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Abstract

Nonlinear extensions to structured super-
vised learning can be achieved by replacing
the common linear compatibility score with
a nonlinear function, such as a neural net-
work. A potential advantage of such a non-
linear variant is that it can, in contrast to
kernel based approaches, be trained on very
large datasets, because computational com-
plexity scales only linearly with the number
of examples.

1. Introduction

Supervised learning is one of the most successful
paradigms in machine learning, because it allows us
to construct complex systems entirely ’by example’.
In particular, recent extensions (e.g. (Lafferty et al.,
2001)) of standard supervised learning show that su-
pervised methods can be successfully used to construct
systems that produce complex responses to given in-
puts, and solve problems for which previously genera-
tive models have been mainly used.

Common to practically all these recent extensions is
that they are linear : Given an input vector x they
measure the compatibility with a potential output vec-
tor y using a linear score c(x,y) := wTφ(x,y), where
φ() is a (usually hand-crafted) feature vector, contain-
ing features on which the relation between x and y is
assumed to depend. The models are trained by adapt-
ing w so as to maximize an optimality criterion, using
a training set {(xi,yi)}i=1:l. A common criterion is
the maximum likelihood criterion:

L(w) =
∑

i

wTφ(xi,yi) − log
∑

y

exp(wTφ(xi,y)),

which is simply the average log-probability under a
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probabilistic output-model defined as:

p(y|x;w) =
exp(wTφ(x,y))∑
y exp(wTφ(x,y))

. (1)

After training, the output for a new input xtest, can
be computed as the maximizer of p(y|x;w):

ytest = arg max
y

wTφ(xtest,y). (2)

Both the sum over y in Eq. 1 and the arg-max in Eq.
2 are intractable, if y is reasonably high-dimensional.
However, we can obtain tractable problems, by letting
the feature vector φ(x,y) decompose into the sum of
’sub-feature’ vectors, defined on subsets of the compo-
nents of y. In sequence prediction models, we could
set, for example:

φ(x,y) =
∑

t

φt(x, yt−1, yt), (3)

where φt(x, yt−1, yt) is a sub-feature that depends only
on the components yt−1, yt of y. Due to linearity, the
compatibility wTφ(x,y) then decomposes as:

∑

t

wTφ(x, yt−1, yt). (4)

The ’arg-max’ in Eq. 2, in turn, can be ’pushed’ into
the sum, and dynamic programming can be used to
compute it; similarly for the sum in Eq. 1.

The linear model can be generalized to perform non-
linear predictions, by realizing that the optimal model
can typically be written as a kernel expansion (see e.g.
(Lafferty et al., 2004)). A drawback of kernel methods
in general, but in particular in this context, is com-
putational complexity: These methods scale quadrat-
ically with the number of training data-points (and
quadratically with both, the number of training points
and the number of sequence elements in the case of
sequence prediction), and are therefore not applicable
to large data-sets. In the following we describe an al-
ternative based on neural networks, that scales only
linearly with the number of data-points.
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2. Additivity vs. linearity

The reason that the feature decomposition (Eq. 3)
leads to a tractable model is not actually the linearity
of the score, but rather additivity : The fact that the
score decomposes as the sum of ’sub-scores’ (Eq. 4)
defined on components of y is what makes dynamic
programming possible. This observation suggests a
nonlinear variant of the standard model, in which we
define the score as the sum of (possibly nonlinear) sub-
scores as follows: We use an arbitrary nonlinear func-
tion fw(φt(x, yt−1, yt)) and define the overall score as

c(x,y) =
∑

t

fw(φt(x, yt−1, yt)) (5)

The log-likelihood criterion then still decouples as

L(w) =
∑

i

∑

t

fw(φ(xi, yi
t−1

, yi
t))

− log
∑

y

exp(
∑

t

fw(φ(xi, yt−1, yt))).

The function fw() is a nonlinear substitute for
wTφ(x, yt−1, yt) used above. It can be an arbitrary
(scalar-valued) nonlinear function defined on the (still
pre-defined) feature vectors φ(). In particular, we can
define fw() using a neural network and train with the
standard back-propagation algorithm. We then obtain
an optimization scheme, in which we propagate errors
and beliefs simultaneously, as shown in detail in the
following.

3. Propagating errors and beliefs

For simplicity, we restrict our attention to networks
with one hidden layer and linear output units in the
following, ie. we set:

fw(φ(x, yt−1, yt)) = uTσ(V Tφ(x, yt−1, yt)), (6)

where w := (u,V ), u is a vector of hidden-to-
output weights, V is a matrix of feature-to-hidden-
layer weights, and σ() is a component-wise sigmoid
activation function. The crucial observation is, that
the gradient of L(w) then still decouples as:

∂L

∂w
=

∑

i

∑

t

∂fw

∂w
(φ(xi, yi

t−1
, yi

t)) (7)

−
∑

y

p(y|xi)
∑

t

∂fw

∂w
(φ(xi, yt−1yt)).

Therefore, to obtain the derivatives wrt. the weights
u and V , we can simply plug-in the form (Eq. 6) and

get:

∂L

∂u
=

∑

i

∑

y

(δy,yi − p(y|xi)) ×

∑

t

σ(V Tφ(xi, yt−1, yt)),

∂L

∂V T
= u1T ?

∑

i

∑

y

(δy,yi − p(y|xi))

∑

t

σi
yt−1,yt

(1 − σi
yt−1,yt

)φ(yt−1, yt)1
T,

where 1T is the row-vector of all ones, ? de-
notes element-wise multiplication, and we abbreviate
σi

yt−1,yt
:= σ(V Tφ(xi, yt−1, yt)). Since the gradient

(wrt. any layer) is simply an expectation over the
output-distribution, we just need to perform inference
in the model to be able to compute it, which opens up
a large number of possibilities for approximate infer-
ence and nonlinear prediction in intractable models,
providing an interesting extension also to structured
neural network models (LeCun et al., 1997). The gen-
eralization to several hidden layers is straightforward.

4. Discussion

After having lost some of their popularity to kernel
machines in the late nineties, neural networks are cur-
rently experiencing another renaissance, mainly be-
cause of the increasing awareness that large datasets
are important in practice. In the context of structure
prediction, neural networks could be especially useful,
since they implicitly address the problem of feature ex-
traction, which has been a problem of ongoing concern
in this area (McCallum, 2003).
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