


Introduction

Description:

ll 13
VWA * VW
3 ohms F 4 ohms
V=R.I
Loi de Kirchhoff:

Le voltage sur une boucle fermée est nul.

Intensité entrante = intensité sortante.

donc
5i1+5i2=V
i3-i4-i5=0
2i4-3i5=0

il-iz-i3=0
51-713-214=0
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Exemples de situations nécessitant
la résolution d’un systeme d’équations linéaires.

e Potentiel dans un circuit électrique
e Tension dans une structure
¢ Flot dans un réseau hydraulique
e Me¢élange de produits chimiques
e Vibration d’un systeme mécanique
* Elasticité
¢ Transfert de chaleur

e Réduction d’équation différentielles

Ift 2455
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Notation :

Considérons le systeme
suivant :

{all'xl +a,x, =b,
ay X, +ayx, =b,

Ce systeme sera noté
par :
(en notation
matricielle)

|:a11 a12:||:x1:|_|:b1:|
Ay, Ay |[X b,

ou aussi

A.x=b

1ft2421

10 Rappels sur les matrices :

. Multiplications entre matrices
conformes seulement: si A est
KxL et B est MxN alors A.B
existe ssi L=M.

.On a D'associativité du produit :

A.(B.C)=(A.B).C

.On n’a pas de facon générale de

commutativité : A.B # B.A

. Un vecteur est une matrice dont

I’une des dimensions est 1.

. Une matrice 1x1 est associée de

facon bijective a un nombre réel.

.La transposée A" d’une matrice

A est obtenue en interchangeant
les lignes et les colonnes.

. Une matrice carrée NxN est dite

d’ordre N.

.La matrice Zéro (notée 0) est

enticrement composée de zéros.

. La matrice identité (notée I) a des

1 sur la diagonale et des zéros
ailleurs.

10.La trace d’une matrice est la

somme des éléments de sa
diagonale.
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Méthode de Cramer

Si A . x = b est un systeme de n équations
avec n inconnues

tel que det (A) #0

alors le systeme a une solution unique qui est

det(A,) det(A,) det(A,)
X, = X, = pees X, =
det(A) det(A) det(A)

avec A; la matrice obtenue en remplagant la j*™ colonne de A
par le vecteur b.

Ordre de la méthode:
O(n!)
n>20

=
5 fois la vie de 1'univers.
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Systéme triangulaire :

e [nférieur

| 0
> Substitution Avant
L ]
e Supérieur
[
O > Substitution Arriere
L ]

Résoudre le systeme :

3 -1 2 [x] [12]
0 7 7 |x|=| 21
0 0 -21] x| [-42

et le systeme : Matrice augmentée :
(3 0 0 [x]| [-3] 3.0 01-3
-1 7 0 |x,|=| 22 -1 7 022
27 =21 x —-19] 2 7 =21-19
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Systemes équivalents

2 systemes sont équivalents
=
Ils peuvent étre obtenus 1’un
a partir de I’autre avec
uniquement des opérations
¢lémentaires.

Deux systemes équivalents
ont la méme solution.

Exemple de systeme

R: 3x,— x, +2x,=12
R,: x,+2x,+3x;=11
Ry: 2x,—2x,— x;=2

1ft2421

Opérations élémentaires sur
les lignes d’une matrice

1. Multiplication d’une
rangée par une constante

2. Les équations peuvent étre
permutées.

3. Combinaison linéaire des
rangées.

et de systemes équivalents

2R  6x,— 2x, +4x,=24
R;: 2x, —
R, +R;:3x,

2x,— x;=2
+2x;,=13

6 -2 4 |x] [24

2 -2 —1|x|=|2
30 2 |x]| [13
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Elimination de Gauss
2 étapes :

1. Transformation du systeme original
en un systeme triangulaire supérieur.

2. Résolution du systéeme triangulaire
par substitution arriere.

Exemple de systeme :

