hamster

rodent, gnawer
Eurasian hamster
rhesus, rhesus monkey
rabbit, coney, cony

(farm machine)

thresher, threshing machine
tractor
harvester, reaper
half track
snowplow, snowplough

truck, motortruck
skidder
tank car, tank
automatic rifle, machine rifle
trailer, house trailer

flatcar, flatbed, flat
truck, motortruck
tracked vehicle
bulldozer, dozer
wheeled vehicle

(alpaca, Lama pacos)

Tibetan mastiff
titi, titi monkey
koala, koala bear, kangaroo bear
llama
chow, chow chow

kernel
littoral, litoral, littoral zone, sands
carillon
Cabernet, Cabernet Sauvignon
poodle, poodle dog

dog, domestic dog
domestic cat, house cat
schnauzer
Belgian sheepdog
domestic llama, Lama peruana

Figure 1: Zero-shot test images from ImageNet, and their corresponding top 5 labels predicted by
the Softmax Baseline [7], DeViSE [6], and ConSE(T = 10). The labels predicted by the Softmax
baseline are the labels used for training, and the labels predicted by the other two models are not
seen during training of the image classifiers. The correct labels are shown in blue. Examples are
hand-picked to illustrate the cases that the ConSE(10) performs well, and a few failure cases.

Fig. 1 depicts some qualitative results. The first column shows the top 5 predictions of the convolu-
tional net, referred to as the Softmax baseline [7]. The second and third columns show the zero-shot
predictions by the DeViSE and ConSE(10) models. The ConSE(10) model uses the top T = 10

predictions of the Softmax baseline to generate convex combination of embeddings. Fig. 1 shows
that the labels predicted by the ConSE(10) model are generally coherent and they include very few
outliers. In contrast, the top 5 labels predicted by the DeViSE model include more outliers such
as “flip-flop” predicted for a “Steller sea lion”, “pipe” and “shaker” predicted for a “hamster”, and
“automatic rifle” predicted for a “farm machine”.

5

(Nourouzi et al. 2014)

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

48

• Can you exploit a trained
word embedding model
(Mikolov et al. 2013) and a
trained object recognition
model (Krizhevsky et al.
2012) to label images from
unseen classes?

Zero-shot learning
Test Image Softmax Baseline [7] DeViSE [6] ConSE (10)

wig
fur coat
Saluki, gazelle hound
Afghan hound, Afghan
stole

water spaniel
tea gown
bridal gown, wedding gown
spaniel
tights, leotards

business suit
dress, frock

hairpiece, false hair, postiche
swimsuit, swimwear, bathing suit
kit, outfit

ostrich, Struthio camelus
black stork, Ciconia nigra
vulture
crane
peacock

heron
owl, bird of Minerva, bird of night
hawk
bird of prey, raptor, raptorial bird
finch

ratite, ratite bird, flightless bird

peafowl, bird of Juno
common spoonbill
New World vulture, cathartid
Greek partridge, rock partridge

sea lion
plane, carpenter’s plane
cowboy boot
loggerhead, loggerhead turtle
goose

elephant
turtle
turtleneck, turtle, polo-neck
flip-flop, thong
handcart, pushcart, cart, go-cart

California sea lion
Steller sea lion

Australian sea lion
South American sea lion
eared seal

hamster
broccoli
Pomeranian
capuchin, ringtail
weasel

golden hamster, Syrian hamster

rhesus, rhesus monkey
pipe
shaker
American mink, Mustela vison

golden hamster, Syrian hamster

rodent, gnawer
Eurasian hamster
rhesus, rhesus monkey
rabbit, coney, cony

(farm machine)

thresher, threshing machine
tractor
harvester, reaper
half track
snowplow, snowplough

truck, motortruck
skidder
tank car, tank
automatic rifle, machine rifle
trailer, house trailer

flatcar, flatbed, flat
truck, motortruck
tracked vehicle
bulldozer, dozer
wheeled vehicle

(alpaca, Lama pacos)

Tibetan mastiff
titi, titi monkey
koala, koala bear, kangaroo bear
llama
chow, chow chow

kernel
littoral, litoral, littoral zone, sands
carillon
Cabernet, Cabernet Sauvignon
poodle, poodle dog

dog, domestic dog
domestic cat, house cat
schnauzer
Belgian sheepdog
domestic llama, Lama peruana

Figure 1: Zero-shot test images from ImageNet, and their corresponding top 5 labels predicted by
the Softmax Baseline [7], DeViSE [6], and ConSE(T = 10). The labels predicted by the Softmax
baseline are the labels used for training, and the labels predicted by the other two models are not
seen during training of the image classifiers. The correct labels are shown in blue. Examples are
hand-picked to illustrate the cases that the ConSE(10) performs well, and a few failure cases.

