
Dual Optimization of Conditional Probability Models

December 21, 2006

Roland Memisevic
Department of Computer Science,

University of Toronto,
roland@cs.toronto.edu

Abstract

We describe a dual formulation for conditional prob-
ability models operating in joint features spaces. In
the dual we derive a very fast training scheme akin to
John Platt’s ”sequential minimal optimization”, an
efficient standard method for training support vector
machines. The algorithm is closely related to percep-
tron learning and extends the applicability of prob-
abilistic discriminative models to online settings and
to large scale learning problems.

1 Introduction

Discriminative methods are among the most success-
ful approaches in machine learning, because they pro-
vide a means of constructing systems entirely ’by ex-
ample’. In the last few years especially kernel based
models have gained a lot of popularity, because of
their ability to construct non-linear feature spaces at
a cost that does not scale with dimensionality.

Much work on kernel based models has originally
focused on somewhat restricted problems, such as
classification with binary labels, or regression with
one-dimensional outputs. However, recent work has
extended the applicability of discriminative meth-
ods to far more general problems, for example from
binary- to multiclass classification (e.g. [4]), and,

more recently, beyond single outputs, to the predic-
tion of structured objects (e.g. [9], [12]), for which
previously mainly generative models have been used.

A simple common perspective, that unifies most of
the extensions to these more general settings, can be
derived from the perspective of joint feature spaces.
According to this view, an input-output-pair (x,y)
is mapped to a joint feature representation φ(x,y)
and a linear score wTφ(x,y) is used to measure the
compatibility of x and y. Inference consists in, given
x, finding the output y that maximizes the score.
Learning amounts simply to adapting w based on a
training set {(xi,yi)}i=1,...,N .

Most linear discriminative models can be classified
as being either ’margin’- based or probabilistic, de-
pending on the loss-function they use (hinge-loss or
negative log probability, respectively). Examples of
margin-based methods are standard support vector
machines (svm) and recent extensions, such as mul-
ticlass svms [4], maximum-margin-Markov networks
[12], and other general joint-feature based models
(e.g. [13]). Probabilistic models are usually based
on extensions of logistic regression and include, for
example, multinomial logistic regression and condi-
tional random fields [9]. Even though both classes
of method usually perform similarly in terms of er-
ror rates1, they do show some practical differences.
Margin based methods are naturally well suited to
optimization in the dual, because training for them
is most naturally cast as a constrained optimization.
The dual formulation in turn allows for the use of
kernels, because data-points enter it only in terms of

1Strictly speaking, probabilistic models maximize a margin,
too. They, too, attempt to increase confidence in the correct
answer while decreasing confidence in wrong answers.

1



inner products. More importantly, the dual formula-
tion makes available a fast and convenient optimiza-
tion procedure, John Platt’s well-known ”sequential
minimal optimization” (smo). Since the algorithm is
very fast and relatively easy to implement, it is cur-
rently one of standard methods for training margin-
based methods.

Probabilistic models provide somewhat orthogonal
advantages. Since their predictions come with ’error-
bars’, they lend themselves to easier interpretation
and can be combined into complex larger-scale mod-
els. While kernels can also be introduced into gen-
eral probabilistic models, they usually rely on (gen-
eralized versions of) the representer theorem, which
states, that the optimal parameters can be written as
a kernel expansion (see e.g. [15], [10]). Probabilistic
models are therefore often trained by gradient-based
primal optimization of that dual representation.

In this paper we derive a dual formulation for gen-
eral probabilistic kernel regression models. We con-
sider the general case of joint feature spaces, and de-
rive duals for multiclass learning, as well as more re-
cent models, such as conditional random fields, and
potential other extensions. In related work, [7] have
pointed out the close relation between margin-based
and probabilistic classification methods using conju-
gate duality. Here, we focus is explicitly on the in-
volved constrained optimization problem, with the
main goal to clarify the close relation of probabilistic
models to a parallel line of recent work on margin
based methods (e.g. [12], [13]).