R 3x,— x, +2x,=12
R,: x,+2x,+3x;=11
Ry: 2x,—2x,— x;=2

Premier pivot (a;; = 3) :
R;: 3x, — x2 +2x3—12

R/R

x2+ x3—7

R, —%Rli—gxz —§x3 =-6

1ft2421

Second pivot (a = 7/3) :
R 3x, —
R

Substitution arriere :
X, =2

X, =@/ DIT-(713)x5]
=3/N[7-(7/3)2]=1

x,=Q1/3)[12+ x, —2x,]
=1/3)[12+1-2(2)]=3

Chapitre 3

X, +2x, =12
) (713)x, +(713)x, =7

—((—413)/(T13))R,: —x, =2




Remarques sur la méthode de Gauss

1. Un pivot est une valeur par laquelle on doit diviser
pour résoudre le systeme linéaire.

2. On n’a pas utilisé la seconde opération élémentaire.

3. On peut aussi travailler avec la matrice augmentée.

Colit : Méthode de Gauss Jordan
Ordre O(n’/3) flops e fait disparaitre les
coefficients en haut et en
(Floting point operations) bas de la diagonale.

e Pas de substitution arriére.
Notes :

Substitution arriere Colit :
Ordre O(n’/2) flops

Ordre O(n’/2) flops
négligeable lorsque n tend

vers infini. déconseillée
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Pivotage
Technique de pivotage partiel :

Permute 2 lignes pour avoir le pivot maximum en valeur
absolue.

Technique de pivotage complet :
Permute 2 lignes de la matrice augmentée, puis interchange 2

inconnues du systeme pour avoir le pivot maximum en valeur
absolue.

Raisons du pivotage

Division par un tres petit pivot
valeur + erreur  valeur + erreur

=valeurl0" + erreur10"”

Pivot B 10"
Exemple : Pivotage partiel (R; <> R3)
0 4 311 6 3 72
4 1 =323 4 1 -32|3
6 3 72 0 4 311

Suffisant pour éviter les
divisions par 0.
Peut aussi améliorer la
précision des calculs.
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Pivotage Complet

Etape 1:(Ri Ry

Etape 2 : (C; &> C3)
-32 1 4[3
3 4 0|1
7 3 62

Attention :

Garder I’ ordre des inconnues.

0=(3,21)
4 1 -32(x | [4 1 -32]  [3]
0 4 3 |[x[=|0x+4x,+] 3 [x;=|1
6 3 7 |x] |6 3 7 2]
—32 1 4 -32 1 4[x ]| [3]
3 |, +|{4x,+|0x,=| 3 4 Ofx,|=|1
7 3 6 7 3 6]x] |2]
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Pivotage (autre exemple)
Cet exemple montre que la précision peut étre améliorée par le
pivotage. Considérons un systeme avec b= 10 et s = 4.

(Arrondi a chaque opération)

Soit le systeme A x = b tel que :

-0002 4.000 4000 7.998
A=|-2000 2906 -5387 b=|-4481
3000 -4031 -3112 —4.143

La matrice triangulaire supérieure sans pivotage est :

(augmentée)
—-0002 4.000 4.000 | 7.998
0 —-3997 —-4.005|-8.002
0 0 —10.00| 0.000

ce qui donne la solution : X = (-1496, 2.000, 0.000)

Si on utilise le pivot partiel :

3000 -4031 -3112 —4.143
A=|-0002 4.000 4.000 b=| 7998
-2000 2906 —5387 —4481

La matrice triangulaire supérieure avec pivotage est :
3000 —-4.031 -3112|-4.143 1.000

0 3997 3998|7995 | e quidonne X =|1000

0 0 —7.681|—7.681 1.000
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Normalisation partielle
(Scaling)

Diviser chaque élément d’une
rangée de la matrice par
I’élément maximum de la
rangée.

Exemple :
3 2 100 x, 105
-1 3 100 | x, |=|102
1 2 —1{x 2
Sans normalisation

(b=10, s = 3)
x; = 1.00, x5 = 1.09, x5 = 0.94

Avec normalisation :
R,/100, R,/100, R3/2

003 002 100 |[x | [105
x, |=| 102
~050 x, | |1.00

-001 003 100
050 100

Puis pivot partiel
x; = 1.00, x, = 1.00, x3 = 1.00

1ft2421

Remarques :

1. Peut détruire la
symétrie.

2. Surcrotit de calcul :
a employer seulement
dans les cas difficiles.

3. Utiliser le pivotage
partiel dans la plupart
des cas.
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Plusieurs membres de droite

3 -1 2 x| [12 3 -1 2]y, | [14
2 3| x|=[11]e |1 2 3|y |=|14
2 =2 —1|x| |2 2 -2 —1fy,| |2

On a en fait deux systemes avec la méme matrice.

