
0162-8828 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPAMI.2014.2362140, IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (TPAMI), VOL. ??, NO. ??, JANUARY 2014 1

The Potential Energy of an Autoencoder
Hanna Kamyshanska, Roland Memisevic

Abstract—Autoencoders are popular feature learning models, that are conceptually simple, easy to train and allow for efficient
inference and training. Recent work has shown how certain autoencoders can be associated with an energy landscape, akin to
negative log-probability in a probabilistic model, which measures how well the autoencoder can represent regions in the input
space. The energy landscape has been commonly inferred heuristically, by using a training criterion that relates the autoencoder
to a probabilistic model such as a Restricted Boltzmann Machine (RBM). In this paper we show how most common autoencoders
are naturally associated with an energy function, independent of the training procedure, and that the energy landscape can be
inferred analytically by integrating the reconstruction function of the autoencoder. For autoencoders with sigmoid hidden units,
the energy function is identical to the free energy of an RBM, which helps shed light onto the relationship between these two
types of model. We also show that the autoencoder energy function allows us to explain common regularization procedures, such
as contractive training, from the perspective of dynamical systems. As a practical application of the energy function, a generative
classifier based on class-specific autoencoders is presented.

Index Terms—Autoencoders, representation learning, unsupervised learning, generative classification

F

1 INTRODUCTION

THE difficulty of many classification tasks depends
strongly on the representation of the data, more

specifically on the choice of features used to represent
the inputs. Representation learning, or feature learn-
ing, tries to simplify classification tasks by learning
a good representation automatically from the input
data (eg., [1]). Many feature learning methods, like the
Restricted Boltzmann Machine (RBM), factor analysis,
and many others, are probabilistic models, and train-
ing them amounts to maximum likelihood estimation
or an approximation thereof.

Since many common models, including the RBM,
define probabilities only up to an intractable nor-
malizing constant, approximate maximum likelihood
learning typically amounts to optimizing the model
only locally, near the training data ([2]). It can be
motivated by the observation that many applications
rely on the learned representations (in the form of
hidden unit activations) rather than the probability
that the model assigns to the data.

The idea of learning a “landscape” of unnormal-
ized log-probability has been generalized to include
arbitrary real-valued functions defined over the data-
space, which can be trained to yield small values near
the data and large values far away from the data ([3]).
These models are commonly referred to as “energy-
based models” in the literature ([3]).

Some of the highly successful examples of non-
probabilistic feature learning models are autoencoder

• H. Kamyshanska is with Frankfurt Institute for Advanced Studies,
Ruth-Moufang-Str. 1, 60438, Frankfurt am Main, Germany.
E-mail: kamyshanska@fias.uni-frankfurt.de

• R. Memisevic is with University of Montreal, CP 6128, succ Centre-
Ville, Montreal H3C 3J7, Canada.
E-mail: roland.memisevic@umontreal.ca

networks. Autoencoders have been shown to yield
state-of-the-art performance in a variety of tasks rang-
ing from object recognition and learning invariant
representations to syntactic modeling of text [4], [5],
[6], [7], [8], [9], [10]. Learning amounts to minimizing
reconstruction error using back-prop.

Autoencoders have been known to be similar in
spirit to RBMs in that they learn a good model near
the training data only. In fact, if noise is added to
the input data during training, minimizing squared
error in an autoencoder with sigmoid activations is
related to performing score matching [7], [8], a common
approximation to maximum likelihood learning in
the RBM [11]. Score matching itself can be shown
to be related to contractive divergence training of
the RBM [12]. The relation between RBMs and au-
toencoders can be extended to other training crite-
ria. For example, [13] suggest training autoencoders
using a “contraction penalty” that encourages latent
representations to be locally flat, and [14] show that
such a regularization penalty applied to real-valued
observations allows us to interpret the autoencoder
reconstruction function as an estimate of the gradient
of the data log probability.

However, beyond the special cases of sigmoid hid-
den units, or special training criteria that relate au-
toencoders to RBMs, it has not been clear in general,
whether all autoencoders come with an associated
energy function, and if so what the form of this energy
function is. The restriction of activation function is
in particular at odds with the growing interest in
unconventional activation functions, like quadratic or
rectified linear units, which were shown to work
much better than sigmoid units in many tasks.

0162-8828 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPAMI.2014.2362140, IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (TPAMI), VOL. ??, NO. ??, JANUARY 2014 2

1.1 Autoencoder as dynamical system

In this work, we show how an energy function may
be derived for the autoencoder by interpreting it as
a dynamical system. The view of the autoencoder as
a dynamical system was proposed originally by [15],
who also demonstrated how de-noising as a learning
criterion follows naturally from this perspective.

The dynamical systems perspective allows us to
obtain an analytical expression for the energy function
of the autoencoder by integration [16]. This makes it
possible to assign energies to autoencoders with many
different types of activation functions and outputs. We
show that the energy function exists irrespective of
whether (or how) the model was trained and that
its form is not related in any way to any training
procedure.

We also show that for autoencoders with sigmoid
hidden units and binary or real-valued observations,
the energy function is identical to the free energy of
the corresponding RBM, showing that autoencoders
and RBMs may be viewed as two different ways to
derive training criteria for forming the same type of
analytically defined energy landscape.

An application of the autoencoder energy surface
is generative classification, using autoencoders as the
class-specific models. We show how such a classifier
yields competitive performance in a variety of tasks
in Section 4.2.

2 AUTOENCODER POTENTIAL ENERGIES

Autoencoders are feed forward neural networks used
to learn representations. They map input data to a
hidden representation

h
(
Wx+ bh

)
(1)

using an encoder function h(.), from which the data
is reconstructed using a linear decoder

r(x) = Wrech
(
Wx+ bh

)
+ br (2)

For the reconstruction matrix Wrec we shall assume
that Wrec = WT in the following (“tied weights”).
This is common in practice, because it reduces the
number of parameters and because related probabilis-
tic models, like the RBM, are based on tied weights,
too.

For training, one typically minimizes the average
squared reconstruction error for a set of training cases:

1

N

∑

i

‖r(xi)− xi‖22 (3)

When the number of hidden units is small, autoen-
coders learn to perform dimensionality reduction. In
practice, it is more common to learn sparse represen-
tations by using a large number of hidden units and
adding a regularization penalty, such as a “contraction
term” [13], to Eq. 3. Alternatively, it is common to

reformulate Eq. 3 to reconstruct data from corrupted
inputs instead of from the original data during train-
ing. The resulting model is known as the de-noising
autoencoder [17].

A wide variety of models can be learned, depend-
ing on the activation function, number of hidden
units and nature of the regularization during training.
Autoencoders defined using Eq. 2 with tied weights
and logistic sigmoid non-linearity h(a) = σ(a) =(
1 + exp(−a)

)−1 are closely related to RBMs [7], [8],
[14].

For binary data, a sigmoid non-linearity is typically
used also in the decoder:

r(x) = σ
(
Wrech

(
Wx+ bh

)
+ br

)
(4)

which makes it possible to interpret the outputs as
Bernoulli probabilities. For training, the reconstruc-
tion error (Eq. 3) is then usually replaced by a cross-
entropy loss.

While binary output RBMs make it possible to
assign an unnormalized log-probability to the data
by integrating over binary hidden units, the analog
of an energy function for the autoencoder has been
proposed only for real-valued observations. The rea-
son is that the relationship with score matching breaks
down in the binary case [14]. As we shall show,
the perspective of dynamical systems allows us to
attribute the missing link to the lack of symmetry.
We also show how we can regain symmetry and
thereby obtain a confidence score for binary output
autoencoders by applying a log-odds transformation
on the outputs of the autoencoder.

