

# DÉMONSTRATION Nº 6

- Correction -

 $Max\ Mignotte$ 

# $\overline{\text{LMC}}$

## Exercice 6.7

(BL3-) This problem forces students to consider a more general approach. The simplest approach is to create a location for the highest number and load the first number into it. Each following number is read in, stored (in case it's needed), and compared. The higher number is stored, and the process continued until the 00 flag is encountered.

| 00 INP<br>01 STO 99<br>02 INP | 901<br>399<br>901 | ;store the first number in 99                                |
|-------------------------------|-------------------|--------------------------------------------------------------|
| 03 BRZ 11<br>04 STO 98        | 711<br>398        | completion flag store new value temporarily                  |
| 05 SUB 99<br>06 BRP 08        | 299<br>808        |                                                              |
| 07 BR 02                      | 602               | ;new value largerreplace<br>;old value largerget next number |
| 08 LDA 98<br>09 STO 99        | 598<br>399        |                                                              |
| 10 BR 02<br>11 LDA 99         | 602<br>599        |                                                              |
| 12 OUT<br>13 COB              | 902<br>000        |                                                              |
|                               |                   |                                                              |

## Exercice 6.8

(BL3) This problem is best offered as a challenge to students with strong programming skills. It requires careful analysis, and takes lots of steps regardless of the approach. Here's one solution. It puts the first two values in order first, then compares the third value against each.

```
00 INP
              901
01 STO 99
              399
02 INP
              901
03 STO 98
              398
04 SUB 99
              299
                         ;numbers are in order (98, 99)
05 BRP 12
              812
06 LDA 99
              599
                         ;swap 98 and 99
                         ;a common error is to forget to save the...
07 STO 96
              396
08 LDA 98
              598
                         ;...first number in the swap
              399
09 STO 99
10 LDA 96
              596
11 STO 98
              398
12 INP
              901
                         ;input third number
13 STO 97
              397
14 SUB 98
              298
15 BRP 30
              830
                         numbers are in order (97, 98, 99)
              597
                         ;swap 97 and 98
16 LDA 97
                         ;note: a trick--swapping this way leaves 98 in A...
17 STO 96
              396
18 LDA 98
              598
                         ;...ready for next operation
              397
19 STO 97
20 LDA 96
              596
              398
21 STO 98
22 SUB 99
              296
                         ;compare 98 and 99
23 BRP 30
              830
                         ;(98, 99) are in correct order
24 LDA 98
              598
                         ;swap 98 and 99
25 STO 96
              396
26 LDA 99
              599
27 STO 98
              398
28 LDA 96
              596
              399
29 STO 99
30 LDA 97
              597
                         ;output results
31 OUT
              902
32 LDA 98
              598
              902
33 OUT
34 LDA 99
              599
35 OUT
              902
36 COB
              000
```

Most students will come up with solutions ranging from 40 to 70 instructions. I sometimes offer a prize (coffee and donuts) to the student coming up with the shortest solution.

#### Exercice 6.9

(BL2+) The trick here is in counting the number of times through the loop correctly. With only one accumulator, the sum must be saved each time before the index can be

manipulated. The student will need to figure out that the values "0" and "1" must be placed somewhere as constants to be used. The sum must be initialized to "0", or the value will be incorrect if the program is rerun!

| 00 LDA 90 | 590 |                               |
|-----------|-----|-------------------------------|
| 01 STO 99 | 399 | ;initialize sum to zero       |
| 02 INP    | 901 | ;input the count              |
| 03 STO 98 | 399 | ;and save it in 98            |
| 04 INP    | 901 | ;input a number               |
| 05 ADD 99 | 199 |                               |
| 06 STO 99 | 399 | ;add to sum and store sum     |
| 07 LDA 98 | 598 |                               |
| 08 SUB 91 | 291 | ;decrement count by 1         |
| 09 BRZ 11 | 711 | ;doneoutput result            |
| 10 BR 04  | 704 | ;not doneready for next input |
| 11 LDA 99 | 599 |                               |
| 12 OUT    | 902 | ;output result                |
| 13 COB    |     |                               |
| 90 DAT 00 | 000 | constant value 0              |
| 91 DAT 01 | 001 | constant value 1              |
|           |     |                               |

### Exercice 6.16

(BL2+) As in 6.15, it is necessary to calculate a condition code that can use the branch instructions.

```
MM program code to be repeated
....
program code to calculate test condition result
say, positive or 0 for TRUE, negative for FALSE
....
BRP PP
BR MM /FALSE, repeat the program code
PP program code following REPEAT-UNTIL
```

#### Exercice 6.20

(BL2+) Suppose the branch is located at mailbox 23. Then the following sequence will do the job:

23 BRP 25 24 BR 50

#### Exercice 6.21

(BL2+) Suppose the branch is located at mailbox 23. Then the following sequence will work:

23 BRZ 25 24 BRP 75