On travaille alors avec la On résout le systeme pour
matrice augmentée de tous les membres de droite a
plusieurs membres de droite. la fois.
3 -1 201214 Probleme

1 2 31114 . L

Si on veut résoudre le
2 -2 -2 2 systéme pour un nouveau
membre de droite plus tard.

Réduction de cette matrice

3 -1 212 14 On trouve3: | ,
7 7 28 X1=3,X2=1,X3=
0 A 3 7 A et

0 O —1—2 —2 y1=4’y2=2,y3=2
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Méthode de factorisation triangulaire
(décomposition LU)

Décomposer la matrice A en un produit de deux matrices
triangulaire.

A x=

0

Etape 1. Décomposition

A.x=L.U.x=b

ou L et U sont simples

1ft2421 15

b

0

Etape 2. Résolution

Posery=U.x

1. Résoudre L . y = b par
substitution avant.

2.Résoudre U . x =y par
substitution arriere.
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Factorisation LU

On désire factoriser une matrice 3 x 3
en posant que

ap  dg L, 0 0 1 U, U;
a, ay|=|L, L, 0[]0 1 U,y
a3 Az L, L, Ly||0 O 1

Ce systeme a 9 inconnues et 9 équations.

Il faut calculer les coefficients L et Uy dans 1’ordre suivant :

1ft2421

Ordre des calculs

d’abord colonne puis ligne

Note U = 1 pour unicité
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1. Calcul de Lj; et Uy;:

Lii=an
Ly =ay
L3 = a3
ap
U12 =
L
11
a3
Un =
> L
1

2. Calcul de Lis et Uy :

Ly =a»n-Ly Up
La; =az - La; Up

ay — L, Uy,

U, =
” Lzz

3. Calcul de L33 .

L3z =a33-L3; Uz - L3y Uy

1ft2421 17
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Exemple Factoriser la matrice

2
A=|0
6
1. Calcul de L;; et U]ji
Li;=2
L21=0
L31=6
-1 -1
U12:7 Us=—"

2. Calcul de L;; et Uzj :

Ly = -4 - 0%(-1/2)= -4
Ly =-3 - 6%(-1/2)=0

1
P L |
2T 4 2

1ft2421

-1

—4 2

0

3. Calcul de L3 :
L;,=0-6 (_5)_0 (_E) =3

on trouve :
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Exemple: résoudre le systeme

2 -1 -1][x] [0
Ax=b & |0 -4 2 ||x,|=|-2
6 -3 0|x| |3

orA=L.U
20 0 1—%‘%
L=[0 -4 0 v=lo 1 -1
6 0 3 0 0 1

Résoudre L.y = b par substitution avant

y1=0
y2="2
y3=1

Résoudre U.x =y par substitution arriere
X3 = 1
X2 = 1

X3=1
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Formules générales de factorisation
d’une matrice d’ordre N
sous la forme L.U

Pour les éléments de L :

j=1

Lf%—;LikUkj i<i i=1,2,3,.,N
Pour les éléments de U :
1 i—1
U,-,-=L—ia,-,-—k=1L,-kUk,} i<j j=1,2,3,.,N
1ft2421 20 Chapitre 3




Stockage compact

2 -1 -1
A=|0 -4 2
6 -3 0

2 0 o]l -% -Y
A=L-U=0 -4 ofl0 1 -1
6 0 3/lo0 o 1

Décomposition stockée sous la forme :
1 |
2 =)y )
|
2

A=LU=|0 -4 -1
6 0 3

On peut détruire A en cours de calcul de L et U.
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Avantages
1. Une factorisation méme s’il y a plusieurs seconds membres.
Factorisation = O(n’) flops. (> Gauss)
Résolution = O(n?) flops. (économie)
2. Peu de mémoire.
Stockage compact de LU dans A.
3. Préserve le profil de la matrice originale ;
les zéros les plus extrémes sont conservés (matrice creuse)

Inconvénients

1. Pour une matrice symétrique, I’information de la symétrie
n’est pas prise en compte.
(voir factorisation LL ou LDLT O(n%/6))

2. Le pivotage se complique par rapport a la méthode de Gauss.
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Algorithme de la méthode de décomposition LU

Pour transformer une matrice nxn
en un produit de matrice L et U.