2.1 Reconstruction as energy minimization
Since the autoencoder maps an observation x ∈ Rn
to a reconstruction r(x) ∈ Rn it naturally defines a
dynamical system [15]. The function r(x) − x is a
vector field that represents the local displacement that
x undergoes as a result of applying the autoencoder
reconstruction r(x). Repeatedly applying the recon-
struction function to an initial point x, possibly with
a small “inference rate” ε, will trace out a non-linear
trajectory x(t) in the data-space.

If the number of hidden units is smaller than the
number of data dimensions, then the set of fixed
points of the dynamical system will be approximately
a low-dimensional manifold in the data-space [15].
For overcomplete hiddens it can be a more complex
structure. [18], for example, show that for an autoen-
coder that was trained with a specific denoising or
contraction criteria, the reconstruction function will
be approximately proportional to the derivative of the
log probability of x:

r(x)− x = λ
∂ logP (x)

∂(x)
+ o(λ), λ→ 0 (5)

Running the autoencoder by following the trajectory
prescribed by the vector field and starting point x(0)

0162-8828 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPAMI.2014.2362140, IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (TPAMI), VOL. ??, NO. ??, JANUARY 2014 3

may also be viewed in analogy to running a Gibbs
sampler in an RBM, where the fixed points play the
role of a maximum probability “ridge” and where the
samples are deterministic not stochastic.

An important observation now is that some vector
fields are gradient fields, which means they can be
written as the derivative of a scalar field [19]. In that
case, running the dynamical system can be thought
of as performing gradient descent in the scalar field.
In analogy to physics, the scalar field may then be
thought of as a “potential energy” and the vector field
as a corresponding “force”.

Evaluating the potential energy for the autoencoder
can be useful since it allows us to assess how much
the autoencoder “likes” a given input x (up to a
normalizing constant which would be the same for
any two inputs). The potential energy can therefore
play an analogous role to the free energy in an RBM
[2], [7]. (In fact, it is identical to the free energy of
certain RBMs for sigmoid activation functions as we
shall show).

A simple condition for a vector field to be a gradient
field is given by the integrability criterion, which is a
special case of Poincare‘s Lemma [20]: For some open,
simple connected set U , a continuously differentiable
function F : U → Rn defines a gradient field if and
only if

∂Fj(x)

∂xi
=
∂Fi(x)

∂xj
, ∀i, j = 1..n (6)

In other words, integrability follows from the symme-
try of the partial derivatives.

2.2 Computing the energy surface

Consider an autoencoder with shared weight matrix,
W , and vectors of hidden/observable biases defined
by bh and br, respectively, as well a continuously
differentiable activation function (e.g. sigmoid, hyper-
bolic tangent, linear). The integrability criterion holds,
since the reconstruction error satisfies

∂(rm(x)− xm)

∂xn
=

∑

j

Wmj
∂h(Wx+ bh)

∂(Wx+ bh)
Wnj − δmn

=
∂(rn(x)− xn)

∂xm
(7)

where δmn denotes the Kronecker delta.
One way to find the potential energy, whose deriva-

tive is r(x)−x, is to integrate the vector field (compute
its antiderivative).1 For the autoencoder

r(x) = WTh
(
Wx+ bh

)
+ br (8)

1. After computing the energy function, it is easy to check, in
hindsight, whether the vector field defined by the autoencoder is
in fact the gradient field of that energy function: We just need to
compute the derivative of the energy, and check if it is equal to
r(x)−x. For example, one may check the correctness of Eqs. 12 or
16 by differentiating w.r.t. x.

we have

E(x) =

∫
(r(x)− x) dx

=

∫ (
WTh

(
Wx+ bh

)
+ br − x

)
dx

= WT

∫
h
(
Wx+ bh

)
dx+

∫
(br − x) dx

(9)

Define the auxiliary variable u = Wx + bh (which
represents the total input of the hidden units). Now
using

du

dx
= WT ⇔ dx = W−Tdu (10)

we can write

E(x) =

∫
WTW−Th(u) du+ br

Tx− 1

2
‖x‖22 + const

=

∫
h(u) du+ br

Tx− 1

2
‖x‖22 + const

=

∫
h(u) du− 1

2
‖x− br‖22 +

1

2
‖br‖22 + const

=

∫
h(u) du− 1

2
‖x− br‖22 + const (11)

where the last equation uses the fact that br does not
depend on x.

If h(u) is an elementwise activation function, then
the final integral is simply the sum over the an-
tiderivatives of the hidden unit activation functions
applied to x. We can thus compute the energy using
the following recipe:

1) Compute the net inputs to the hidden units:

u = Wx+ bh

2) Compute hidden unit activations using the an-
tiderivative H(u) of h(u) as the activation func-
tion.

3) Sum up the resulting activations across all hid-
den units.

4) Subtract 1
2‖x − br‖22. The result is the desired

energy (up to integration constant).

2.3 Energy functions for autoencoders with com-
mon activation functions

In the following, we derive the energy functions asso-
ciated with some widely used activation functions. A
few example activation functions and their antideriva-
tives are shown in Figure 1. We only consider autoen-
coders with real-valued observations in the following.
We discuss the modifications necessary to obtain the
energy functions for the corresponding models with
sigmoid output units in Section 2.5.

0162-8828 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPAMI.2014.2362140, IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (TPAMI), VOL. ??, NO. ??, JANUARY 2014 4

−3 −2 −1 0 1 2 3
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

σ(x)∫
σ(x) dx

−3 −2 −1 0 1 2 3
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

tanh(x)∫
tanh(x) dx

−3 −2 −1 0 1 2 3
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

x∫
x dx

−3 −2 −1 0 1 2 3
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

relu(x)∫
relu(x) dx

Fig. 1. Some hidden unit activation functions and their integrals.

2.3.1 Sigmoid
The antiderivative of the sigmoid, h(u) = (1 +
exp(−u))−1, is given by the “softplus” function
H(u) = log(1 + exp(u)). It follows that the energy
function for an autoencoder with sigmoid hiddens
takes the form

Eσ(x) =

∫
(1 + exp(−u))−1 du− 1

2
‖x− br‖22 + const

=
∑

k

log(1 + exp(WT
·kx+ bhk))− 1

2
‖x− br‖22 + const

(12)

Thus, the energy is identical to the free energy in a
binary-Gaussian RBM [21]. The analog of the unkown
normalizing constant in the RBM is the constant of
integration for the autoencoder.

2.3.2 Hyperbolic tangent
Another widely used activation function in neural
networks is the hyperbolic tangent:

h(u) = tanh(u) =
exp(u)− exp(−u)

exp(u) + exp(−u)
(13)

The corresponding energy function may be written

Etanh(x) =

∫
u

exp(u)− exp(−u)
exp(u) + exp(−u)

du−
1

2
‖x− br‖22 + const

=
∑
k

log

(
exp(uk) + exp(−uk)

2

)
−

1

2
‖x− br‖22 + const

=
∑
k

log (cosh(uk))−
1

2
‖x− br‖22 + const (14)

=
∑
k

(uk + softplus(−2uk))−
1

2
‖x− br‖22 + const (15)

The energy function involves a hyperbolic cosine.
Equation 15 is a numerically stable version of 14,
whose derivation we show in appendix A.

