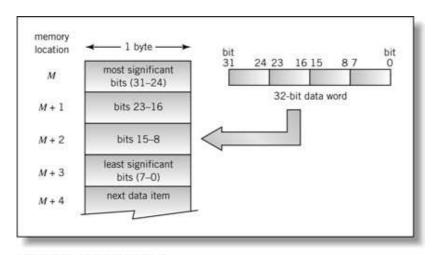


INTRODUCTION AUX SYSTÈMES INFORMATIQUES

REPRÉSENTATION DES DONNÉES ENTIÈRES

Max Mignotte

Département d'Informatique et de Recherche Opérationnelle Http://www.iro.umontreal.ca/~mignotte/ E-mail: mignotte@iro.umontreal.ca

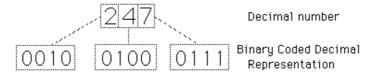

REPRÉSENTATION DES DONNÉES ENTIÈRES SOMMAIRE

Entiers Positifs	2
Entiers Signés -Signe et Magnitude	4
Entiers Signés - Complément Logique	4
Entiers Signés - Complément Arithmétique	12
Soustraction Binaire	17
Division D'Entiers	18

REPRÉSENTATION DES DONNÉES ENTIÈRES ENIIERS POSITIFS

Représentation des Entiers positifs

Un approche évidente ..



Englander: The Architecture of Computer Hardware and Systems Software, 2nd edition Chapter 4, Figure 04-01

Codage en Binaire

8 bits ⊲⊳ 256 valeurs possibles 32 bits ⊲⊳ 4294967296 valeurs possibles

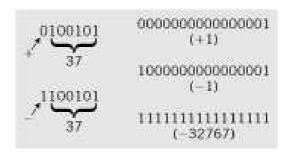
Codage en BCD

8 bits <> 99 valeurs possibles

REPRÉSENTATION DES DONNÉES ENTIÈRES ENTIERS POSITIFS

Value Range for Binary Versus Binary-coded Decimal

No. of Bits	BCD range		Binary range	
4	0-9	1 digit	0–15	1+ digit
8	0-99	2 digits	0-255	2+ digits
12	0-999	3 digits	0-4,095	3+ digits
16	0-9,999	4 digits	0-65,535	4+ digits
20	0-99,999	5 digits	0-1 Million	6 digits
24	0-999,999	6 digits	0-16 Million	7+ digits
32	0-99,999,999	8 digits	0-4 Billion	9+ digits
64	0-(10 ¹⁶ -1)	16 digits	0-16 Quintillion	19+ digits


- Le nombre de valeur codable en BCD est moins important qu'en binaire
- L'arithmétique en BCD est plus difficile en BCD qu'en binaire et plus lente (alternative BCD ▷ Binaire ▷ calcul ▷ conversion BCD)

• Préféré pour certaines application (business) où il est nécessaire d'avoir une représentation exacte du nombre décimal et conversion BCD ⊳ caractère facile

ENTIERS SIGNÉS -SIGNE ET MAGNITUDE

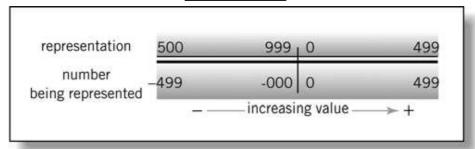
Représentation des Entiers Signés

1. Représentation Signe et magnitude

- la moitié des codes est affecté au nombres positives et l'autre moitié au nombre négatives
- 2 valeurs pour le zéro

$$+0$$
 (00000000) et -0 (10000000)

Pour un codage n bits,


Min:
$$-(2^{n-1}-1)$$
 Max: $(2^{n-1}-1)$

- Les algorithmes de calcul sont plus difficiles a implémenter en hardware
 - ▶ Le système doit tester à la fin de chaque calcul pour assurer qu'il n'y a qu'un seul zéro
 - Deux techniques de calcul différents lorsque les deux nombres sont de même signe ou de signe différents

ENTIER SIGNÉS - COMPLÉMENT LOGIQUE

2. Complément logique

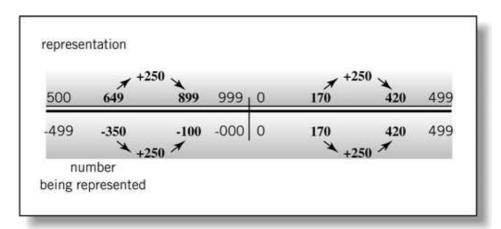
En Base 10

Englander: The Architecture of Computer Hardware and Systems Software, 2nd edition Chapter 4, Figure 04-05

• En base 10, on dit que l'on prend la représentation en complément à 9 et on peut l'obtenir :

Représenter -467₁₀ (3 digits) en complément à 9?

