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Abstract

Latent Variable Models (LVM), like the Shared-GPLVM

and the Spectral Latent Variable Model, help mitigate over-

fitting when learning discriminative methods from small or

moderately sized training sets. Nevertheless, existing meth-

ods suffer from several problems: 1) complexity; 2) the

lack of explicit mappings to and from the latent space; 3)

an inability to cope with multi-modality; and 4) the lack

of a well-defined density over the latent space. We pro-

pose a LVM called the Shared Kernel Information Em-

bedding (sKIE). It defines a coherent density over a latent

space and multiple input/output spaces (e.g., image features

and poses), and it is easy to condition on a latent state,

or on combinations of the input/output states. Learning

is quadratic, and it works well on small datasets. With

datasets too large to learn a coherent global model, one

can use sKIE to learn local online models. sKIE permits

missing data during inference, and partially labelled data

during learning. We use sKIE for human pose inference.

1. Introduction

Many computer vision problems are amenable to learn-

ing some form of mapping from image observations to a 3D

object model. Examples include articulated human pose in-

ference [2, 1, 6, 8, 9, 13, 16, 20, 21], articulated pose and

shape estimation [18], and hand pose estimation [5]. With

such discriminative methods, given a set of training sam-

ples comprising image features, x, and 3D poses, y, i.e.,

{x(i),y(i)}N
i=1, the estimation of pose, y, is viewed as a

form of ’regression’. This can be formulated in terms of

learning the conditional distribution, p(y |x).

In many cases, like human pose inference, both the input

(features) and the output (pose) are high-dimensional vec-

tors, i.e., y∈R
dy and x∈R

dx where usually dx > 100 and

dy > 30. With high-dimensional problems large datasets

are usually necessary to learn a conditional distribution that

will generalize well. Furthermore since synchronized im-

age and pose data are hard to obtain in practice, one is often

forced to work with small or moderately sized labelled data

sets, or with unlabelled data using semi-supervised learning

[9, 13]. Finally, since pose inference is often ambiguous
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Figure 1. Graphical models for regression problems. Gray

and white nodes depict observed and hidden variables. MoE and

GPLVM are directed models. The Shared KIE is undirected, and

can be factored easily in multiple ways.

(i.e., one feature vector is consistent with multiple poses),

the conditional distribution, p(y |x), is multi-modal [20].

We introduce a latent variable model called the Shared

Kernel Information Embedding (sKIE). It defines a co-

herent, multi-modal density over one or more input fea-

ture spaces, the output pose space, and a learned low-

dimensional latent space. Moreover it is also easy to condi-

tion on a latent state, or some combination of input and out-

put states. It can be learned from small datasets, with com-

plexity that is quadratic in the number of training points;

the latent model helps to mitigate problems of over-fitting

that are common with high-dimensional data. With datasets

too large to learn a coherent global model, one can also use

sKIE to learn local models in an online fashion. sKIE can

deal with missing data during inference, and partially la-

belled data during learning. We demonstrate the sKIE in

the context of discriminative human pose inference.

1.1. Related Work

Approaches to discriminative articulated pose estimation

(and tracking) can be loosely classified as either local and

global. Local methods take the form of kernel regression

[16, 21], where one first finds a subset of training exemplars

that are similar to the input features (e.g., using K-nearest

neighbors). These exemplars are then used to learn an on-

line regressor, like linear locally-weighted regression [16]

or Gaussian Process (GP) regression [21]; the latter has the

advantage of also producing a confidence measure over the

regressed pose. While simple conceptually, the determina-

tion of the right local topology and a good distance mea-

sure within the neighbourhood can be difficult. Typically

these methods require a large set of training exemplars to
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densely cover the pose space. Furthermore, these methods

do not deal with multi-modal conditional distributions (or

mappings), so one must first cluster the selected exemplars

into local convex sets, for which regression is uni-modal.