2.3.3 Linear activation
The antiderivative of the linear function h(u) = u,
is ‖u‖22/2. Hence, for the linear autoencoder, whose

weight vectors will span the PCA solution [22], we
have:

Elinear(x) =

∫
u du− 1

2
‖x− br‖22 + const

=
1

2
‖u‖22 −

1

2
‖x− br‖22 + const

=
1

2
‖Wx+ bh‖22 −

1

2
‖x− br‖22 + const

(16)

The energy is simply the norm of the latent repre-
sentation. It is interesting to note that, if we disregard
biases and assume WTW = I (the PCA solution), then
Elinear(x) turns into the negative squared reconstruc-
tion error. Interestingly, this is exactly how one would
assign confidence scores to PCA models, such as a
PCA based generative classfier.

In Eq. 11 we make use of the invertibility of WT

to derive the energy function in its general form.
However, differentiating Elinear(x) verifies that for
linear hidden units, Eq. 16 will be the correct energy
function regardless of shape or invertibility of WT :

∂Elinear(x)

∂x
= WTWx+WTbh + br − x
= WT(Wx+ bh) + br − x
= r(x)− x

(17)

2.3.4 Square activation
The square activation, h(u) = u2, is increasingly
common, and it can be shown to be useful for learn-
ing video and motion representations [23], [24]. The
energy function for the square activation is:

Esq(x) =

∫
u2 du− 1

2
‖x− br‖22 + const

=
∑

k

u3k
3
− 1

2
‖x− br‖22 + const

(18)

2.3.5 Rectified linear (ReLU)
Another increasingly common activation function is
the rectified linear activation:

relu(u) =

{
0 if u < 0,

u else
(19)

0162-8828 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPAMI.2014.2362140, IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (TPAMI), VOL. ??, NO. ??, JANUARY 2014 5

It can be approximated in the RBM using a stochastic
variant called the “noisy rectified linear” activation
[25]. Integrating piecewise shows that the antideriva-
tive of relu(x) is a “half-square” (see also Figure 1):
Hence,

Erelu(x) =
∑

k

(sign(uk) + 1)
u2k
2
− 1

2
‖x− br‖22 + const

2.3.6 Modulus activation

The piecewise antiderivative of the modulus (absolute
value) function, |u|, is given by sign(u)u2

2 , which
yields the energy function

Eabs(x) =
∑

k

sign(uk)
u2k
2
− 1

2
‖x− br‖22 + const (20)

2.3.7 Synchrony autoencoder

The synchrony autoencoder (SAE) was introduced
by [26] as an alternative to the square activation for
extracting motion features from videos or image pairs.
It is based on hidden units whose activation function
is a sigmoid applied to squared linear projections of
the concatenation of frames in the video. By integrat-
ing the sigmoid-of-square activation, one obtains the
corresponding energy function

ESAE(x) =
∑

k

log(exp(u2k) + 1)− ‖x‖22 + const (21)

2.3.8 Maximum activation and Kmeans clustering

By using the maximum activation function and unit
norm data and weight vectors, we obtain an autoen-
coder that is equivalent to Kmeans clustering. Kmeans
minimizes the sum of squared distances between
observations xj and cluster centers wi:

k∑

i=1

∑

j:xj∈Ci

‖xj −wi‖22 (22)

where Ci is the set of points for which wi is the closest
cluster center ([27]). If cluster centers are normalized,
we have

‖xj −wk‖22 = −2xT
j wk + Ω (23)

with Ω = ‖xj‖22 + 1 constant. Define the activation
function

hi(x) =

{
1 if 〈x,wi〉 = maxj〈x,wj〉,
0 else

(24)

that chooses the nearest cluster center, as well as a
selection function s(x) which returns the index of
the non-zero hidden unit. The reconstruction in an
autoencoder with tied weights can now be written
W Th(x) = ws(x) which is the nearest cluster center,

whose training criterion is the standard Kmeans objec-
tive (Eq. 22). The energy function for this autoencoder
is

Emax(x) =

∫
(x−ws(x)) dx = ‖x−ws(x)‖22 + const

which is simply the squared distance from the nearest
cluster center. Note that the energy function is dif-
ferentiable almost everywhere. As in the case of the
linear autoencoder and PCA, the energy Emax is the
usual confidence score of the Kmeans model.

2.4 Example of a 2-d energy surface
An example of a two-dimensional vector field and the
corresponding energy surface is shown in Figure 2.
It shows the result of training a contractive autoen-
coder with 100 hiddens and sigmoid activation on
two-dimensional data randomly distributed around a
circle. The data, learned vector field and associated
energy function are shown in Figures 2(a), (b), (c) and
(g), respectively. The figure also shows the reconstruc-
tions of points drawn from a regular grid (Fig. 2(d))
and the corresponding squared reconstruction error
(Fig. (e) and (g)), which illustrates why reconstruction
error is not a suitable energy function: It has local
minima at both the local maxima and the local minima
of the energy function and thus it cannot distinguish
between “good” and “bad” stationary points of the
energy. The unsuitability of squared error as an energy
surface is discussed also in [18].

2.5 Binary data
In the case of sigmoid outputs activations, the inte-
grability criterion (Eq. 7) does not hold, because of
the lack of symmetry of the derivatives. However,
it is possible to regain integrability and obtain an
energy function by monotonically transforming the
vector space as follows: Use the inverse of the logistic
sigmoid (the “log-odds” transformation)

ξ(x) = log
(x

1− x
)

(25)

and define the new vector field

B(x) = ξ(r(x))− ξ(x)

= ξ
(
σ
(
WTh

(
Wx+ bh

)
+ br

))
− log

(x

1− x
)

= WTh
(
Wx+ bh

)
+ br − log

(x

1− x
)

(26)

The vector field B(x) has the same fixed points as
r(x)− x, because invertibility of ξ(x) implies

r(x) = x ⇔ ξ(r(x)) = ξ(x) (27)

Thus running the original and transformed autoen-
coder will converge to the same representations of x.

Although the log-odds transformation is defined
(and invertible) only for points x in the interior of

0162-8828 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPAMI.2014.2362140, IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (TPAMI), VOL. ??, NO. ??, JANUARY 2014 6

AE vector field Energy surfaceTraining set

Squared error slice

Energy surface slice

Squared error surfaceReconstruction

Fig. 2. Example of a learned vector field and the associated energy function. See the text for details.

the hypercube x ∈ (0, 1)n (in other words, not for
binary x), any fixed point of the original autoencoder,
r(x), will reside in the interior, too. The reason is
that (even for a binary input vector x) the sigmoid
outputs of the autoencoder will yield a reconstruction
inside the hypercube, as a sigmoid unit can never
attain the values 0 or 1. As we show below, the energy
associated with the transformed autoencoder, is well-
defined also for binary data.

By integrating B(x), we obtain the energy

E(x) =

∫
h(u) du+ br

Tx (28)

−
∑

j

(
log
(
1− xj

)
+ xj log

(xj
1− xj

))
+ const

As compared to the real-valued autoencoder (c.f.,
Eq. 11) this energy function contains a bias term that is
linear rather than quadratic, as well as the additional
entropy term

−
∑

j

(
log
(
1− xj

)
+ xj log

(xj
1− xj

))

= −
∑

j

(
xj log xj + (1− xj) log

(
1− xj

)) (29)

Using the convention 0 log(0) = 0 [28], which is based
on the fact that limx→0 x log(x) = limx→0−x

−1

x−2 = 0
(l’Hopitals rule), this term vanishes for binary data.

2.5.1 Binary-binary autoencoder
Based on the discussion in the previous section, the
energy function for an autoencoder with sigmoid

hidden and output units, evaluated at strictly binary
data, is given by:

Eσ(x) =
∑

k

log(1 + exp(WT
·kx+ bhk)) + br

Tx+ const

(30)

The energy is identical to the free energy of a binary-
binary RBM [2].