Fig. 1 depicts some qualitative results. The first column shows the top 5 predictions of the convolu-
tional net, referred to as the Softmax baseline [7]. The second and third columns show the zero-shot
predictions by the DeViSE and ConSE(10) models. The ConSE(10) model uses the top T = 10

predictions of the Softmax baseline to generate convex combination of embeddings. Fig. 1 shows
that the labels predicted by the ConSE(10) model are generally coherent and they include very few
outliers. In contrast, the top 5 labels predicted by the DeViSE model include more outliers such
as “flip-flop” predicted for a “Steller sea lion”, “pipe” and “shaker” predicted for a “hamster”, and
“automatic rifle” predicted for a “farm machine”.

5

(Nourouzi et al. 2014)

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

48

• Can you exploit a trained
word embedding model
(Mikolov et al. 2013) and a
trained object recognition
model (Krizhevsky et al.
2012) to label images from
unseen classes?

• Let softmax output of
recognition model for top T
classes determine convex
combination of semantic
word embeddings

Zero-shot learning
Test Image Softmax Baseline [7] DeViSE [6] ConSE (10)

wig
fur coat
Saluki, gazelle hound
Afghan hound, Afghan
stole

water spaniel
tea gown
bridal gown, wedding gown
spaniel
tights, leotards

business suit
dress, frock

hairpiece, false hair, postiche
swimsuit, swimwear, bathing suit
kit, outfit

ostrich, Struthio camelus
black stork, Ciconia nigra
vulture
crane
peacock

heron
owl, bird of Minerva, bird of night
hawk
bird of prey, raptor, raptorial bird
finch

ratite, ratite bird, flightless bird

peafowl, bird of Juno
common spoonbill
New World vulture, cathartid
Greek partridge, rock partridge

sea lion
plane, carpenter’s plane
cowboy boot
loggerhead, loggerhead turtle
goose

elephant
turtle
turtleneck, turtle, polo-neck
flip-flop, thong
handcart, pushcart, cart, go-cart

California sea lion
Steller sea lion

Australian sea lion
South American sea lion
eared seal

hamster
broccoli
Pomeranian
capuchin, ringtail
weasel

golden hamster, Syrian hamster

rhesus, rhesus monkey
pipe
shaker
American mink, Mustela vison

golden hamster, Syrian hamster

rodent, gnawer
Eurasian hamster
rhesus, rhesus monkey
rabbit, coney, cony

(farm machine)

thresher, threshing machine
tractor
harvester, reaper
half track
snowplow, snowplough

truck, motortruck
skidder
tank car, tank
automatic rifle, machine rifle
trailer, house trailer

flatcar, flatbed, flat
truck, motortruck
tracked vehicle
bulldozer, dozer
wheeled vehicle

(alpaca, Lama pacos)

Tibetan mastiff
titi, titi monkey
koala, koala bear, kangaroo bear
llama
chow, chow chow

kernel
littoral, litoral, littoral zone, sands
carillon
Cabernet, Cabernet Sauvignon
poodle, poodle dog

dog, domestic dog
domestic cat, house cat
schnauzer
Belgian sheepdog
domestic llama, Lama peruana

Figure 1: Zero-shot test images from ImageNet, and their corresponding top 5 labels predicted by
the Softmax Baseline [7], DeViSE [6], and ConSE(T = 10). The labels predicted by the Softmax
baseline are the labels used for training, and the labels predicted by the other two models are not
seen during training of the image classifiers. The correct labels are shown in blue. Examples are
hand-picked to illustrate the cases that the ConSE(10) performs well, and a few failure cases.

Fig. 1 depicts some qualitative results. The first column shows the top 5 predictions of the convolu-
tional net, referred to as the Softmax baseline [7]. The second and third columns show the zero-shot
predictions by the DeViSE and ConSE(10) models. The ConSE(10) model uses the top T = 10

predictions of the Softmax baseline to generate convex combination of embeddings. Fig. 1 shows
that the labels predicted by the ConSE(10) model are generally coherent and they include very few
outliers. In contrast, the top 5 labels predicted by the DeViSE model include more outliers such
as “flip-flop” predicted for a “Steller sea lion”, “pipe” and “shaker” predicted for a “hamster”, and
“automatic rifle” predicted for a “farm machine”.