Global methods learn a coherent model across the en-

tire training set. Early examples were formulated as Ridge

Regression or Relevance Vector Regression [2, 1]. Recent

research has focused on multi-valued regression, the most

influential of which is the conditional Mixtures of Experts

(MoE) model [9, 18, 20]. The MoE model is straightfor-

ward and efficient to implement, since training and infer-

ence are both O(N). On the other hand, the MoE model

typically requires large training sets [13] to properly fit the

parameters of the gating and expert functions. This makes

it prone to over-fitting with small datasets.

As an alternative, models based on the Gaussian Pro-

cess Latent Variable Model (GPLVM) [6, 13, 17] and the

Spectral Latent Variable Model (SLVM) [10] have been

proposed (see Fig. 1). These models exploit an interme-

diate low-dimensional latent space to effectively regularize

the conditional pose distribution (i.e., pose conditioned on

features), which helps avoid over-fitting with small train-

ing sets. However, as with other Gaussian Process (GP)

methods, learning is expensive, O(N3), and therefore im-

practical for all but small datasets. Inference with the GP

model is also expensive as it involves an O(N2) optimiza-

tion (with multiple re-starts) of the likelihood in the latent-

space [13]. Sparsification methods [14] reduce learning

complexity from O(N3) to O(Nd2), where d is the num-

ber of pseudoinputs (ideally d << N ), but the use of such

techniques is not always straightforward and effective.

sKIE is a generalization of Kernel Information Embed-

ding [12]. It has similar benefits to the GPLVM discussed

above, but with lower complexity for learning, O(N2), and

inference, O(N). The other benefits of the sKIE include an

explicit density over the latent space, and closed-form ex-

pressions for conditional distributions, allowing one to eas-

ily condition on a combination of input/output/latent states

(see Fig. 1). The sKIE also permits multiple input and out-

put random variables, allowing a dynamic regression from

any subset of inputs to any subset of outputs at test time

(without learning separate pair-wise models as would be re-

quired with MoE, for example). Furthermore, the sKIE can

also be used to learn local models in an online fashion (cf.

[21]).

2. Kernel Information Embedding

Kernel Information Embeddings (KIE) were introduced

in [12] as an unsupervised dimensionality reduction algo-

rithm. Given samples drawn from a distribution p(x), KIE

aims to find a low-dimensional latent distribution, p(z), that

captures the structure of the data distribution, along with ex-

plicit bidirectional probabilistic mappings between the la-

tent space and the data space. In particular, KIE finds the

joint distribution p(x, z), that maximizes the mutual infor-

mation (MI) between the latent distribution and the data dis-

tribution, i.e.,

I(x, z) =

∫

p(x, z) log
p(x, z)

p(x)p(z)
dx dz (1)

= H(x) + H(z) − H(x, z) (2)

where H(·) is the usual (differential) Shannon entropy.

Because the data distribution is fixed, maximizing the

mutual information (2) reduces to maximizing H(z) −
H(x, z). This is equivalent to minimizing the conditional

entropy H(x | z), i.e., the expected negative log likelihood

of the data under the joint density p(x, z). It is interesting to

note the similarity to the GPLVM [11] which directly mini-

mizes the negative data log likelihood. Unlike the GPLVM,

the KIE provides an explicit density over the latent space.

Given a sample data set {x(j)}N
j=1, the KIE objec-

tive is optimized to find the corresponding latent posi-

tions {z(j)}N
j=1. Following [12] we approximate the high-

dimensional integrals with kernel density estimates for

p(x), p(z), and p(x, z). If we let kx(·, ·) and kz(·, ·) denote

kernels for the data and latent spaces, we can approximate

the entropies, Ĥ(·), and mutual information, Î(·), as

Î(x, z) = Ĥ(x) + Ĥ(z) − Ĥ(x, z)

= −
1

N

∑

i

log
∑

j

kx(x(i),x(j))

−
1

N

∑

i

log
∑

j

kz(z
(i), z(j))

+
1

N

∑

i

log
∑

j

kz(z
(i), z(j)) kx(x(i),x(j)) (3)

In what follows we use isotropic, Gaussian kernels for con-

venience, but one could also use anisotropic kernels.