Faire pour i = 1 jusqu'a n , pas =1
L{i,1] = A[i,1] ;

fin faire pour.

Faice poue é"i to m, U['l,;\]/L['LAJ

Faire pour j = 2 jusqu'a n , pas

]
=

Faire pour i = j jusqu'a n , pas =1
Faire pour k = 1 jusqu'a j-1 , pas =1
Accumuler Somme de L[i,k] * U[k, j]
en double précision;
fin faire pour.
L[i,3] = A[i,j] - Somme ;
fin faire pour.

Ulj, 3] =1 ;

Faire pour i = J + 1 jusqu'a n , pas =1
Faire pour k = 1 jusqu'a j-1 , pas =1
Accumuler Somme de L[]j,k] * U[k,1i]
en double précision;
fin faire pour.
U[jll] = (A[jrl] - Somme ) / L[jlj]
fin faire pour.
fin faire pour.

14
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Factorisation triangulaire
avec pivotage

1. Utilise les opérations élémentaires
de ligne sur la partie non augmentée de la matrice.
Garder un vecteur des permutations.

2. Pivotage
Immédiatement
apres calcul d’une colonne de L.

1ft2421

Ordre des calculs :

D’abord colonne, ensuite pivot puis ligne.

Remarque :

Le pivotage détruit la structure de la matrice originale.
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Exemple :

Matrice originale Calcul de Ly Premier pivot
0 2 1|1 0 2 1|1 30 13
1 0 0] 2 1 0 02 1 0 0]2
3 0 1|3 30 1|3 0 2 1|1
Calcul de Uy; Calcul de L Second pivot

1 1 1
30 3 3 30 3 3 30 3 3
1 0 02 1 0 0|2 0 2 1|1
0 2 11 0 2 11 1 0 02
Calcul de Uy Calcul de Ls;
1 1
30 3 ; 30 3 3
1 1
0 5 0 2 5 1
0] 2 1|2
] | _1 0 —5_

Attention a garder I’ordre des permutations !
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Exemple (suite)
Soit le systeme :

0 2 1|]|x 1
Ax=b&es|1 0 Offx, |=|1
30 1]|x, 2

or, avec pivotage, on doit donc résoudre

30 1 | [2
LU=|0 2 1 LU |x|=|1
100 x| |1

Remarque
Lors du premier pivot
0 0 1{|10 2 1 3 01
01 01 0 Ol=|1 0 O
1 0 0|3 0 1 0 2 1

Soit P la matrice nxn des permutations
A.x=bestéquivalenta LU x =P.b
LU étant obtenu avec pivotage.

Au début, P =1.

a chaque permutation de L; et L; dans la matrice compacte,

permuter C; et C; dans P.
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Systemes linéaires rectangulaires

plus d'équations
que d'inconnues:

1. Equations supplémentaires
redondantes:
systeme NxN déguisé

2. Equations supplémentaires
inconsistantes: pas de
solution.

Exemple 1:
2X1 + Xo = 4
X1-2X2=-3
4X1—3X2=—2

1ft2421
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moins d'équations
que d'inconnues:

infinité de solutions.

Exemple 2:
2X1 + X =4
X1-2X2=-3
—3X1+2X2 =3
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Méthode des moindres carrés
pour les systemes surdéterminés

Systeme surdéterminé
Ax=b
peut ne pas avoir de solution.

Trouver xo qui minimise
r=AXx-b(r=résidu)

11 suffit de résoudre
ATAxy=A"b
si AT A inversible, 1 solution unique.