In this paper we restrict our attention to meth-
ods without ’bias’-term, that is methods in which
the score is a pure linear (not affine) function of the
features2. The main advantage is that it makes our
approach similar to the above mentioned parallel line
of work on margin-based methods. Furthermore, our
method can also be interpreted as a (probabilistic)
version of the Adatron-algorithm [6] which in turn
can be thought of as a dual kind of perceptron learn-
ing. The method can be run in an online-processing
mode, in which updates are performed on a point-

2While we could easily accommodate a bias indirectly by
extending the feature vector (or correspondingly a kernel), we
would argue that in many cases (when using Gaussian kernels
e.g.) it is not actually necessary to do so.

by-point basis. This reduces the memory footprint
from quadratic to linear in the number of data-points
and therefore makes it possible to apply the model to
much larger datasets than is possible, when using the
standard, primal, optimization.

In a related setting, [8] have recently considered
an smo-like optimization procedure for binary logistic
regression and demonstrated significant gains in effi-
ciency over conventional optimization. Our method
can be viewed as a generalization of that work to ar-
bitrary joint feature settings, including in particular
multiclass learning. Alternative extensions to multi-
class settings have been pursued previously by [14]
and [5] (however the latter approach turned out to
be too slow to be useful in practice).

2 Logistic regression

Probabilistic classifiers model the conditional distri-
bution p(y|x;w) over labels y, given an input feature
vector x. (We restrict our attention to scalar class la-
bels here and denote them by plain font letters. We
use bold font to denote vectors.) At test time, clas-
sification decisions can – if desired – be made on test
cases xtest by maximizing this probability wrt. y,
that is by setting ytest = arg maxy p(y|xtest;w). The
distribution p is commonly modeled using a linear
score wTφ(x, y) plugged into the ’softmax’ response
function:

p(y|x;w) =
exp(wTφ(x; y))

∑

y exp(wTφ(x; y))
. (1)

Here, φ(x, y) is a joint feature vector for the input-
output pair (x, y), and y takes on values in a set of
class labels {1, . . . , C}.

The standard way of fitting this model based on
training data {(xi, yi)}i=1,...,N is by minimizing the
’logistic loss’, defined as the negative log-probability
llog(xi, yi,w) = − log p(yi|xi;w), averaged over the
training set. Plugging in (1) we get the per-case loss

llog(xi, yi,w) = log
∑

y

exp(wTφ(xi, y)−wTφ(xi, yi)).

(2)

2



A common way of selecting a classifier that can
generalize well is to additionally assume a Gaussian
prior on w, and then to maximize the correspond-
ing MAP estimate for the parameters, which simply
amounts to minimizing the regularized loss:

J(w) =
λ

2
‖w‖2 +

∑

i

llog(xi, yi,w). (3)

Usually the regularized loss is optimized directly wrt.
w, using e.g. gradient based optimization. Here we
deviate from the standard approach, and instead of
minimizing Eq. 3, we consider the equivalent convex
constrained optimization problem:

min
w,ξ

λ

2
‖w‖2 +

∑

i

log
∑

y

exp(ξi
y)

s.t. ξi
y = wTφ(xi; y)−wTφ(xi; yi) ∀i, y (4)

(Note that the constraints ensure trivially that solv-
ing 4 is equivalent to minimizing 3.)

While replacing an unconstrained problem by an
equivalent constrained one might seem wasteful at
first glance, it allows us to obtain a perspective onto
the model that parallels the view taken in margin-
based methods. In particular, we can now consider
the dual of Problem 4 (see Appendix 6), which takes
the simple form:

max
α

−
1

2λ
αT Kα +

1

λ
αT Kδ +

∑

i

H(αi) (5)

s.t. αi
y ≥ 0 ∀i, y;

∑

y

αi
y = 1 ∀i, (6)

where H(·) is the Shannon entropy, δ =
(δy,yi)(i,y) and K is the matrix of inner products
φ(x, y)Tφ(x, y′) between the joint feature vectors.

The dual is a convex problem and it takes a form
similar to the dual optimization problem for train-
ing support vector machines. One difference is the
entropy-term, which gives it a general nonlinear form,
while the svm-dual is a quadratic program. This
nonlinearity has technical consequences if we want
to adopt svm-optimization procedures, as we discuss
in Section 3.