Inference: Since KIE defines a joint kernel density esti-

mate over latent representatives and observations, inference

takes a particularly simple form. It is straightforward to

show that the conditional distributions p(x | z) and p(z |x)
are given by weighted kernel density estimates:

p(x | z) =

N
∑

i=1

kz(z, z
(i))

∑N

j=1 kz(z, z(j))
kx(x,x(i)) (4a)

p(z |x) =

N
∑

i=1

kx(x,x(i))
∑N

j=1 kx(x,x(j))
kz(z, z

(i)) (4b)

These conditional distributions are straightforward to com-

pute and they may be multimodal. For Gaussian kernels,

they become mixtures of Gaussians.



Learning: Learning the KIE entails the maximization of

Î(x, z) to find the optimal positions of the latent data rep-
resentatives. This can be done using any gradient-based op-
timization method (e.g., conjugate gradient). Towards this

end, it follows from (3) that the gradient of Î(x, z) with re-

spect to latent position z(i) is the sum of two terms (since

Ĥ(x) does not depend on z(i)):

∂Ĥ(z)

∂z(i)
= −

1

N

N
X

j=1

“

κ
i
z

+ κ
j
z

”

∂kz(z
(i), z(j))

∂z(i)
(5)

∂Ĥ(x, z)

∂z(i)
= −

1

N

N
X

j=1

“

κ
i
xz

+ κ
j
xz

”

kx(x(i)
,x

(j))
∂kz(z

(i), z(j))

∂z(i)

(6)

where κi
z

≡ (
∑N

l=1 kz(z
(i), z(l)))−1 and κi

xz
≡

(
∑N

l=1 kx(x(i),x(l))kz(z
(i), z(l)))−1.

Since we are optimizing the positions of latent data rep-

resentatives (and assuming isotropic kernels) any change

in the bandwidth of the latent kernel, kz, is equivalent to

rescaling the entire latent space. The choice of the latent

space bandwidth σz is therefore arbitrary, and for the re-

mainder we assume a fixed bandwidth of σz = 1.

The same argument does not hold for the bandwidth of

the data space kernel, σx. A common heuristic, which we

use below, is to set the bandwidth based on the average dis-

tance of nearest neighbors:

σx =
1

N

N
∑

i=1

||x(i) − x(j(i)) || , (7)

where j(i) is the index of the nearest neighbor of x(i). One

could also learn the bandwidth using cross-validation.

Regularization: As explained in [12], a trivial way to

maximize Î(x, z) is to drive all latent positions infinitely

far from one another. To avoid this solution, one can

include a Gaussian prior over the latent positions, thereby

adding λ
N

∑

j ||z
(j)||2 to (3) to create the regularized objec-

tive function. Here, λ controls the influence of the regular-

izer. A similar prior is used in the GPLVM [11].

3. Shared Kernel Information Embedding

The Shared KIE (sKIE) is an extension of KIE to multi-

ple (high-dimensional) datasets, with a single hidden cause

that is responsible for the variability across all datasets. In

what follows we consider the case of two datasets, compris-

ing image feature vectors, x, and poses y. The generaliza-

tion to more than two datasets is straightforward.