Mmoreme_
Minimiser la|distance der a O,
minimisons ici

Fx)=lrlIP=IAx-blP
=(Ax-b)T(Ax-b)

Dérivées :
dF r r
—=2(A"Ax—A"b)
dx

Au minimum, X = X,
dérivée = 0.

donc A"Ax,=A"b

1ft2421 28
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Utilisons la méthode ATA xo = A' b

Exemple 1: Exemple 2:
2X1+X2 =4 Y1+ y2 =2
X1-2X2=-3 2y1+y2=3
3xX1+2x=3 3yl+2}’2=5

Formons la matrice augmentée

2 1| 4 1 1|2

1 -2|-3 2 13

-3 213 32|5

Multiplions par la matrice transposée
’ 1 —3 2 1 4 123 1 1]2
L_z 2]1—2 -3 {112]213
-3 2 3 32|5
Nous devons donc résoudre
14 -6|-4 14923
ool o
Ce qui donne
x; = 100/45 =2.22 yi=1
X2 =2/3=0.67 yo=1

Calculer les résidusr=A x - b

1ft2421 29 Chapitre 3




Systemes singuliers et non singuliers
pour des matrices carrées

Matrice singuliere = 1 pivot nul ou plus
avec Gauss et pivotage.

Rang d'une matrice = nombre de pivots non nuls.

Matrice NxN régulicre
si son rang = N.

Exemple :
3 2 2 3
I 1 11
1 0 0 1
2 1 1 2]

On permute les lignes 2 et 3

3 2 2 3
0 2/3 2/3 0
0 1/3 1/3 0
0 -1/3 -1/3 0

Apres le premier pivot :

3 2 2 3]
0 2/3 2/3 0
0 0 0 0
0 0 0 0

2 2 3
173 1/3 0
2/3  2/3 0
-1/3 -1/3 0

Apres le second pivot

Donc matrice singuliere de rang 2.

1ft2421
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Rang versus vecteur linéairement indépendants

Des vecteurs X1, Xa, ..., X, sont linéairement dépendants

X +taxt..+a,x,=0
avec a, tous mom nuls

Rang = nombre de rangées ou de colonnes
linéairement indépendantes d'une matrice.

Exemple :
Cl C2 C% C4
R[3 2 2 3]
R,|1 1 1 1
R,j1 0 0 1
R,j|2 1 1 2
Dans ce cas,

pour les lignes

R;=R;-2R;
Rs=R;-R;
et
pour les colonnes
CG=C
Cs=C
donc le rang est 2.

1ft2421 31
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Déterminant d'une matrice carrée

Cofacteur cofj(A) d'une matrice A obtenu:

1. en supprimant la ligne i et la colonne j de A
2.en calculant le déterminant de la matrice résultante

3. en multipliant par le signe (-1)

i+j

Le déterminant |Al de la matrice A est donné par la relation

Al = Zaijcof}j(A) = Zaijcofij(A)

Exemple :
2 -1 -1
A=|0 -4 2
6 -3 0

Les cofacteurs de la
premiere ligne sont :

-4 2
cofn(A)=+_3 0=6
0 2
COflz(A):—6 0212
0 -
cof 5(A) = +6 3 =24

1ft2421

Le déterminant de A est donc

Al = ar COfll(A) + ap COflz(A)

+ a3 C0f13(A)
=2 cofi1(A) + (-1) cofi2(A)
+ (-1) cof3(A)

=2(6)+(-1)(12) +(-1)(24) =-24

Note : N’importe quelle ligne ou
colonne peut étre utilisée pour

développer le déterminant.
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Propriétés des déterminants
|ABI=1AIlIB|
IATI=1Al
| Al=0<=> A est singulicre

et pour une matrice triangulaire L:

=11z,

Exemple de calcul du déterminant
apres une factorisation A =L U

2 0 0|1 =-1/2 -1/2
A={0 -4 0]0 1 -1/2
6 0 3|0 0 1

ILI =2 cof; (L) =(2) (-4) (3) =-24
[Ul=1cofii(U)=(1) (1) (1)=1
donc

IAl = ILI Ul = (-24) (1) = -24
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Effet sur le déterminant

des opérations élémentaires de lignes

1. Multiplier une ligne par une constante R’ = k R;

Exemple R’ =k R,

10 0f}|a, a, a;, a, iy

A'=10 k Ol||ay, a, a,l|=|ka, ka,

0 0 1]|a; a;, ay as asz
IA’I=KkIAl

a;
kay,

as;

Le déterminant est aussi multiplié par k.