One advantage of considering the dual as opposed
to the primal problem is that the feature vectors

φ(xi, y) appear only in the form of inner products
(summarized in the Grammian K). We can therefore
replace these by kernel function evaluations, and fit
the model in the corresponding feature space. Tech-
nically, we simply replace the inner product matrix
K by a kernel matrix, derived from a (joint) ker-
nel k((x, y), (x′, y′)). The linear score then takes the
form (using Eq. 24):

wTφ(xi, y) = −
1

λ

∑

j,y′

(αj
y − δy′,yj )k((xi, y), (xj , y′)).

(7)

Kernel versions of probability models have been
considered previously e.g. in [15] and [1]. In contrast
to our approach, those models rely on the represen-
ter theorem, that ensures that the minimizer of Eq.
3 takes the form of a kernel expansion. As a con-
sequence, usually gradient based optimization in the
primal (using the dual representation) is used to train
the models.

3 Sequential minimal optimiza-

tion

The similarity of the constrained problem to that
of margin based methods demonstrates that these
methods are actually closely related. A practical im-
plication is that we can apply similar learning proce-
dures to these models. In the following we show how
we can derive an optimization scheme for conditional
probability models that is similar to John Platt’s ”se-
quential minimal optimization” (smo) [11], a fast and
simple training method for support vector machines,
and the standard method used in most svm software-
packages.

We consider a version of the smo algorithm similar
to the method suggested by [12] for solving structured
max-margin problems. Following the argumentation
there, we suggest cycling through the training data
and iteratively solving Problem 5 for only a single
αl one at a time, effectively performing coordinate
ascent in the objective function. This is possible,
since the constraints couple only the variables αi

y for

each i, ie. no constraint affects any αi
y, αj

y′ for i 6=

3



j. Assuming that we start with a feasible αl (which
can be achieved trivially by setting for example αi

y =
(1/C) ∀i, y) all we need to make sure then is that the
update for αl does not destroy feasibility.

We can achieve such an update as follows: We
set (for each y) αl

y ← αl
y + νy, where we constrain

the additive update νy, such that (
∑

y νy = 0) and

(αl
y +νy ≥ 0,∀y) hold. Then, adding νy will keep the

sum over all αl unchanged and will maintain positiv-
ity. Performing the update so as to maximize the ob-
jective leads to the following problem in the variables
ν := (νy)y (we abbreviate Kij

yy′ = k((xi, y)(xj , y′)) in
the following):

maxν −
1

λ

∑

y,y′

νyνy′Kll
yy′ (8)

+
1

λ

∑

y

νyBl −
∑

y

(αl
y + νy) log(αl

y + νy)

s.t.
∑

y

νl
y = 0; νl

y ≥ −αl
y ∀y

where Bl is a constant:

Bl =
∑

j

Kl,j

y,yj −
∑

j 6=l,y′

αj
y′K

l,j
y,y′ − 2

∑

y′

αl
y′K

l,l
y,y′

While until now, we have not gained a direct advan-
tage from restricting the problem to coordinate-wise
optimization, we can now exploit the fact that ad-
ditional structure is present in the problem: All αl

y

are constrained to form a distribution (or correspond-
ingly, the νy sum to zero). The core insight of smo-
like algorithms is, that it is natural to solve problems
under these constraints wrt. to only pairs νy1 , νy2 one
at a time. The reason is that, to keep the constraint
∑

y νy = 0 satisfied, we just need to make sure, that
νy1 = −νy2 holds true. In other words, we just need
to move weight from one variable to another, which
ensures automatically that the net weight stays the
same. That means, however, that the update can be
achieved using a single variable: We can define the
’weight-change’ ∆ = νy1 = −νy2 and solve for ∆.
Performing this substitution in Problem 8 yields a
simple one-dimensional problem of the form:

max
∆

−a∆2 − b∆ − (αl
y1 + ∆) log(αl

y1 + ∆)

− (αl
y2 −∆) log(αl

y2 −∆)

s.t. −αl
y1 ≤ ∆ ≤ αl

y2 (9)

with constants

a :=
1

2λ
(Kll

y1y1 + Kll
y2y2 − 2Kll

y1y2),

b :=
1

λ
(c(y2)− c(y1)),

c(y) :=
∑

j

Klj

yyj −
∑

j,y′

αj
y′K

lj
yy′(1 + δjl).