Note that in general, hidden unit activation func-
tions do not need to be sigmoid and enter the energy
computation using the recipe described in Section 2.2.
Furthermore, on data that is not binary but that takes
on values between 0 and 1, the entropy-terms in Eq. 28
are not equal to 0 and need to be included in the
energy computation.

3 THE LAPLACIAN AND DIVERGENCE OF AN
AUTOENCODER

We now discuss how the existence of the energy
function makes it possible to apply notions from
vector calculus, such as the divergence and Laplacian,
to the autoencoder. We then show how these notions
lend themselves naturally to defining regularization
criteria similar to the contractive regularizer proposed
by [13], suggesting to re-interpret this criterion from
the perspective of dynamical systems.

The divergence of a vector field is a scalar field that
measures the outward flux of the vector field at each
point [19]. A negative divergence at a point x signifies
that the point is a “sink” of the dynamics, a positive
divergence that it is a “source”. The divergence of

0162-8828 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPAMI.2014.2362140, IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (TPAMI), VOL. ??, NO. ??, JANUARY 2014 7

vector field F can be defined as the sum of the first-
order derivatives:

divF (x) =
∑

i

∂Fi(x)

∂xi
(31)

In a conservative vector field the divergence is equal
to the Laplacian of the energy function, which can be
defined as the sum of (non-mixed) second derivatives
[19]:

(
divF (x) =

)
∆E(x) =

∑

i

∂2E

∂x2i
(32)

To discuss these notions in the context of the au-
toencoder we first write the autoencoder dynamics
compactly as

∂E(x)

∂x
= r(x)− x = WTh(Wx)− x (33)

Here and in the following we absorb the biases into
inputs and hidden units to avoid clutter.

The Hessian of the energy function can now be
written:

∂2E(x)

∂x2
= WTdiag

(
h′(x)

)
W − ID (34)

where h′ denotes the first derivative of the hidden
activation function applied element-wise, and D is the
dimensionality of the data.

It follows that the Laplacian of the energy function,
or equivalently the divergence of the autoencoder
vector field, can be written:

∆E(x) = tr
(
WTdiag(h′(Wx))W − ID

)
(35)

= tr
(
WTdiag(h′(Wx))W

)
−D (36)

= tr
(
diag(h′(Wx))WWT

)
−D (37)

=
∑

k

h′(wT
k x)‖wk‖22 −D (38)

Training an autoencoder by minimizing reconstruc-
tion error may be thought of as encouraging training
data points to be fixed points of the dynamics, as we
discussed. However, this by itself is not a suitable
training criterion, especially for overcomplete autoen-
coders, since they can learn the identity mapping,
which would turn all points into fixed points.

From the perspective of reconstruction dynamics, a
natural way to regularize the autoencoder is to turn
training points into a sink of the dynamics (thus limit-
ing the total amount of energy). In this case, training
points will not only be encouraged to act as a fixed
points but also to be the center of a basin of attraction.
Intuitively, traversing points that act as sinks amounts
to loosing potential energy, so if the energy surface
is bounded, the dynamics have to converge. Another
perspective is that the only way to allow for perfect
reconstruction of the data by overfitting is to learn a
perfectly flat energy surface. But at points that are
sinks, the curvature of the energy surface will be

negative, making it impossible for the energy surface
to be flat everywhere.

Formally, a point xwill be a sink of the autoencoder
dynamics, if the Laplacian ∆E(x), is negative, or
equivalently if

∑

k

h′(wT
k x)‖wk‖22 < D (39)

As we show below, contractive regularization [13]
may be viewed as a way to satisfy this criterion. In the
following, we shall call the autoencoder absorbing at
data point x if that data point satisfies Eq. 39. One
way (though obviously not the best way) to make
all points absorbing would be to restrict weights to
be sufficiently small (for example using very strong
weight decay). For saturating activation functions the
autoencoder can be absorbing locally even for large
weights, by having data-points saturate hidden units
(in particular, those with large weight vectors).

The contractive regularizer [13], which was orig-
inally motivated by encouraging the derivatives of
hidden units wrt. the inputs to be small, is defined
as the Frobenius norm of the Jacobian:

∑

k

(
h′(wT

k x)
)2‖wk‖22 (40)

Up to the squaring of the derivative in Eq. 40 (which
is strictly positive for most common autoencoders, so
the square will have only a limited effect and not
change signs), Eq. 40 is identical to the left-hand side
of Eq. 39.

This shows that contractive regularization as de-
fined in [13] may be viewed as a way to encourage
the Laplacian of the autoencoder to be small near
the data (although an interesting research direction
could be regularizing an autoencoder by enforcing
Eq. 39 directly rather than using Eq. 40). A similar
point can be made for denoising autoencoders, which
themselves may be viewed as a way to approximate
a contractive regularizer [18]. Eq. 39 also shows un-
der what conditions contractive regularization will
succeed in making the autoencoder absorbing at all
training examples: the contraction penality (in the
form of the left-hand side of Eq. 39) has to be smaller
than D, the dimensionality of the data.

As we discussed in Section 2, an autoencoder is
guaranteed to have a well-defined energy function if
it has tied weights. It is interesting to note that for an
autoencoder whose weights are not tied, contractive
regularization will encourage the vector field to be
conservative. The reason is that encouraging the first
derivative to be small and the second derivative to be
negative will tend to bound the energy surface near
the training data. Training a contractive or denoising
autoencoder may thus also be viewed as a way to
optimize the Lyapunov stability of the autoencoder
dynamics near the data.

0162-8828 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPAMI.2014.2362140, IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (TPAMI), VOL. ??, NO. ??, JANUARY 2014 8

In the following we show how several existing
methods are naturally absorbing according the above
definition.

3.1 PCA is absorbing everywhere
The PCA reconstruction is given by

∂E(x)

∂x
= r(x)− x = WTWx− x (41)

It follows that the PCA Laplacian is given by:

∆E(x) = tr
(
WTW

)
−D = tr

(
WWT

)
−D = d−D

(42)
The Laplacian is constant (independent of the data),
and it is negative as long as the dimensionality of the
hidden layer is smaller than the data dimensionality.
Intuitively, this means that there is a projection (onto
a subspace).

3.2 Kmeans clustering is absorbing everywhere
By using the selection function s(x) which returns the
index of the nearest cluster center (cf., Section 2.3.8)
we can write the Kmeans clustering reconstruction
function as

∂E(x)

∂x
= r(x)− x = ws(x) − x (43)

Note that r(x) is differentiable almost everywhere
(more specifically, it is differentiable everywhere
within the Voronoi cell defined by a cluster center).
Since within each cell, ws(x) is constant (and its
derivative is zero), the Laplacian takes the form

∆E(x) = tr
(
− ID

)
= −D (44)

This shows that Kmeans clustering is globally absorb-
ing, independent of the number and the position of
cluster centers.

3.3 CD training as optimizing the Laplacian
Contrastive divergence (CD) training is a popular
approximation to maximum likelihood learning for
RBMs. It is based on approximating the intractable
derivative of the log-normalizing constant of the
data-log probability by using local samples from the
model [2], [29]. In practice this amounts to applying
an update rule which increases unnormalized log-
probability at the training examples and decreases
it near the data. Nearness is defined in practice by
applying a Gaussian perturbation around a one-step
reconstruction of the training-example.