2. Permuter deux lignes de la matrice R’; = R; et R’; = R;

Exemple R’3 =R, et R’ =Rj

A’ 1=-TAl

Le déterminant change de signe a chaque permutation.

3. Additionner une constante k fois une ligne a une autre ligne

R’i =R+ k RJ'
1 0 O all alZ al3 all 6112
’
A'=|10 1 k||ay a, ay|=|a,t+tkay a,+tkay,
0 0 1]lay ay ay as asz
A’ I=1Al
Le déterminant reste inchanggé.
1ft2421 34
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Calcul du déterminant apres
factorisation triangulaire
avec pivotage:

1. Multiplier les pivots

2. Faire un changement de signe a
chaque fois qu'on permute deux lignes

3. Ne pas employer 1'opération 1

de multiplication par une constante

! ne pas oublier le dernier coefficient

Matrice originale
0 2 1|1
1 0 0] 2
30 1]3

Calcul de Uy;
3 0 1/3] 3
10 012
02 1]1

Calcul de Uy
(3 0 1/3] 3
02 1/2] 1
10 012

1ft2421

Calcul de Lj;
02 1|1
I 0 0f2
30 1]3

Calcul de Lj»
3 0 1/3]3
1 0 0|2
0 2 1 1

Calcul de Ls;
30 1/3 3
02 1/2 1
1 0 —1/3( 2

35

Exemple :

Calcul du
déterminant de la
matrice factorisée

ci dessous.

-DB)D2)(-1/3)
=-2

Premier pivot
30 1]3
1 0 0] 2
02 1|1

Second pivot

S N O
S ==

3 3
0 1
1 2

Chapitre 3




Inversion de matrices carrées
L'inverse de A est notée par A™':
ATA=AAT =]

Calculer A™ => résoudre un systéme
avec N membres de droites :

a, a, a1 0 0
a, Gy ay |0 1 0
a, ay, ay |0 0 1
Exemple : Remarque :
Pour la factorisation, utiliser
Calculer I’inverse de la propriété suivante :
02! AB)'=B'.A"
1 00 (AB) =B".
301 appliqué a la décomposition
A=L.U
1. Par élimination de gauss
ou Gauss-Jordan. on en déduit
Al=u'.L!

2. Par factorisation
triangulaire. U et L se trouve
rapidement par substitution
avant et arriere.
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Résolution de systemes
linéaires par l'inverse

Si on veut résoudre
Ax=b
on multiplie de chaque co6té
par l'inverse A

ATAx=A"b
=>x=A"b
Exemple: Résoudre  par Méthode avantageuse
I’inverse le systeéme seulement si:
02 1|5
10 0l1 1. Il y a beaucoup de
30 1|4 systemes
a résoudre avec la méme
L del ” ) matrice
inverse de la matrice es Axi=b  i=123..
0 1 0
1/23/2 -1/2 2. La matrice est pleine
0o -3 1

La solution est donc :

0 1 0 5 1
1/2 3/2 —=1/2||1|=|2
0 -3 1 4 1
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(elle ne comporte que peu de
0), car
lI'inversion détruit le profil.

Note: Seules les matrices
non singulieres sont
inversibles.
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Propriétés équivalentes
d'une matrice non singuliere

Soit A une matrice NxN,
les propriétés suivantes sont équivalentes :
1. La matrice est non singuliere.
2. La matrice est inversible.
3. Le systeme a une solution unique.

4. Aucun pivot nul lors de I'élimination de Gauss
avec pivotage partiel.

5. Rang(A) = N.
6. Les rangées sont linéairement indépendantes.
7. Les colonnes sont linéairement indépendantes.

8. dét(A) = 0.