We obtain a simple convex problem with box-
constraints. The presence of the logarithm seems to
imply a degeneracy when the box-constraints are sat-
isfied with equality. However, it is easy to show that
the optimum always lies the interior of the constraint
region, which follows, for example, from the fact that
all constraints in the primal (Problem 4) are equality
constraints. A similar observation was made by [8]
for binary logistic regression.

It is interesting to compare Problem 9 to the one-
dimensional sub-problem in the corresponding svm-
formulation of smo. The fact that the svm-dual is
a quadratic program leads to a corresponding one-
dimensional sub-problem that can be solved analyt-
ically (followed by clipping, because of constraints
similar as here [12]; [11]). Here, we obtain a nonlin-
ear problem, that we need to solve iteratively instead.
The natural way of solving the problem is therefore
by using Newton-Raphson iterations. A legitimate
question is, whether a significant speed-up over more
traditional optimization procedures is also achievable
here, despite the more demanding iterative optimiza-
tion. We show in section 5 that this is clearly the
case.

Three decisions that need to be made to complete
the algorithm are (1) in what order to pick data-
points to solve for, (2) how two choose pairs (y1, y2)
within each coordinate ascent step (3) when to stop.
Natural solutions for problems (2) and (3) follow di-
rectly from the KKT-conditions. We discuss these
below in Subsection 3.1. Regarding problem (1),
many choices are possible. The most simple one is
simply cycling through a randomly ordered dataset
and performing a fixed number D of optimizations for

4



each data-point. We have chosen this strategy for our
experiments, and obtained very good results. How-
ever, more sophisticated strategies for point-selection
might help improve the procedure further and point
to possible future research.

An important advantage of the method is that the
memory-requirement is reduced from quadratic in the
number of data-points for traditional, gradient based
optimization, to basically linear in the number of
data-points. The reason is that running smo needs
typically only a couple of sweeps over the dataset in
order to converge. More importantly, in each sin-
gle iteration only a single row of the kernel matrix is
needed (the lth row – see Problem 9). Gradient based
optimization, on the other hand, requires the compu-
tation of essentially every entry of the kernel matrix
for every single function- and gradient-evaluation.
The only way to rein in the time-complexity is there-
fore a pre-computation of the kernel-matrix. The
small memory-footprint is therefore a standard mo-
tivation for using smo over other optimization meth-
ods. The time-complexity is generally quadratic for
both methods, but with a much smaller constant for
smo, which is equal to the number of sweeps over the
data-set that are required for convergence.

3.1 Pair selection and stopping crite-

ria

At the solution we need to satisfy the KKT-
conditions (Eqs. 25 and 26, Appendix 6). (Note that
we have used Eq. 24 in the representation of w). We
can combine the conditions in Eqs. 25 and 26 to get:

log αi
y−w

Tφ(xi, y) = − log
∑

y′

exp(wTφ(xi, y′)) ∀y

(10)
A crucial insight now is that the RHS does not de-
pend on y. Therefore, all we need to make sure is
that the LHS is the same for all y:

gl(y) := log αl
y −w

Tφ(xl, y) = cl ∀l, y (11)

for some (arbitrary) constant cl. As a result, we
obtain criteria for both, pair selection and stop-
ping: We iteratively set y1 = arg miny gl(y) and

y2 = arg maxy gl(y) and solve the restricted dual for

the pair y1, y2. Optimality is achieved when gl(y) is
constant across y. But using y1 and y2 from above,
this means that we can stop as soon as gl(y2) = gl(y1)
(within numerical tolerance). We therefore define the
’optimality gap’

G := gl(y2)− gl(y1) (12)

and stop as soon as G gets smaller than some pre-
defined tolerance ε. (In our experiments we have set
ε = 10−6.)

Algorithm 1 smo for probability models

1: while G > ε do

2: Pick next data-point l (according to schedule).
3: for i = 1 : D do

4: y1 = arg maxy gl(y)

5: y2 = arg miny gl(y)
6: Set constants a and b for 1-d problem (Eq.