A common way to define the one-step reconstruc-
tion is the mean-field approach, which amounts to
inferring hiddens from the data and subsequently re-
inferring the data from the hidden units, which is
equivalent to applying the sigmoid autoencoder as-
sociated with the RBM. As we showed in Section 2.3,
the energy function of this autoencoder is identical

to the RBM free energy. Like contractive training of
the autoencoder, CD training has the effect of turning
the training examples into local optima of the energy
function. The close relation between RBMs and au-
toencoders, and their way of locally optimizing the
energy surface, may suggest alternative approaches to
training RBMs, such as replacing the sampling-based
negative phase with a contractive regularizer.

4 CLASSIFICATION WITH CLASS-SPECIFIC
AUTOENCODERS

One application of the ability to assign an energy, or
confidence score, to data-points is to turn a set of
class-specific autoencoders into a generative classifier.
To this end, one may train one autoencoder per class
and combine their confidence scores on a new data
sample into a classification decision. One advantage
of generative classifiers is that they make it possible
to add classes at test-time without having to re-train
the parameters of the already trained class-specific
models. The most common choice of class-specific
model are directed probabilistic models, which are
typcially combined into a classification decision using
Bayes’ rule. But it is possible to use undirected models
(and, in fact, autoencoders as we discuss below) as the
class-specific models instead, as long as these models
are combined properly to obtain a well-calibrated
classification decision [2], [30].

Figure 3 shows energies that autoencoders with
various different activation functions assign to test
cases from classes 6 and 9 of the MNISTsmall digit
dataset ([31]), after training on the training cases from
each class (one model per class). A similar plot specific
to RBMs was presented in [2] which, not surprisingly,
looks similar to the plot for the autoencoder with sig-
moid activation functions. Here, we used contractive
autoencoders for training (see Section 4.2 for more
details on the learning). The figure shows that all
models yield fairly well separated confidence scores,
when the apropriate anti-derivatives are used.

Like for RBMs, scores are relative, not absolute,
however, due to the lack of the normalizing constant.
This means that we can compare the scores that
an autoencoder assigns to multiple data-points, but
we cannot compare the scores that multiple different
autoencoders assign to a single data-point.

One solution is to aggregate class-specific scores
within a discriminative classifier, as shown for Re-
stricted Boltzmann Machines by [30]. The “gated
softmax”-model proposed in that work contains a
parameter tensor holding all class-specific RBM pa-
rameters. Instead of using Bayes rule to turn the class-
specific probabilities into a classification decision, that
model uses the parameter tensor to define class-
probabilities directly. [30] show how, in practice, this
amounts to computing the RBM free energy for each
class, and combining these with a softmax function.

0162-8828 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPAMI.2014.2362140, IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (TPAMI), VOL. ??, NO. ??, JANUARY 2014 9

0.45 0.50 0.55 0.60 0.65 0.70 0.75

E6(x)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

E
9
(x

)

sigmoid activation

class 6
class 9

0.719 0.720 0.721 0.722 0.723 0.724 0.725

E6(x)

0.711

0.712

0.713

0.714

0.715

0.716

0.717

0.718

0.719

E
9
(x

)

tanh activation

class 6
class 9

0.0 0.2 0.4 0.6 0.8 1.0

E6(x)

0.0

0.2

0.4

0.6

0.8

1.0

E
9
(x

)

linear activation (real input)

class 6
class 9

0.60 0.65 0.70 0.75 0.80 0.85 0.90

E6(x)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

E
9
(x

)

linear activation (binary input)

class 6
class 9

−0.05 0.00 0.05 0.10 0.15 0.20

R6(x)

0.00

0.02

0.04

0.06

0.08

R
9
(x

)

sigmoid activation (squared errors)

class 6
class 9

Fig. 3. Examples of class-dependent contractive autoencoder scores distributions and squared reconstruction
errors of digits 6 and 9 from the MNISTsmall data set, learned using different activation functions.

Closely related models include the discriminative
RBM [32], and the discriminative/generative RBM
described in [33].

It is straightforward to apply this approach to au-
toencoders using their energy function as confidences
score. More specifically, denoting the unnormalized
energies that the class-specific autoencoders assign to
the data as Ei(x), i = 1, . . . ,K, we can define the
conditional distribution over classes yi, for example,
using multiclass logistic regression as

P (yi|x) =
exp(Ei(x) + Ci)∑
j exp(Ej(x) + Cj)

(45)

where Ci is the bias term for class yi. We shall refer to
this model as class-specific autoencoders (CSAE) in the
following.

It is interesting to note that each Ci may be viewed
as the normalizing constant of the ith autoencoder,
which, since it cannot be determined from the input
data, needs to be trained from the labeled data.

Eq. 45 may therefore be viewed as a “contrastive”
objective function that compares class yi against all
other classes in order to determine the missing nor-
malizing constants of the individual autoencoders.
This is reminiscent of noise-contrastive estimation
[34], with the difference that the contrastive signal is
provided by other classes not by noise. Optimizing the
log of Eq. 45 is straightforward using gradient based
optimization. Like in the gated softmax model [30],
after training the K class specific autoencoders, we
may perform discriminative finetuning of the whole
model (including all parameters of the K involved
autoencoders and the normalizing constants), by op-
timizing Eq. 45 with respect to these parameters. To
obtain their derivatives, one can back-propagate the
logistic regression cost.

4.1 Parameter Factorization
We showed in Section 2 that an energy function is
guaranteed to exist only for autoencoders with a
single hidden layer. We shall now discuss a simple
but effective approach to training multilayer models
without sacrificing the ability to compute scores, using
factorization of a parameter tensor [35], [36].

Note that we may add hidden layers with a linear
activation function, since we could in principle absorb
their weights into the other layers. To define a mul-
tilayer autoencoder classification model, we suggest
adding linear layers on the bottom and, by symmetry,
its transpose on the top. At first sight, it seems that
nothing is gained by this proceduce. But since we will
be training one autoencoder per class, we may now tie
the weights of the outer-most layers across classes, to
perform class-independent preprocessing of the data.
Thus, even though the linear layers do not add any
information when training each autoencoder on data
from its class, training them with tied weights does.

In many classification tasks such class-specific pre-
processing makes sense, because similar features may
appear in several classes, so there is no need to
learn them separately. Class-specific autoencoders
with shared bottom-layer weights can also be inter-
preted as standard autoencoders whose set of weight
matrices is factorized, as proposed by [30] for the
gated softmax model based on RBMs.

Fig. 4 shows an illustration of a factored autoen-
coder. The model parameters are filter matrices W x

and W h which are shared among all classes, as
well as matrices W f ,Bh and Br which consist of
stacked class-dependent feature-weights and bias vec-
tors. Using one-hot encoded labels, t, the hidden unit
activations and the reconstructions can be written

hk =
∑

f

(
∑

i

Wx
ifxi)(

∑

j

tjW
f
jf)Wh

fk +
∑

j

tjB
h
jk (46)

rm =
∑

f

(
∑

k

WhT
kf hk)(

∑

j

tjW
f
jf)WxT

fm +
∑

j

tjB
r
jm (47)

Multiplying by t, we “mask” the matrices W f , Bh

and Br for each input sample individually, so that
only the rows relevant to the current training case
remain.