5

(Nourouzi et al. 2014)

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

49

Summary

Unsupervised

Learn similarity structure completely from unlabeled data.
Difficult to ensure that similar examples map to similar codes.

Supervised

Use labels or neighbourhood graph to inform map.  
Often, this information is not available!

Weakly supervised

Use of temporal coherence to guide learning.  
Application to zero-shot learning.

Semantically

Similar

Documents

Document

Address Space

Semantic

Hashing

Function

€

x i

€

x j

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

high-dimensional to low-dimensional space. Finally we introduce a related but different objective
for our model based on DrLIM.

3.1 Neighbourhood Components Analysis

NCA (both linear and nonlinear) and DrLIM do not presuppose the existence of a meaningful and
computable distance metric in the input space. They only require that neighbourhood relationships
be defined between training samples. This is well-suited for learning a metric for non-parametric
classification (e.g. KNN) on high-dimensional data. If the original data does not contain discrete
class labels, but real-valued labels (e.g. pose information for images of people) one alternative is to
define neighbourhoods based on the distance in the real-valued label space and proceed as usual.
However, if classification is not our ultimate goal, we may wish to exploit the “soft” nature of the
labels and use an alternative objective (i.e. one that does not optimize KNN performance).

Suppose we are given a set of N labeled training cases {xi,yi}, i = 1, 2, . . . , N , where xi 2 RD,
and yi 2 Rl. For each training vector, xi, the probability that point i selects one of its neighbours j
is defined in the transformed feature space [12]:

pij =
exp(�d2ij)P
k 6=i exp(�d2ik)

, dij = ||zi � zj ||2 (1)

where we use a Euclidean distance metric dij and zi = f(xi|⇥) is the mapping (parametrized
by ⇥) from input space to feature space. For NCA this is typically linear, but it can be extended
to be nonlinear through back-propagation (for example in [32] it is a multi-layer neural network).
NCA assumes that the labels, yi are discrete yi 2 1, 2, . . . , C rather than real-valued and seeks to
maximize the expected number of correctly classified points on the training data which minimizes:

LNCA = �
NX

i=1

X

j:yi=yj

pij . (2)

The parameters are found by minimizing LNCA with respect to ⇥, back-propagating in the case of
a multi-layer parametrization. Instead of seeking to optimize KNN classification performance, we
can use the NCA regression (NCAR) objective [18]:

LNCAR =
NX

i=1

X

j

pij ||yi � yj ||22. (3)

Intuitively, if i and j are neighbours in feature space, then they should also lie close together in label
space. While we use the Euclidean distance in label space, our approach generalizes to other metrics
which may be more appropriate for a different domain.

Keller et al. [18] consider the linear case of NCAR, where ⇥ is a weight matrix and y is a scalar
representing Bellman error to map states with similar Bellman errors close together. Similar to
NCA, we can extend this objective to the nonlinear, multi-layer case. We simply need to compute
the derivative of LNCAR with respect to the output of the mapping, zi, and backpropagate through
the remaining layers of the network. The gradient can be computed efficiently as:

⇧LNCAR

⇧zi
=

X

j

(zi � zj)
⇥
pij

�
y2ij � �i

�
+ pji

�
y2ij � �j

�⇤
. (4)

where we use the shorthand y2ij = ||yi � yj ||22 and �i =
P

j pijy
2
ij .

3.2 Convolutional architectures
As [32] points out, nonlinear NCA was originally proposed in [12] but with the exception of a
modest success with a two-layer network in extracting 2D codes that explicitly represented the
size and orientation of face images, attempts to extract more complex properties using multi-layer
feature extraction were less successful. This was due, in part, to the difficulty in training multi-layer
networks and the fact that many data pairs are required to fit the large number of network parameters.

Though both [32] and [35] were successful in learning a multi-layer nonlinear mapping of the data,
there is still a fundamental limitation of using fully-connected networks that must be addressed.
Such an architecture can only be applied to relatively small image patches (typically less than 64⇥64
pixels), because they do not scale well with the size of the input. Salakhutdinov and Hinton escaped

3

06 Aug 2015 /
DLSS･ Learning to Compare/ G Taylor

50

• Architectural improvements, (e.g.
going deeper, more efficient use of
parameters, multi-scale pathways,
etc.), will continue to make impact

• Databases will only continue to
grow, so efficiency of search (e.g.
Hashing) will be important

• Approaches will roll out to domains
beyond images, audio and text

Where to go from here?

Image: Neverova et al. (2015)

Multi-modal learning (next talk)

Toronto

Montreal

New York

Guelph

Thank You!