9)
7: Solve 1-d problem
8: end for

9: Set G = maxy gl(y)−miny gl(y)
10: end while

It is important to note that the pair selection
and stopping criteria involve only a simple minimiza-
tion/maximization. This observation provides essen-
tially the grounds for potential extensions to struc-
tured learning settings, in which these procedures can
be performed using e.g. a form of belief propagation.

Note that we can express gl(y) in terms of only α
as (using Eq. 7):

gl(y) = log(αl
y) +

1

λ

∑

j,y′

(αj
y′ − δy′yj )k((xl, y)(xj , y′)).

(13)
The overall optimization procedure is summarized in
Algorithm 3.1.

4 Joint kernels

Until now, we have defined the model and opti-
mization in terms of general joint kernel functions

5



k((x, y), (x′, y′)). Recent work (see e.g. [13]) has
shown how a variety of different learning tasks can be
captured in the framework of joint feature learning.
In the following (Subsection 4.1) we discuss the spe-
cial case of multiclass learning in detail, and describe
how to apply smo in this setting. In Subsection 4.2
we show briefly, how multilabel classification can be
treated as another special case within the framework.

4.1 Generic multiclass kernels

Multiclass learning is a special case of learning in
joint feature spaces that we obtain by using joint ker-
nels of the form:

k((xi, y), (xj , y′)) = δy,y′kx(xi,xj), (14)

where kx(xi,xj) is any kernel defined in the input
space. For example, we could define kx(xi,xj) as
an RBF-kernel: kx(xi,xj) = exp(− 1

σ2 ‖x
i − xj‖2),

or another standard kernel, such as polynomial. It
is easy to show how these kernels recover standard
formulations of multiclas problems by plugging (14)
into (7).

Learning with smo using kernels of this form is
straightforward. We can directly apply Algorithm
3.1, using Eq. 14, when computing the quantities
gl(y), a, and b. Note in particular, that the score
(Eq. 7) under this choice of kernel simplifies to

wTφ(x, y) =
1

λ
(

∑

j:y=yj

k(x,xj)−
∑

j

αj
ykx(x,xj)).

(15)
Furthermore, Eq. 13 simplifies to

gl(y) = log(αl
y)+

1

λ
(
∑

j

αj
ykx(xl,xj)−

∑

j:y=yj

k(xl,xj)),

(16)
and the constants in Problem 9 to

a =
1

λ
kx(xl,xl)

c(y) =
∑

j:yj=y

kx(xl,xj)−
∑

j

αj
ykx(xl,xj)(1 + δjl).

4.2 Structured kernels

A useful extension to basic classification consists in
using label vectors y as opposed to scalar labels y.
Conditional random fields (crf) are linear probabilis-
tic models for this purpose [9]. Predicting label vec-
tors entails a combinatorial explosion, that makes the
problem intractable in general, and crfs deal with this
problem by restricting attention to certain decom-
posing feature vectors that allow for the use dynamic
programming for learning and prediction. [10] and
[1] use a generalized version of the representer theo-
rem to show how crfs can be defined in kernel feature
spaces.

In the following we show how we can derive ker-
nel crfs alternatively using the dual optimization per-
spective. Intractabilities during learning arise in the
dual Problem 5, because of the presence of a num-
ber of dual parameters αi

y that is exponential in the
number of labels (i.e. the dimensionality of y). A
simple trick that makes the problem tractable is to
arrange the entries of y in a graph, and to let the ker-
nel decompose as a sum of ’sub’-kernels defined only
on the cliques of the graph:

k((x,y), (x′,y′)) =
∑

m,n

k((x, ym), (x′, y′
n)), (17)

where m and n range over the cliques of the graph.
This decomposition then allows us to use a trick sim-
ilar to the one used in [12], and to derive a tractable
representation for crfs. Using Eq. 17 we can re-write
the dual representation of the scores formally as

wTφ(xi,y)

= −
1

λ

∑

j,y′

αj
y′k((xi,y), (xj ,y′))

= −
1

λ

∑

j

∑

m,n

∑

y′

αj
y′k((xi, ym), (xj , y′

n))

= −
1

λ

∑

j

∑

m,n

∑

y′

n

k((xi, ym), (xj , y′
n))

∑

∼y′

n

αj
y′

=: −
1

λ

∑

j

∑

m,n

∑

y′

n

k((xi, ym), (xj , y′
n))µj

y′

n
,

where we introduce a (polynomially sized) set of
marginal variables µj

y′

n
, that allow us to express the

6



problem in tractable form (we use the ’notsum’-
notation (∼ yn) to denote marginalization). Sim-
ilarly, we also get tractable representations of the
quadratic and linear terms of the dual objective (Eq.
5). We also need to make sure, however, that the
marginal variables are consistent, that is, that they
agree on the nodes that they share. We will show in
the following, how we can achieve this implicitly.