1ft2421
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Norme d'un vecteur

La norme d’un vecteur v est
nombre réel noté Il v Il tel que:
1.UlvIil=0

2. Ivlil=0&v=0

3.kvii=IklvIl
pour tout scalaire k et tout vecteur v

A Nv+wl<lvI+ITwl
pour tous vecteurs v et w

SAhvowliliivi lhwll
pour tous vecteurs v et w

Pour un vecteur v de R" Exemple
Norme euclidienne (longueur)

~ \/ . - NS Calculer les normes
L= ey, = Y pour p=1, 2
i=1

et la norme infinie
pour le vecteur

v

Autre fagon de définir une norme:
Les normes p sont de la forme

W =3y x=( 1.25,0.02,-5.15, 0)
’ ;ﬂ’ | x| =642
Ainsi =2} | x], =52996
vl = maxfy,| | x| =515

1<i<n

n
Il =2 v =W,
i=1
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Norme d'une Matrice
Il A Il avec

L.ITIANIZ0
2. lAll=0 < A=0

3.MkAl=TkITTAI
pour tout scalaire k et toute matrice A.

4. 1A+ B II<IAll +IBIl
pour toutes matrices A et B

S.TABI<IAIBI
pour toutes matrices A et B

Théoréme:

Si Il Il est une norme vectorielle
alors

H A H = max||Ax||

lx[=1

est une norme matricielle

On dit que c'est une norme matricielle naturelle
associée a la norme vectorielle.
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Pour une matrice A d’ordre n, les normes 1 et infinie

sont de la forme :

n

HA\L = maxZ‘AU

1<j<n i=1

n
|4l = macEoJa
j=1

1<i<n

La norme matricielle 2, .

associée a la norme vectorielle 2
n'est pas facile a calculer
car elle dépend des valeurs propres de la matrice A.

H A H2 est la plus petite des normes de A.
Elle est donc la plus précise des mesures de norme de A.

H A H2 est aussi appelé la norme spectrale.
(rarement utilisée a cause de sa complexité de calcul)

On peut définir aussi la norme euclidienne pour une matrice par
extension de la norme euclidienne d'un vecteur:

Jal,=E 3,

J:l i=

2 1
)2
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Démonstration:

n
4l =max ) |a)
J=1

1<i<n

Soit x un vecteur colonne de n éléments tel que

Ix|. = max x,.‘ =1

1<i<n
A .x est donc aussi un vecteur colonne de n éléments.

n
sl = | =,

n
5| =max Yo, | 4.

<i<
1<i<n =1

n
< maxZ‘aﬁ max a;
j=1

1<i<n 1<j<n

or ||x||oo =1

n
AL = Ax]_ < maxz a,
1<i<n =1

Si p est un entier, 1 < p <n, tel que
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Choisissons x tel que:

a >
1, sid, 20

X, =
J _ ; <
1, sia,<o

Ixll., =Tet a,X; =|dylpourj=1,2, .., n.

n
= max

n n
Ax =max2a..x. > Za X, =Za . a..
” ”°° sisn |G= Y= PIT gign v

n
J=1 Jj=1

on a donc

o

lxll. =1

n
IA|l. = max||Ax|_ > maXZ
1<i<n =

les résultats de 1 et 2 donnent:

a;j

<i<n

n
||A||°o = maxz
1 =
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Une illustration, pour n = 2, des normes infinie et 2 est:

2l nxlly =1

X2

Ax for
ITx Hy =1

_,/ x
\Jl Xy Xy
-1
X2 4
X4 4 +3
Ax for
Ixil, =1 Hau, +2 lxil, =1
I
+1
b, A
X
] X . . ll 2.
-1 —12 —ll Xy
+-1
-1
+-2

44
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Exemple :

Calculer ces 3 normes pour la

matrice
5 -5 -7
A=|-4 2 -4
-7 -4 5
|4, =16
|4l =15
|l =17
|A], =12.03

Remarque

Utilités des normes:

Les normes servent a borner les erreurs commises lors de la
solution de systemes linéaires et a mesurer la convergences des
méthodes itératives.
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Compatibilité des normes:

Une norme matricielle est compatible
avec une norme vectorielle si:

pour tout vecteur X et toute matrice A
I'inégalité suivante est respectée:

A xIl < [TAIl Il

1ft2421

Pour une matrice A d'ordre n,
la norme euclidienne est de la forme

non 2 1
— 2
HAHe _(ZZ‘AU’ )
j=1 =1
n
| Al = max} |4,
U i Y

1<i<n

n
4], - mes ],
j=1

Les deux normes du maximum sont
compatibles avec les normes p
vectorielles correspondantes.
Mais pas la norme euclidienne.
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Remarques sur les normes

1. La norme de I est toujours > 1:

TAIT<ITAIN<IINIAI

donc Il Tl >1.