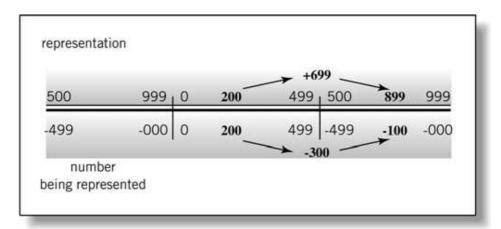
Représenter -467₁₀ (4 digits) en complément à 9?

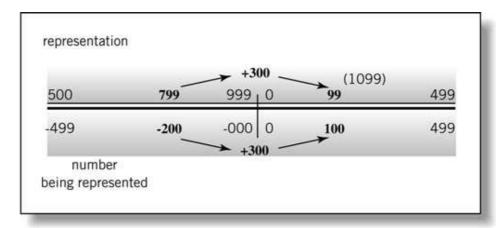

ENTIER SIGNÉS - COMPLÉMENT LOGIQUE

Quel est la valeur du signe et la magnitude de 9990 lorsque celui ci est représenté en complément à 9 ?

• Le premier digit est supérieur à 4, donc signe négative

Donc 9990 en complément à 9 représente -9


Addition


Englander: The Architecture of Computer Hardware and Systems Software, 2nd edition

Chapter 4, Figure 04-06

ENTIERS SIGNÉS - COMPLÉMENT LOGIQUE

Englander: The Architecture of Computer Hardware and Systems Software, 2nd edition Chapter 4, Figure 04-07

Englander: The Architecture of Computer Hardware and Systems Software, 2nd edition Chapter 4, Figure 04-08

ENTIER SIGNÉS - COMPLÉMENT LOGIQUE

• En conséquence, une procédure pour additionner 2 chiffres dans le cas où le résultat s'étend au delà du nombre maximum de digits consiste à ajouter la dernière retenue

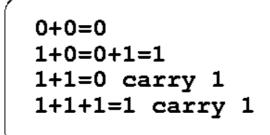
$$-200_{10} + 100_{10}$$
 en complément à 9 sur 3 digits

$$-200_{10} + 300_{10}$$
 en complément à 9 sur 3 digits

	799
799	300
100	1099
899	<u>1</u> -1
No end-around carry	100
	End-around carry

• Pour soustraire, on prend le complément du chiffre que l'on doit soustraire et on réalise l'addition

• Possibilité de débordement [overflow]


Exemple: $300 + 300 = 600 \quad (-399)$?

Si les deux entrées de l'addition ont le même signe et le signe du résultat est différent alors on a un problème de débordement

REPRÉSENTATION DES DONNÉES ENTIÈRES ENTIER SIGNÉS -COMPLÉMENT LOGIQUE

En Base 2

Table d'Addition

Le complément à 1 est simplement réalisé en changeant les zéros en un et l'inverse (⊳ inversion)

10000000	11111111	00000000	01111111
-127,0	-010	0,0	127,0

Englander: The Architecture of Computer Hardware and Systems Software, 2nd edition Chapter 4, Figure 04-10

ENTIERS SIGNÉS - COMPLÉMENT LOGIQUE

Add

00101101 = 45 00111010 = 58 01100111 = 103

Add the 16-bit numbers

 $\begin{array}{rcl}
0000000000101101 &=& 45 \\
\underline{11111111111000101} &=& \underline{-58} \\
1111111111111110010 &=& -13
\end{array}$

Add

$$01000000 = 64$$

$$+01000001 = 65$$

$$10000001 = -126$$

ENTIERS SIGNÉS - COMPLÉMENT LOGIQUE

Add

$$01101010 = 106$$

$$\frac{11111101}{001100111} = -2$$
(end-around carry)
$$\frac{1}{01101000} = 104$$

...