Note, that due to the density constraints on the αl

(Eq. 6), the marginal variables are simply marginal

distributions on the cliques of the underlying graph,
ie. we obtain a probabilistic graphical model in the
dual. Consistency can be achieved easily only for
triangulated graphs3, and we restrict our attention
to these in the following. In other words, we consider
only marginals µr,s and µr defined on the edges (r, s)
and nodes r of a tree, respectively. Now, using the
junction tree theorem [3], for each l we can express
in general:

αl
y =

∏

(r,s)∈E µl
yr,ys

∏

r∈V µl
yr

. (18)

Under this representation the en-
tropy term in the dual decouples as

−
∑

i

[

∑

r∈V H(µi
yr

) +
∑

(r,s)∈E I(µi
yr,ys

)
]

, where

I(·) is the mutual information. Note that the dual
objective could be computed tractably as a result.

In practice it is not actually necessary to be able to
do so, however, since to run smo, all we ever need to
compute is the ’argmax’ of gl(y), and the constants
a, b in Problem 9. Using the marginal representation,
we can use belief propagation for this purpose. (Note
in particular, that the ’log’-term for computing gl(y)
in Eq. 13 decouples similarly as the entropy above).
In other words, Algorithm 3.1 carries over with essen-
tially no change to the structured learning setting.

After having solved the one-dimensional problem,
we can perform the update in terms of the marginals
by adding ∆, or −∆, to each marginal that is com-
patible with y1, or y2, respectively. Formally:

µl
yr,ys

= µl
yr,ys

+ δyry1
r
δysy1

s
∆− δyry2

r
δysy2

s
∆,

µl
yr

= µl
yr

+ δyry1
r
∆− δyry2

r
∆.

3For graphs that are not triangulated we could proceed and
solve the dual approximately, opening up a huge field of po-
tential variational learning approaches.

5 Experiments

We discuss some simple experiments to assess the ef-
ficiency of smo training for multiclass problems. The
datasets that we have used (taken from the UCI-
database and USPS-digits) are summarized in Table
1 (N test and dim refer to the number of test points
and the input space dimensionality, respectively). All
datasets have been normalized to unit-variance in
each dimension. We have used RBF-kernels with
bandwidths as described below. We have compared
against the standard approach of solving the uncon-

strained primal problem obtained from the represen-
ter theorem. To solve the primal we have used con-
jugate gradients. In particular, we used Carl Ras-
mussen’s function ’minimize’ as the optimizer4. Con-
jugate gradients is known to be one of the most effi-
cient methods available for training logistic regression
and ’minimize’ probably one of the ’tougher’ com-
petitors to compare against. All experiments were
run on a four-processor Pentium4 machine with four
Gigahertz processors and four Gigabyte RAM.

Figure 1 shows learning curves on the USPS-digits
for three different values of λ (where we have fixed
σ2 = 128.0). The plots show that overall smo con-
verges much faster on this dataset than conjugate
gradients. Note that the larger the value of λ, the
faster the initial optimization for conjugate gradients
(ie. the steeper the initial descent). A similar obser-
vation holds true for smo. At the same time, however,
continuing optimization is much slower when λ is
large for conjugate gradients, while smo converges to
the final solution almost immediately (which amounts
to performing a few sweeps over the dataset) in all
cases. In a second experiment, we have compared
absolute training times on several datasets, using the
following comparison scheme: We have run conjugate
gradients until the change in the primal objective was
smaller than 10−8. We have then run smo (using the
same random initialization that we have used for con-
jugate gradients), stopping after the objective5 had

4All implementations are in matlab.
5Note that computing the primal objective is not actually

necessary for running smo. We have computed the primal ob-
jective after each sweep over the whole dataset for smo, getting
a slightly unfair comparison in favor of conjugate gradients.