As illustrated in Fig. 1, the sKIE model is undirected

and hence it has several natural factorizations. For exam-

ple, with two datasets one could obtain samples (x,y) by

first sampling from the latent distribution z∗ ∼ p(z), and

then sampling x and y (independently) from their condi-

tionals p(y | z∗) and p(x | z∗). Alternatively, given an ob-

served feature vector x∗ one could draw a sample from the

conditional latent distribution z∗∼p(z |x∗), and then sam-

ple the conditional pose distribution, p(y | z∗).
The sKIE joint embedding for two datasets is obtained

by maximizing the mutual information I ((x,y), z). As-

suming conditional independence of x and y given z, the

MI can be expressed as a sum of two MI terms, i.e.,

I ((x,y), z) = I(x, z) + I(y, z) . (8)

Like the KIE objective in (3) we maintain a fully non-

parametric model, using kernel density estimates for the in-

tegrals in (8):

Î ((x,y), z) = Î(x, z) + Î(y, z) . (9)

In contrast to KIE, here the labelled training data

{(x(i),y(i))}N
i=1 share a single hidden cause. Thus each

pair (x(i),y(i)) must be represented by a single, shared la-

tent element z(i).

We can also incorporate partial data, e.g., image feature

vectors x(j) without corresponding poses, or vice versa. In

this case there will be latent elements that are only directly

constrained by an element in one of the two datasets. More

formally, let IX and IY denote two sets of indices for the

available training data points, with cardinalities Nx and Ny.

Indices for labelled training samples are included in both

sets. Indices for training samples of x (respectively y) for

which there is no corresponding sample from y (x) exist

only in IX (IY). If we then ignore the terms of the approx-

imate mutual information (9) that are independent of the

latent positions, Z ≡ {z(j)}N
j=1, where N is the cardinality

of I = IX ∪ IY , the sKIE objective function becomes

L(Z) =
1

Nx





∑

i∈IX

log
∑

j∈IX

kz(z
(i), z(j)) kx(x(i),x(j))

−
∑

i∈IX

log
∑

j∈IX

kz(z
(i), z(j))



 +

1

Ny





∑

i∈IY

log
∑

j∈IY

kz(z
(i), z(j)) ky(y(i),y(j))

−
∑

i∈IY

log
∑

j∈IY

kz(z
(i), z(j))



 (10)

3.1. Learning

Learning the sKIE entails the maximization of L(Z) with

respect to the unknown latent positions Z. In the experi-

ments below we use a gradient-based approach. The gradi-

ents for sKIE optimization have the same form as those for

KIE in (5) and (6).
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Figure 2. Annealing with cross-validation. The left plot shows

cross-validation error as a function of the number of annealing it-

erations. The remaining plots show latent distributions p(z) at

annealing levels before, at, and after the minimum of the cross-

validation curve. The latent space is initially concentrated, but

then spreads out as the annealing progresses. In the limit, the reg-

ularizer has no influence and the latent points drift far apart.

Annealing: Like KIE, regularization is necessary to con-

strain the model. With a mean-zero Gaussian prior over

latent positions, the regularized objective function is

L̂(Z) = L(Z) +
λ

N

N
∑

j=1

||z(j)||2 . (11)

When λ is large sKIE tends to keep latent positions tightly

clustered and therefore averages over most exemplars. For

small λ the latent positions tend to drift apart, producing

very little inerpolation between exemplars.

An effective way to learn useful models is to anneal λ

during optimization with a stopping criterion determined by

cross-validation. We begin with λ large (typically λ = 0.5),

and then gradually reduce it; at each step we typically re-

duce λ to 90% of its previous value. Cross-validation is

used to determine when to stop the annealing. One can

use different cross-validation measures. Here we use MSE

in discriminative pose inference on a validation set that is

disjoint from the training and test set. For example, Fig.

2 shows the effect of typical annealing on the latent sKIE

space and illustrates the cross validation error as a function

of annealing iterations; the details of the data and model

being learned here are given in Fig. 8 in Section 4.2.

Initialization: In the learning experiments below we ini-

tialize latent positions using PCA. That is, each labelled

training pair (x(j),y(j)) become a column of a matrix, the

principal directions of which provide a linear subspace em-

bedding with the desired dimension dz. For partially la-

beled data (i.e., semi-supervised learning), the PCA sub-

space is first determined from the labelled data. For each

unlabelled point, from x or y, the optimal subspace embed-

ding is found with a pseudoinverse projection.