One can interpret this model as a combination of
K class-dependent autoencoders with tied parameter
sets {W j , bjh, b

j
r|j = 1..m}, where each weight ma-

trix W j is factorized into a product of two class-
independent (shared) matrices W x and W h and one

0162-8828 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPAMI.2014.2362140, IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (TPAMI), VOL. ??, NO. ??, JANUARY 2014 10

class-dependent vector wf :

W j
ik =

∑

f

Wx
ifW

f
jfW

h
fk (48)

The first encoder-layer (W x) learns the class-
independent features, the second layer (W f

j·) learns,
how dominant these features are in current class
and weights them accordingly. Finally, the third layer
(W h) learns how to overlay the weighted features to
get the hidden representation. All these layers have
linear activations except for the last one. Reconstruc-
tions and decoder weights take the form

rji (x) =
∑

k

W jT
ik σ(hjk) + bjr (49)

W j
ik

T
=

∑

f

WhT
fk W

f
jfW

xT
if (50)

For training in the presence of tied weights, we can
update all K autoencoders on data across all classes
and use the labels in order to determine for each
training case which top-level weights to train. Shared
parameters are updated on all training cases. Thus,
although the lower layers learn to perform class inde-
pendent pre-processing, the whole model, including
pre-preprocessing weights, will be trained using a
single, discriminative objective.

Fig. 4. Factored autoencoder with tied weights. Top:
a single factored autoencoder; bottom: encoder-part
of the combination of several autoencoders. Dashed
lines represent the class-dependent weights, solid
lines class-independent weights.

4.2 Classification experiments
We tested the class-specific autoencoder model (fac-
tored and plain) on the regular MNIST dataset [37]

and on the deep learning benchmark set [31]. The lat-
ter consists of eight datasets, most of which are varia-
tions of MNIST. One of the eight datasets, MNISTs-
mall, is a subset of the ordinary MNIST dataset
with only 10000 training samples. All datasets contain
gray-scale images of 28×28 pixels with values in the
range [0, 1]. We used the Python Theano library [38]
for most of our experiments. An implementation of
the model is available at: http://fias.uni-frankfurt.
de/∼kamyshanska/aescoring code.html

In our experiments, we regularized autoencoders
with differentiable activation function using contrac-
tion penalty [13], and those with non-differentiable ac-
tivation function using denoising regularization [17].
The factored models were all regularized using a
denoising criterion, because the computation of con-
traction penalties is not feasible for multilayer net-
works [13].

4.3 Class-specific Pretraining

Although it would be possible to train the log of
Eq. 45 starting with a random initialization for all
the parameters, [30] report better performance by
pretraining all class-specific models separately on data
from their own class. We found the same to be true
here (see also Section 4.5 for a detailed evaluation).

In our evaluations, we train one set of autoencoders
for each number of hiddens (and of factors for the
factored model) for pretraining, because at this stage
it is not possible to decide which setting will perform
the best after discriminative learning. The set of au-
toencoders per setting (ie., per number of hiddens and
of factors) consists of one model per class. We trained
each autoencoder separately for the unfactored model,
and we trained the autoencoders across all classes
simultaneously for the factored model since some
parameters are shared between classes, as explained
above. We used gradient descent for optimization. In
some of our experiments we found that normalizing
filters to have equal norm after each gradient step can
help stabilize the learning.

For contractive autoencoders the contraction
penalty varied between 0.2, 0.5 and 1.0; for denoising
autoencoders the corruption level varied between 0.2
and 0.5. Since it is infeasible to perform discriminative
finetuning on a very large number of pretrained
candidate models, we chose various hyperparameters,
such as the number of training epochs, by visual
inspection in the pretraining phase. Although a
partial search over hyperparameters involving an
outer loop for finetuning may slightly improve
overall performance, we found the performance to be
generally robust to small changes in the pretraining,
as long as the pretrained filters looked reasonable.
Thus, we do not expect better pretraining to be able
to yield a large potential performance improvement.
We included the validation sets in the training data

http://fias.uni-frankfurt.de/~kamyshanska/aescoring_code.html
http://fias.uni-frankfurt.de/~kamyshanska/aescoring_code.html

0162-8828 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPAMI.2014.2362140, IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (TPAMI), VOL. ??, NO. ??, JANUARY 2014 11

used for pretraining to improve the quality of the
learned filters (even though this may slightly distort
the validation decisions, potentially resulting in
suboptimal performance).

4.4 Supervised Finetuning

For discriminative finetuning, we validated over the
following hyperparameters: number of hiddens, number
of factors (for the factored model), learning rate, weight
decay. As weight decay, we used an L2 penalty on
the model parameters. In most cases, we tested 100,
200, 300 and 500 hiddens and factors. For all data
sets, in both the pretraining and finetuning phases,
we used minibatches of size 100, and momentum of
0.9 for training. We trained all models for 100 epochs
using gradient descent (but we found that the best
validation cost was often reached during the first 10
epochs).

Finally, after finding the best settings according
to the validation data, we finetuned the model on
the complete training set (train and validation), and
evaluated the resulting model on the test data.

4.5 Classification With and Without Pretraining

We first compared the classification performance of
the pretrained and randomly initialized CSAE models
on all data sets for linear and sigmoid activations as
well as for sigmoid activations with feature sharing.
Pretrained models almost always lead to better results
on the test data as seen in Figure 6. We also observed
that often, the pre-trained filters are already close to
the optimum of the discriminative objective, so that
just a few epochs of finetuning suffice. Furthermore,
finetuning often tends to adjust mainly the scale,
rather than the structural details, of the pretrained fil-
ters. An illustration of this effect is shown in Figure 5,
which shows that filters look similar before and after
finetuning. In the example, pretrained filters (left) take
on values between −4.72 and 4.67 whereas finetuned
filters (right) between −0.64 and 0.63.

Fig. 5. Initial filters learned by a contractive autoen-
coder trained on the ”0“– digits from MNIST, before
supervised finetuning (left), and after supervised fine-
tuning (right).

To get a better understanding of the performance
improvement due to finetuning, we compare the test-
and the train-errors for autoencoders with linear hid-
den units in Table 1. It shows that the reason for the
lower error rates is data dependent, in that in can be
due to the optimization of the training objective (top
part of the table), or better generalization (bottom part
of the table). The fact that pretraining in some cases

Fig. 6. Test error rates for the CSAE model with
and without discriminative pretraining. Top: ordinary
contractive class-specific AE with sigmoid hidden units.
Middle: factored denoising AE with sigmoid hidden
units. Bottom: ordinary contractive class-specific AE
with linear hidden units.

simply helps the optimization, may be related to the
fact that it may encourage orthonormalization of the
weights, as recently discussed in [39].

Overall, our experiments show clearly that unsu-
pervised pretraining generally leads to better results
and is preferable over random initialization.

DATA SET WITH PRETR. WITHOUT PRETR.
TRAIN/TEST TRAIN/TEST

RECTANGLES 0.08 / 0.84 0.41 / 3.96
MNISTRAND 4.16 / 17.96 20.74 / 21.5

MNISTSMALL 0.04 / 3.91 0.02 / 4.29
MNISTROT 4.12 / 16.19 0.14 / 16.56
MNISTIMG 0.94 / 22.37 0.18 / 29.03
MNISTROTIMG 8.45 / 56.15 0.54 / 61.85

TABLE 1
Error rates on train- and test-data sets with and

without pretraining, using the linear activation function.
Best results shown in bold font.

4.6 Comparison of Activation Functions

We tested the CSAE classification approach on the
MNIST data set for a variety of autoencoders: con-
tractive autoencoder with sigmoid and linear acti-
vation; denoising autoencoder with modulus acti-
vation; factored denoising autoencoder with hyper-
bolic, modulus, squared, and rectifier activation. Ta-
ble 2 shows test error rates for these versions of the

0162-8828 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPAMI.2014.2362140, IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (TPAMI), VOL. ??, NO. ??, JANUARY 2014 12

CSAE:
RBM 3.39 LINEAR 1.99
DRBM 1.81 SQUARED (FACTORED) 2.5
HDRBM 1.28 MODULUS (FACTORED) 2.04

RELU (FACTORED) 2.35
MODULUS 1.76
TANH (FACTORED) 2.02
SIGM 1.27

TABLE 2
Test-error rates on MNIST for the CSAE Model based

on autoencoders with different activation functions.