7



0 500 1000 1500 2000 2500 3000 3500

13000

14000

15000

16000

17000

time

ob
je

ct
iv

e

0 500 1000 1500 2000 2500 3000 3500
16100

16102

16104

16106

0 500 1000 1500 2000 2500 3000 3500

16641.6

16641.7

16641.7

16641.7

16641.7

Conjugate gradients
SMO

Figure 1: Learning curves. λ
N

= {0.01, 0.1, 1.0} (top
to bottom). Cpu-times are shown in seconds.

reached a value below the final objective that we ob-
tained from conjugate gradients. The resulting cpu-
times (in seconds), along with optimal bandwidths
and the best achieved test errors, are recorded in Ta-
ble 2 and demonstrate a huge gain in efficiency when
using smo.

To test the possibility of performing online process-
ing, we have also used smo to train a model on the let-
ter dataset, containing 15000 training examples. We
have trained online, ie. without storing the kernel
matrix. (Note that conventional training would have
been difficult for this dataset.) We used σ2 = 0.1 and
λ = 0.01. Training until the smo-stopping criterion
(G < 10−6) was satisfied took a little over 2 days,
with a resulting final error rate of 4.7%.

6 Discussion

We have considered probabilistic classification from
the perspective of constrained dual optimization, re-
vealing several analogies to margin-based classifica-
tion. As an example application, we have shown how
we can adapt the smo-algorithm to the probabilistic
setting. There are many directions for potential fu-

Table 1: Summary of datasets.

Dataset N N
test

dim C

wine 120 58 13 3

glass 130 84 9 7

vehicle 600 246 18 4

segment 1500 810 19 7

digits 5000 2000 256 10

letter 15000 5000 16 26

ture work. Especially interesting ones are extensions
to continuous valued settings and the use of varia-
tional approximations in the dual. A more techni-
cal issue is the investigation of alternative scheduling
approaches for smo that could potentially lead to an
even further increase in efficiency.

While we have considered only conditional models
in this paper, all the derivations could be applied
to non-conditional, generative models, by essentially
dropping the ’x’ everywhere.

A Derivation of the dual

We define f i(ξi) = log
∑

y exp(ξi
y) and ψi =

(

wTφ(xi, y)
)

y
and consider the Lagrangian:

L(w, ξ,α) =
λ

2
‖w‖2+

∑

i

f i(ξi)+αiT(ψi−1ψi
yi−ξi)

(19)
Convexity and strict feasibility now allow us to write

min
w,ξ

max
α

L(w, ξ,α) (20)

= max
α

min
w,ξ

L(w, ξ,α) (21)

= max
α

min
w

λ

2
‖w‖2 +

∑

i

αiT(ψi − 1ψi
yi)

−
∑

i

max
ξi

ξiTαi − f i(ξi) (22)

= max
α

min
w

λ

2
‖w‖2 +

∑

i

αiT(ψi − 1ψi
yi)

−
∑

i

f?i(αi), (23)

8



Table 2: Training times.

λ

N
wine glass vehicle segment

σ
2

= 10.0 err = 1.72 σ
2

= 10.0 err = 20.24 σ
2

= 10.0 err = 26.42 σ
2

= 0.1 err = 0.0395

conj grad. smo conj grad. smo conj grad. smo conj grad. smo

0.001 26.47 12.39 38.37 93.03 1951.9 216.69 1169.4 39.33

0.01 13.92 6.50 23.96 7.64 1571.4 26.04 782.7 63.56

0.1 4.66 1.44 1.12 0.93 225.1 4.96 681.4 27.70

1 1.46 0.39 4.02 0.58 227.7 4.66 441.5 28.06

10 1.08 0.38 1.66 0.30 72.6 1.15 259.5 28.41

100 0.70 0.26 1.36 0.30 34.5 1.11 237.5 27.53

1000 0.44 0.24 0.89 0.28 16.5 1.09 186.9 27.90

where f?i(αi) =
∑

y αi
y log αi

y is the Fenchel conju-

gate of f i(ξi) (see e.g. [2]). Note that the domain of
f?i(αi) is constrained by