We have found that the form of the initial guess is not

critical. Similar results are obtained with random initializa-

tion and a slow annealing schedule. Nevertheless, an ini-

tialization strategy that recovers the topology of the latent

space, e.g., with LLE or Isomap, is likely to improve the

overall performance of sKIE.

3.2. Inference

For discriminative pose inference we want to find likely

poses y conditioned on input image features x∗. We are

therefore interested in the conditional pose distribution

p(y |x∗) =

∫

z

p(y | z) p(z |x∗) dz . (12)

While we have explicit closed-form expressions for the two

conditional factors in the integrand in (12), p(y |x∗) is not

straightforward to express or compute in closed-form. It

can be approximated with Monte Carlo integration, drawing

latent samples and then pose samples as described above,

but this can be computationally expensive, especially when

p(y |x∗) is multi-modal.

Alternatively, here we focus on identifying the principal

modes of p(y |x∗). To this end, we assume that the princi-

pal modes of p(y |x∗) coincide with the principal modes of

the conditional latent distribution p(z |x∗). That is, we first

search for local maxima (MAP estimates) of p(z |x∗), de-

noted {z∗k}
K
k=1 for K modes. From these latent points it is

straightforward to perform either MAP inference or take ex-

pectations over the conditional pose distributions p(y | z∗k).
To understand this form of approximate inference, first

note that, because features are often ambiguous, we expect

p(y |x∗) to be multi-modal. Under sKIE the latent distribu-

tion models the joint distribution so, when we condition the

latent space on input features, we expect a similarly multi-

modal distribution, p(z |x∗). By contrast, conditioned on a

highly probable latent point, z∗k, the pose conditional is usu-

ally uni-modal. That is, the multi-modality is manifested

mainly in the mapping to the latent space. The latent (joint)

space effectively resolves the ambiguity.

Local Modes of p(z |x∗): Given the kernel density esti-

mates in the sKIE model, it is straightforward to show that

p(z |x∗) =

N
∑

i=0

kx(x∗,x(i))
∑N

j=0 kx(x∗,x(j))
kz(z, z

(i)), (13)

To find modes of p(z |x∗) one can choose one or more start-

ing points, and then some form of gradient ascent (e.g., with

mean-shift [4]). Starting points could be found by evaluat-

ing (13) for each latent representative, and then selecting

those with the highest conditional density. One could also

draw random samples from p(z |x∗), or, among the training

exemplars one could find nearest neighbors to x∗ in feature

space, and then begin gradient ascent from their latent rep-

resentatives (cf., [13]). The most probable latent representa-

tives found in this way are often sufficiently probable in the

latent space that subsequent optimization is unnecessary.

Pose Inference: Because the conditional pose distribu-

tion is typically uni-modal, it is reasonable to use condi-

tional expectation to find the mean and covariance in the



pose space. From the form of the conditional distributions

(4a), the mean of p(y | z∗) is a convex combination of train-

ing exemplars. That is,

E[y|z∗] =

N
∑

i=1

kz(z
∗, z(i))

∑N

j=1 kz(z∗, z(j))
y(i) (14)

One can show that the conditional covariance is given by

Cy | z∗ = Cky
+

∑

i

kz(z
∗, z(i))

∑

l kz(z∗, z(l))
y(i)y(i)T

−
∑

i,j

kz(z
∗, z(i)) kz(z

∗, z(j))
(
∑

l kz(z∗, z(l))
)2 y(i)y(j)T (15)

where Cky
is the kernel covariance matrix; here Cky

=σ2
y
I.

3.3. Complexity

Learning sKIE has complexity O(N2), while computing

conditional distributions (4) is O(N). This compares favor-

ably with the GPLVM, for which learning is O(N3) due to

the inversion of the N × N kernel matrix, and inference is

O(N2). For both the GPLVM and KIE one can also achieve

greater efficiencies with sparsification methods (e.g., [14]),

and numerical approximations such as fast multipole meth-

ods (e.g., [15]). One can also employ fast mean-shift algo-

rithms for more efficient mode finding on the conditional

distributions (e.g., [7]).