CSAE model. It also shows error rates for related
generative/discriminative models that are based on
RBMs [32], including the discriminative RBM (DRBM)
and hybrid DRBM (HDRBM). In this experiment, the
sigmoid activation yields the lowest error rates; the
modulus function also performed well. Somewhat
surprising is the comparably good performance of the
linear activation, which is the simplest model.

We then evaluated the best performing activation
functions on the deep learning benchmark set [31].
The results are shown in Table 3. Again, models with
sigmoid activation performed best, with the linear
model performing comparably on the RECTANGLES,
MNISTsmall and MNISTbackImg tasks. We found
the MNISTrand data set in this experiment not to
have enough samples per class to learn meaningful
class-dependent filters (by inspection). We therefore
initialized the final model for this data set using filters
from the MNISTsmall data.

DATA SET LINEAR MODULUS SIGM SIGM
(FACT.)

RECTANGLES 0.84 4.82 2.72 0.84
RECTANGLESIMG 25.3 24.9 21.45 22.76
CONVEXSHAPES 36.34 23.18 21.52 22.12
MNISTSMALL 3.91 5.17 3.18 3.62
MNISTROT 16.19 13.22 13.11 14.46
MNISTRAND 17.96 17.08 19.52 12.64
MNISTBACKIMG 22.37 23.38 21.87 22.77
MNISTROTIMG 56.15 52.88 54.79 47.14

TABLE 3
Test-error rates on deep learning benchmark for the

basic CSAE model.

Fig. 8. Test error rates of factored vs unfactored model.

Some learned filters are shown in Figure 7. The
figure shows features learned on rotated digits and

digits with background images using linear, modu-
lus and sigmoid activation. Interestingly, the filters
learned by the different models look qualitatively
very different. The modulus autoencoder seems to
learn ”too much“ on MNISTbackImg, while the linear
autoencoder captures mostly global structure, such as
the shape of the digit ”2“. On more difficult tasks
however, the more local structure seems to be crucial
as reflected in the performance table. Figure 7 also
shows the shared features from the factored models
with sigmoid, modulus and rectifier activations on
MNIST. The overall qualitative differences across the
models persists.

Another important observation from Table 3 is that
factored models are not generally better or worse. It
is task-dependent which kind of model to choose.
This is also illustrated in Figure 8, which compares
the factored versus unfactored variants of the CSAE
classifier.

4.7 Comparison of Model Variations
Finally, we trained and compared a variety of varia-
tions of the CSAE model:

(hinge): Pretrain the filters, then minimize hinge-
loss instead of log-loss (negative log of Eq. 45) for
finetuning.

(learn normalization): Train an autoencoder for
each class separately, then learn only the normal-
izing constants by maximizing the conditional log-
likelihood (Eq. 45).

(energies): Train an autoencoder for each class
separately, then compute for each sample x ∈ Rn

a vector of energies (E1(x), · · · , Em(x)), setting the
unknown integration constants to zero, and train a
linear classifier on labeled energy vectors instead of
using the original data [2]. This model performs both
normalization and scaling of the pretrained filters.

In our experiments, the log-loss consistently out-
performed the hinge loss in all tasks. Methods en-
ergies and learn normalization are very fast due to
the small amount of trainable parameters, but they
show weaker performance, as shown in Table 4. For
comparison, the table also lists the performances of
the basic CSAE approach without pre-training.

Two lessons to learn from our experiments are that
(i) generative pre-training of each autoencoder on
data from its own class is crucial to achieve good
performance, (ii) it is not sufficient to adjust merely
normalizing and scaling constants, since backpropa-
gating to the filters themselves significantly improves
overall performance.

4.8 Comparisons with Other Models
Table 5 shows the classification error rates of CSAE
in comparison to various similar models from the
literature. We followed the same validation proce-
dure as discussed above. In these experiments, to

0162-8828 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPAMI.2014.2362140, IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (TPAMI), VOL. ??, NO. ??, JANUARY 2014 13

Fig. 7. Filters learned using autoencoders with different activation functions.

DATA SET ENERGIES NORMALIZE NO PRETR. CSAE
ONLY

MNISTSMALL 3.39 3.66 5.53 3.38
MNISTROTATION 14.32 20.85 19.95 13.77
CONVEX 44.36 33.9 24.02 21.52

TABLE 4
Classification results for variations of the model.

DATA SVM RBM DEEP GSM CSAE
RBF SAA3

RECTANGLES 2.15 4.71 2.14 0.56 0.84
RECTANGLESIM 24.04 23.69 24.05 22.51 21.45
CONVEXSHAPES 19.13 19.92 18.41 17.08 21.52
MNISTSMALL 3.03 3.94 3.46 3.70 2.61
MNISTROT 11.11 14.69 10.30 11.75 11.25
MNISTIMG 22.61 16.15 23.00 22.07 20.15
MNISTRAND 14.58 9.80 11.28 10.48 12.64
MNISTROTIMG 55.18 52.21 51.93 55.16 47.14

TABLE 5
Test-error rates on the deep learning benchmark data

set. CSAE results use validation over factored and
unfactored models with sigmoid hidden units.

RBF-kernel SVM and RBM results taken from [40];
deep net and GSM results from [30].

be consistent with [30], we furthermore normalized
filters to have constant norm during the optimization.
For the GSM model, we report the best performance
of factored vs. unfactored on the test data, which
may introduce a bias in favor of that model. Some
example images with corresponding filters learned by
the ordinary and factored CSAE model are shown in
Figure 9.

5 CONCLUSION

We showed how we may assign an unnormalized
energy surface to an autoencoder by interpreting it
as a dynamical system. Unlike previous approaches
to defining an autoencoder energy, the dynamical sys-
tems perspective is not restricted to sigmoid activation
functions, which make the autoencoder resemble an
RBM, and it is independent of the training criterion.

We also show how multiple class-specific autoen-
coders can be turned into a generative classifier that
yields competitive performance in difficult bench-
mark tasks. Class-specific dynamical systems may
offer an appealing alternative perspective onto clas-
sification than the commonly used linear (eg. logistic
regression-) layer atop a deep neural network. If a

class is represented not just by a weight vector, but
by a dynamic sub-network such as an autoencoder, it
is easy to model highly complex intra-class variability
using a comparably small amount of computational
resources.

Fig. 9. Example images and filters learned by the
CSAE model. (a): Examples of RECTANGLESimg
data; (b)-(c): learned horizontal vs vertical filters. (d):
MNISTrotImg (factored model); (e): RECTANGLES
(factored model).

APPENDIX

A numerically stable computation of log (cosh(uk))
may be derived as follows:

log (cosh(uk)) = log

(
exp(uk) + exp(−uk)

2

)

= log (exp(uk) + exp(−uk))− log 2

∝ log (exp(uk)(1 + exp(−2uk)))

= log(exp(uk)) + log(1 + exp(−2uk))

= uk + softplus(−2uk)
(51)

REFERENCES
[1] Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. Un-

supervised feature learning and deep learning: A review and
new perspectives. CoRR, abs/1206.5538, 2012.

[2] G. E. Hinton. Training products of experts by minimizing
contrastive divergence. Neural Computation, 14(8):1771–1800,
2002.