∑

y αi
y = 1 and αi

y ≥ 0.
We also get the KKT conditions:

∂L

w
= 0 → (24)

w = −
1

λ

∑

i,y

αi
yφ((xi, y)− φ(xi, yi))

∂L

ξi
= 0 → ξi

y = log(αi
y)− log

∑

y′

exp(ξi
y′) (25)

∂L

αi
= 0 → ξi

y = wTφ(xi, y) (26)

We can now eliminate w by plugging 24 into
23. Finally, stacking all αi into a vector α and
defining the inner product matrix: K(i,y),(j,y′) :=
φ(xi, y)Tφ(xj , y′) yields the dual Program 5.

B Derivatives of the 1-d objec-

tive

At each iteration of smo, we solve the one-
dimensional problem given in Eq. 9. To solve us-
ing Newton-Raphson, we need the first and second
derivatives of the objective function. Assuming that
−αl

y1 < ∆ < αl
y2 (ie. that the constraints are satis-

fied strictly), the first derivative is given by

Q′(∆) = −2a∆− log(
αl

y1 + ∆

αl
y2 −∆

)− b, (27)

and the second derivative by

Q′′(∆) = −
αl

y1 + αl
y2

(αl
y1 + ∆)(αl

y2 −∆)
− 2a. (28)

References

[1] Yasemin Altun, Thomas Hofmann, and Alexan-
der J. Smola. Gaussian process classification for
segmenting and annotating sequences. In ICML

’04: Proceedings of the twenty-first international

conference on Machine learning, page 4, New
York, NY, USA, 2004. ACM Press.

[2] S. Boyd and L. Vandenberghe. Convex Op-

timization. Cambridge University Press, New
York, New York, 2004.

[3] Robert G. Cowell, Steffen L. Lauritzen, A. Philip
David, and David J. Spiegelhalter. Probabilistic

Networks and Expert Systems. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 1999.

[4] Koby Crammer and Yoram Singer. On the al-
gorithmic implementation of multiclass kernel-
based vector machines. Journal of Machine

Learning Research, 2:265–292, 2002.

[5] K. B. Duan. Improved kernel methods for clas-

sification. PhD thesis, 2003.

[6] T. Friess, N. Cristianini, and C. Campbell. The
kernel adatron algorithm: a fast and simple

9



learning procedure for support vector machine,
1998.

[7] T. Jaakkola and D. Haussler. Probabilistic ker-
nel regression models, 1999.

[8] S. S. Keerthi, K. B. Duan, S. K. Shevade, and
A. N. Poo. A fast dual algorithm for kernel logis-
tic regression. Machine Learning, 61(1-3):151–
165, 2005.

[9] John Lafferty, Andrew McCallum, and Fernando
Pereira. Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence
data. In Proc. 18th International Conf. on Ma-

chine Learning, pages 282–289. Morgan Kauf-
mann, San Francisco, CA, 2001.

[10] John Lafferty, Xiaojin Zhu, and Yan Liu. Kernel
conditional random fields: representation and
clique selection. In ICML ’04: Twenty-first

international conference on Machine learning.
ACM Press, 2004.

[11] John C. Platt. Using analytic qp and sparseness
to speed training of support vector machines.
In Proceedings of the 1998 conference on Ad-

vances in neural information processing systems

II, pages 557–563, Cambridge, MA, USA, 1999.
MIT Press.

[12] Ben Taskar. Learning Structured Prediction

Models: A Large Margin Approach. PhD the-
sis, 2004.

[13] Ioannis Tsochantaridis, Thomas Hofmann,
Thorsten Joachims, and Yasemin Altun. Sup-
port vector machine learning for interdepen-
dent and structured output spaces. In ICML

’04: Twenty-first international conference on

Machine learning, New York, NY, USA, 2004.
ACM Press.

[14] J. Zhu and T. Hastie. Classification of gene mi-
croarrays by penalized logistic regression. Bio-

statistics, 5:427–443, 2004.

[15] Ji Zhu and Trevor Hastie. Kernel logistic re-
gression and the import vector machine. Jour-

nal of Computational & Graphical Statistics,
14(1):185–205, March 2004.

10