4. Experiments

4.1. SCurve Data

Following [13, 20] we first describe experiments with a

synthetic ’S’-curve. Points were sampled from a 2D density

p(x,y) defined by

x = t + sin(2πt) + ηx , y = t + ηy ,

where ηx and ηy are IID mean-zero Gaussian noise with

variance σ2, and t = U(0, 1) is uniform. The conditional

density p(y |x) has up to 3 modes (see Fig. 3).

Figure 3 shows sKIE models and GPLVMs learned from

noisy and noiseless data (the GPLVM was learned from the

joint data samples). Both models learn a 1D latent space,

encoding the shared structure of the 2D joint distribution.

The GPLVM does not capture the S-curve with only 8 sam-

ples, consistent with [13]. sKIE does a better job with 8

points. In presence of the noise, sKIE recovers the structure

of the curve well, while the GPLVM exhibits a small bias

in the upper lobe. Finally, we note that the Mixture of Ex-

perts (MoE) model cannot be trained with 8 points. With 50
points MoE can be trained but typically overfits and overes-

timates the variance (not shown due to space limitations).

Figure 4 shows sKIE learned from partially labeled data.

While sKIE tolerates significant amounts of unlabeled data,

Training Data sKIE GPLVM
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(b) Training from 50 noisy (σ2 = 0.1) joint samples

Figure 3. Comparison of sKIE and GPLVM on S-curve data.

The red curves depict the true mean of the joint density. For the

sKIE and GPLVM the blue points are produced by uniformly sam-

pling latent positions z, and then taking the mean of p(x,y|z).
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Figure 4. Semi-supervised Learning. The sKIE is learned from 8
joint and 142 marginal noisy samples. The curve is not as smooth

as in the fully supervised case, but the model does tolerate nearly

20 times as many unlabbeled as labeled samples.

the model often generalizes well without it, so the unlabeled

data mainly helps to reduce the variance of the output esti-

mates. With only 8 fully labeled samples the reconstruction

of the joint distribution is smooth (see Fig. 3), but the vari-

ance is high because the data are sparse.

4.2. Human Pose Estimation

We next consider human pose inference. We use two

datasets, one synthetic, called POSER [1], and the HU-

MANEVA dataset with synchronized video and mocap data.

Poser Dataset: POSER contains 1927 training and 418
test images, synthetically generated from mocap data (54
joint angles per frame). The image features and error metric

are provided with the dataset [1]. The 100D feature vectors

encode the image silhouette using vector-quantized shape

contexts. The mean RMS error is given by

Eang(ŷ,y) =
1

M

M
∑

m=1

| (ŷi − yi) mod 360◦ | . (16)

Here, M = 54, and yi and ŷi correspond to the i-th joint

angles for the true and estimated poses.

HumanEva Dataset: HUMANEVA-I [19] contains syn-

chronized multi-view video and mocap data. It comprises 3



subjects performing multiple activites. Here we use walk-

ing and jogging sequences1 with observations from 3 color

cameras2. This includes 5, 985 training samples (image-

pose pairs) and 6, 291 test samples (for global models, we

only use subject S1, for which there are 2, 190 training and

2, 625 test samples). Where smaller training sets are used,

data are randomly sampled from the entire training set.

Features: Following [3] our features are based on shape

context descriptors. From each image we extract a silhou-

ette using background subtraction, to which we fit a bound-

ing box. The shape context representation is constructed by

randomly sampling 400 points on internal edges and outer

contours of the silhouette, from which histograms are con-

structed3. We then cluster 40, 000 randomly sampled his-

tograms to learn a codebook of size 300. Shape context his-

tograms are subsequently vector-quantized using that code-

book. The final 300D feature vectors are normalized to

unit length. This choice of feature vector was motivated by

simplicity and ease of implementation; better features have

been shown to perform favorably on HUMANEVA-I (e.g.,

hierarchical features [9] - HMAX, Spatial Pyramid, Hyper-

features, and Vocabulary Trees have all been explored).