0162-8828 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPAMI.2014.2362140, IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (TPAMI), VOL. ??, NO. ??, JANUARY 2014 14

[3] Y. LeCun, S. Chopra, R. Hadsell, M. A. Ranzato, and F. J.
Huang. A tutorial on energy-based learning. In Predicting
Structured Data. MIT Press, 2006.

[4] Q. Le, M.A. Ranzato, R. Monga, M. Devin, K. Chen, G. Cor-
rado, J. Dean, and A. Ng. Building high-level features using
large scale unsupervised learning. In International Conference
on Machine Learning (ICML), 2012.

[5] R. Socher, J. Pennington, E. H. Huang, A. Y. Ng, and C. D.
Manning. Semi-Supervised Recursive Autoencoders for Pre-
dicting Sentiment Distributions. In Conference on Empirical
Methods in Natural Language Processing (EMNLP), 2011.

[6] J. T. Rolfe and Y. LeCun. Discriminative recurrent sparse auto-
encoders. In International Conference on Learning Representations
(ICLR), 2013.

[7] K. Swersky, D. Buchman, B.M. Marlin, and N. de Freitas. On
autoencoders and score matching for energy based models. In
International Conference on Machine Learning (ICML), 2011.

[8] Pascal Vincent. A connection between score matching and
denoising autoencoders. Neural Computation, 23(7):1661–1674,
July 2011.

[9] R. Memisevic. Gradient-based learning of higher-order image
features. In the International Conference on Computer Vision
(ICCV), 2011.

[10] W.Y. Zou, S. Zhu, A. Ng, and K. Yu. Deep learning of invariant
features via simulated fixations in video. In Advances in Neural
Information Processing Systems (NIPS), 2012.

[11] A. Hyvärinen. Estimation of non-normalized statistical models
by score matching. Journal of Machine Learning Research, 6:695–
709, December 2005.

[12] Aapo Hyvarinen. Connections between score matching, con-
trastive divergence, and pseudolikelihood for continuous-
valued variables. Neural Networks, IEEE Transactions on,
18(5):1529–1531, 2007.

[13] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio.
Contractive auto-encoders: Explicit invariance during feature
extraction. In International Conference on Machine Learning
(ICML), 2011.

[14] G. Alain and Y. Bengio. What regularized auto-encoders
learn from the data generating distribution. In International
Conference on Learning Representations (ICLR), 2013.

[15] H.S. Seung. Learning continuous attractors in recurrent net-
works. Advances in neural information processing systems (NIPS),
10:654–660, 1998.

[16] Hanna Kamyshanska and Roland Memisevic. On autoencoder
scoring. In Proceedings of the 30th International Conference on
Machine Learning (ICML-13), pages 720–728, 2013.

[17] P. Vincent, H. Larochelle, Y. Bengio, and P. A. Manzagol.
Extracting and composing robust features with denoising
autoencoders. In International Conference on Machine Learning
(ICML), 2008.

[18] G. Alain, Y. Bengio, and S. Rifai. Regularized auto-encoders
estimate local statistics. arXiv preprint arXiv:1211.4246, 2012.

[19] John M Lee. Introduction to smooth manifolds, 2001.
[20] RM Santilli. Foundations of theoretical mechanics II. Birkhof-

fian generalization of Hamiltonian mechanics. 1982.
[21] M. Welling, M. Rosen-Zvi, and G. Hinton. Exponential family

harmoniums with an application to information retrieval. Ad-
vances in neural information processing systems (NIPS), 17, 2005.

[22] P. Baldi and K. Hornik. Neural networks and principal
component analysis: Learning from examples without local
minima. Neural networks, 2(1):53–58, 1989.

[23] E.H. Adelson and J.R. Bergen. Spatiotemporal energy models
for the perception of motion. J. Opt. Soc. Am. A, 2(2):284–299,
1985.

[24] Roland Memisevic. Learning to relate images. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 35(8):1829–
1846, 2013.

[25] Vinod Nair and Geoffrey E. Hinton. Rectified linear units
improve restricted boltzmann machines. In Johannes Frnkranz
and Thorsten Joachims, editors, ICML, 2010.

[26] Kishore Reddy Konda, Roland Memisevic, and Vincent
Michalski. The role of spatio-temporal synchrony in the
encoding of motion. arXiv preprint arXiv:1306.3162, 2013.

[27] Christopher M. Bishop. Pattern Recognition and Machine Learn-
ing (Information Science and Statistics). Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2006.

[28] TM Cover and J Thomas. Elements of Information Theory. New
York: John Wiley & Sons, Inc, 1991.

[29] Geoffrey Hinton and Ruslan Salakhutdinov. Reducing the
dimensionality of data with neural networks. Science,
313(5786):504 – 507, 2006.

[30] R. Memisevic, C. Zach, G. Hinton, and M. Pollefeys. Gated
softmax classification. Advances in Neural Information Processing
Systems (NIPS), 23, 2011.

[31] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Ben-
gio. An empirical evaluation of deep architectures on prob-
lems with many factors of variation. In International Conference
on Machine Learning (ICML), 2007.

[32] H. Larochelle and Y. Bengio. Classification using discrimina-
tive restricted Boltzmann machines. In International Conference
on Machine Learning (ICML), 2008.

[33] Tanya Schmah, Geoffrey E Hinton, Steven L Small, Stephen
Strother, and Richard S Zemel. Generative versus discrimi-
native training of rbms for classification of fmri images. In
Advances in neural information processing systems, pages 1409–
1416, 2008.

[34] M. U. Gutmann and A. Hyvärinen. Noise-contrastive estima-
tion of unnormalized statistical models, with applications to
natural image statistics. Journal of Machine Learning Research,
13:307–361, March 2012.

[35] Graham Taylor and Geoffrey Hinton. Factored conditional
restricted Boltzmann machines for modeling motion style.
In Proceedings of the 26th International Conference on Machine
Learning, 2009.

[36] Roland Memisevic and Geoffrey E Hinton. Learning to
represent spatial transformations with factored higher-order
Boltzmann machines. Neural Computation, 22(6):1473–92, 2010.

[37] Yann LeCun and Corinna Cortes. The MNIST database of
handwritten digits, 1998.

[38] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu,
G. Desjardins, J. Turian, D. Warde-Farley, and Y. Bengio.
Theano: a CPU and GPU math expression compiler. In Python
for Scientic Computing Conference (SciPy), 2010.

[39] Andrew M Saxe, James L McClelland, and Surya Ganguli.
Exact solutions to the nonlinear dynamics of learning in deep
linear neural networks. arXiv preprint arXiv:1312.6120, 2013.

[40] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.A. Man-
zagol. Stacked denoising autoencoders: Learning useful repre-
sentations in a deep network with a local denoising criterion.
Journal of Machine Learning Research, 11:3371–3408, 2010.

Hanna Kamyshanska studied Mathemat-
ics at the National Technical University of
Ukraine, Kiew, and received the Diploma in
Computer Science from the Goethe Univer-
sity of Frankfurt, Germany, in 2013. She is
currently a PhD candidate in Computational
Neuroscience in Matthias Kaschube’s Group
at Frankfurt Institute for Advanced Studies.
Her research interests are in computer vision
and in the models for visual cortical develop-
ment in biological systems.

Roland Memisevic received the PhD in
Computer Science from the University of
Toronto in 2008. Subsequently, he held po-
sitions as a research scientist at PNYLab
LLC in Princeton, as post-doctoral fellow at
the University of Toronto and ETH Zurich,
and as a junior professor at the University
of Frankfurt, Germany. In 2012, he joined
the University of Montreal, Canada, as an
assistant professor in Computer Science. His
research interests are in machine learning

and computer vision.