Subtract

$$01101010 = 106$$

$$-01011010 = 90$$

Changing the sign of the addend by inverting

(end-around carry)
$$\begin{array}{c} 01101010 \\ \underline{10100101} \\ \underline{000001111} \\ \underline{ 00010000} = 16 \end{array}$$

ENTIERS SIGNÉS - COMPLÉMENT ARITHMÉTIQUE

3. Complément arithmétique

En Base 10

Representation	500	99910	499
Number being	-500	-001 0	499
represented			1

• En base 10, la représentation en complément à 10 peut être obtenu

Représenter -467₁₀ (3 digits) en complément à 10?

Représenter -467₁₀ (4 digits) en complément à 10?

ENTIERS SIGNÉS - COMPLÉMENT ARITHMÉTIQUE

Quel est la valeur du signe et la magnitude de 9990 lorsque celui-ci est une représentation complémentaire à 10 avec 4 digits?

• Le premier digit est supérieur à 4, donc signe négative

Donc 9990 en complément à 10 représente -10

Complément à
$$10 = Complément à 9 + 1$$

• Additions simples !

- $-200_{10} + 100_{10}$ en complément à 10 sur 3 digits
- $-200_{10} + 300_{10}$ en complément à 10 sur 3 digits

Toute retenue au delà du nombre de digit n'est pas prise en compte

ENTIERS SIGNÉS -COMPLÉMENT ARITHMÉTIQUE

En Base 2

10000000	11111111	00000000	01111111
-128 ₁₀	-110	O ₁₀	127,10

- Les nombres positifs sont représentés par eux-même
- Un nombre négatif commencera par un "1"

Pour trouver le complément à deux d'un nombre:

- 1- Soustraire la valeur au modulus
- 2- Trouver le complément à un et ajouter 1

Exemple:

$$39_{10} = 00100111_2$$

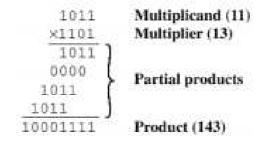
 $-39_{10} = 11011001_2$

ENTIERS SIGNÉS -COMPLÉMENT ARITHMÉTIQUE

• Possibilité de débordement [overflow]

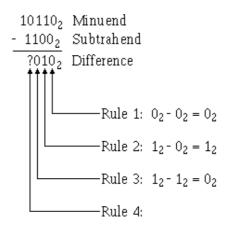
Si les deux entrées de l'addition ont le même signe et le signe du résultat est différent alors on a un problème de débordement

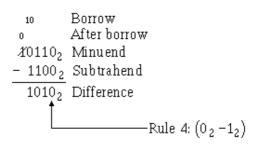
(+4) + (+2)		(+4) + (+6)	
0100	no overflow,	0100	overflow,
0010	no carry	0110	no carry
0110 = (+6)		1010 = (-6)	the result is incorrect


(-4) + (-2)		(-4) + (-6)	
1100	no overflow,	1100	overflow
1110	carry	1010	carry
11010 = (-6)	ignoring the carry,	10110 =	ignoring the carry,
	the result is correct		the result is incorrect

REPRÉSENTATION DES DONNÉES ENTIÈRES ENTIERS SIGNÉS -COMPLÉMENT ARITHMÉTIQUE

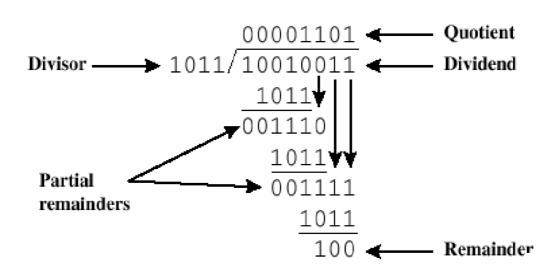
Table de Multiplication


$$0.0 = 0$$
 $0.1 = 0$
 $1.0 = 0$
 $1.1 = 1$


Multiplication d'Entiers

SOUSTRACTION BINAIRE

Soustraction binaire



REPRÉSENTATION DES DONNÉES ENTIÈRES DIVISION D'ENTIERS

Division d'Entiers