Errors: Pose is encoded by 15 3D joint centers defined

relative to the pelvis in camera-centric coordinates, so y ∈
R

45. Estimation errors (in mm) are measured as average

Euclidian distance to the M = 15 markers [19],

Epos(ŷ,y) =
1

M

M
∑

m=1

||(ŷi − yi)|| . (17)

Monocular Pose Inference: Fig. 5 shows how the per-

formance of sKIE depends on the number of training exam-

ples. For each of POSER and HUMANEVA we learn 10 sKIE

models with dimensions 2 and 5 respectively, using random

subsets of training data for each model. The HUMANEVA-

I dataset is highly variable and noisy, so learning a higher

dimensional embedding improves performance (see Fig. 6).

For this experiment and others below, unless stated oth-

erwise sKIE inference proceeds as follows: Given a feature

vector x∗, we find the most probable training examplar ac-

cording to the conditional latent distribution p(z|x∗), from

which we use mean-shift to find a local maxima. Condi-

tioned on this point, z∗, we compute the mean pose from

p(y|z∗). We also implemented Nearest Neighbor (NN) re-

gression and kernel regression (with Gaussian kernels). Per-

formance for all estimators is simply the average error (i.e.,

1We ignore walking from subject 3 due to corrupt motion capture data
2Like [3, 21] we do not use the 4 greyscale views.
3Histograms are computed at 12 angular and 5 radial bin log-polar res-

olution, with minimal and maximal radial extant set to 1/8 and 3 of the

mean distance between all 400 sampled points. The histograms are thereby

invariant to the overall scale of the sillhouette.
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Figure 5. Single Hypothesis Inference. The plots show the aver-

age error (and standard error bars - using shading) for sKIE, NN

Regression, and Kernel Regression on HUMANEVA-I (right) and

POSER (left) as a function of the training set size.

(16) and (17)) over the respective test sets. Standard error

bars are also shown in all cases.

sKIE consistently outperforms NN Regression. Ker-

nel Regression performs favorably compared to sKIE on

POSER data (with few training examples). We postulate that

this is due in part to the relatively clean data that does not

exhibit as much multi-modality. Kernel Regression is sen-

sitive to the kernel bandwidth and performance can quickly

degrade as the kernel bandwidth increases4. sKIE seems

to be relatively insensitive to kernel bandwidths in both the

input and output spaces.

We also conducted a set of experiments in which sKIE

produces multiple predictions (called k-sKIE, for k predic-

tions). In doing so we explore several alternate forms of

inference: (1) sampling K samples from p(z|x∗), followed

by mode finding, then estimation of the mean pose from the

conditional pose distribution; (2) starting with latent repre-

sentatives associated with the K nearest neighbors to x∗ in

the input feature space, from which we compute the mean

pose conditioned on each corresponding latent point; and

(3) like (2) but with intermediate latent mode finding. In

all cases the annealing schedule was λi+1 = 0.9λi starting

with λ0 = 0.5 and was run for a maximum of 20 annealing

iterations.

Fig. 6 shows the results. For comparison, we also in-

clude the performance of k-nearest neighbors, kernel re-

gression, and standard sKIE inference used in Fig. 5. Notice

that utilizing nearest neighbors as a way of finding good la-

tent states performs better than random sampling with hill

climbing, though for the POSER dataset even the latter pro-

duces more accurate results than k-NN for k ≤ 4. The

best performance at k = 1 occurs with mode finding from

the conditional nearest neighbor. Nevertheless, it is some-

what poorer then conditional expectation based on the near-

est neighbors without mode finding in most other cases. In

any case it is clear that the latent model carries significant

value in regularizing the inference; i.e., with sKIE we al-

4Performance of kernel regression on HUMANEVA-I in Fig. 7 can be

improved by manually tuning kernel bandwidths, but for consistency with

sKIE we used the same heuristic, Eq. (7), for all models in all experiments.
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Figure 6. Multi-Hypothesis Inference. Graphs show the performance of sKIE as a function of the number of hypotheses, k (for 100 and

1927 training examples for POSER data and 100/500 training examples for HUMANEVA-I data). We compare performance of sKIE with

k-Nearest Neighbor Regression and Kernel Regression; different inference methods are explored as described in the text.

Algorithm / Dataset HUMANEVA-I POSER

Linear Regression [6] - 7.70 (deg)

Nearest Neighbor 70.15 (mm) 6.87 (deg)

GPLVM [6] - 6.50 (deg)

Kernel Regression 138.13 (mm) 6.03 (deg)

Gaussian RVM [1] - 6.00 (deg)

Global sKIE - 5.95 (deg)

Local sKIE (25 neigh) 64.63 (mm) 5.77 (deg)

Figure 7. Performance of the local sKIE model.

ways perform better then k-NN for any k in POSER experi-

ments, and better then k-NN for k < 4 for HUMANEVA-I.

Monocular Local Pose Estimation: The entire

HUMANEVA-I dataset is so large that learning a co-

herent global model is prohibitively expensive. In such

cases one can learn local sKIE models online for inference.

For each test case we first find the 25 training samples

whose features vectors are closest to the test feature vector.

From those 25 samples we learn an sKIE with a 2D latent

space. To speed up the online learning sKIE was trained by

running a fixed (5) number of annealing iterations starting

at λ = 0.5 and taking 100 gradient steps for every annealing

iteration. Once trained, the mode of the conditional latent

distribution was found using optimization, from which the

conditional mean was used as the estimated pose. The full

datasets were used for both testing and training. As shown

in Fig. 7, the online sKIE performs favorably with respect

to all methods considered, including the GPLVM, whose

performance was reported with POSER data in [6].

Multi-Variable Shared-KIE Models: An advantage of

sKIE over direct regression models (e.g., MoE) is its ability

to learn joint models over many variables, allowing con-

ditioning on any subset of them at test time. With other

regression models a separate regression function (or con-

ditional distribution) would have to be learned between all

combinations of test inputs. To illustrate these benefits of

sKIE we trained two models with more that one input and

one output, one for multi-view pose inference, and one for

tracking.

Multi-view pose inference: Using the HUMANEVA-I

dataset we learned an sKIE with input features from three

synchronized cameras {x1,x2,x3} and pose y. The model

can be conditioned on any subset of inputs. The results, ex-

plained in Fig. 8, clearly show the ambiguities that arise in

pose inference from only one or two views.

Monocular Tracking: For Bayesian pose tracking we want

to condition on both the current image features, xt, and the

pose at the previous time, yp. Fig. 9 shows such a model.

It can be used to initialize a tracking discriminatively, or

generatively as a motion prior. Other methods (e.g., [2, 20])

would need several models to perform the same task. Again,

in Fig. 9 it is interesting to see that the conditional latent

distributions, conditioned on features, is sometimes multi-

modal (frame 430), and sometimes uni-modal (frame 586).

5. Conclusions

This paper describes a new shared latent variable model

called the shared Kernel Information Embedding (sKIE).

This model has several appealing properties, namely, that

(1) it utilizes a latent space as an intermediary in the infer-

ence process and hence allows learning from small datasets

(i.e., can generalize well); (2) it provides closed-form multi-

modal conditional distributions, conditioning on the input

space (or spaces) of features, the shared latent space, and

output pose space; (3) it defines coherent densities over

these spaces; (4) it has favorable complexity of O(N2) for

training and O(N) for inference. Furthermore, sKIE can

deal with missing data during inference, and partially la-

beled data during learning.
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