2. La norme de A™! est toujours
supérieure ou égale

N

a
l'inverse de la norme de A:

I<HAATI<IANNTAN

donc

1
ae 1
[ =

47
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Conditionnement

Un systeme linéaire est mal conditionné
lorsque certaines équations sont quasi redondantes.

Conséquence:

erreurs d'arrondi
dues a des soustractions
entre nombres quasi égaux.

Exemple On représente sur la figure les
droites correspondant aux
21x1+3.1x,=5.2 deux équations.

2X1+3X2=5

On dit que la matrice &

21 31 '
2 3 ]

est mal conditionnée.
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Nombre de condition
Notation
Nombre de condition = cond( A )
cond(A)=ITAIIIA™I
A est bien conditionnée

&
cond( A)=1.

Exemple précédent
A 21 31
12 3
A 30 -31
=20 21
Calculer le nombre de condition

en utilisant les normes :
1y, I et 11l

Réponses : 317.2, 317.2 et 270.2

1ft2421 49

Remarques:
1. Le nombre de
condition dépend du
type de norme matricielle

qu'on utilise.

2. cond(A) = 1 toujours.
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Théoremes relatifs au conditionnement
Soit un systeme linéaire A x =b

Comment les erreurs sur A et/ou sur b
sont amplifiées pour x ?

nombre de conditionnement.

Soit un systeme lin€aire A x =b

Théoréeme no.1 :

X = approximation de x
po *
résidu r=b-AX

alors:
! M<‘x*_xu<c0nd(A)M
cond A B~ x| = 2l
Signification:

Si cond(A) est petit, r mesure bien la précision relative de x .
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Corollaire au théoreme 1 :

b = approximation de b
X =solutionde Ax =b

alors :
I Y DN
cond(A) ol = [l Il
Signification:

Le conditionnement amplifie I'effet des erreurs dans b.

Théoréme no.2:

A" = approximation de A
X =solutionde A" x =b

alors :

4"~ 4]

Al

X —Xx
- <cond(A)
'l

Signification:

Le conditionnement amplifie 1'effet des erreurs dans A.
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Démonstration théoreme 1 :

r=b-Ax =Ax-Ax =A(x-X )=Ae
donce=A"'r

Si nous considérons des normes compatibles, nous avons :

lell <A™ Nl

or,apartirder=A e, nous avons It I <Al llell

”r”| <lel<] A~ I

Al

En appliquant le méme raisonnement sur Ax=betx=A"b,

nous avons .
[
<[l <] A7 o]
Tl Ja7
=
1 1 ]A]

o]~ 1 = [lo]

L L
[alTa 5] = S

<|alfa™ H”r”H

N S N
cond(A) || =T |2
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Démonstration théoréeme 2 :

En utilisant Ax =bet A" x =b, nous pouvons écrire :
x=A'b=A"T (A" x) Al (A+A1:—A)x*
—[I+A (A A)]x
=x +AT(A"-A)X
x-x =AT(AT-A)X

Si nous considérons des normes compatibles, nous avons :

| - A - A
f-sllalla-a el A=A oy
et donc
Hx _XH <cond(A) H - AH
[ A
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Perturbation sur un systeme

soit le systeme
7 8 T||y 32
5 6 5||u 23
8 6 10 9||u| |33
59 10] |u, 31

10

Il a pour solution :

u, 1

u, 1

u, | |1
[uy | 1]

L’inverse de A est :

25 —41 10 -6
-41 68 —-17 10
10 —-17 5 -3
-6 10 -3 2

AT =

La norme infinie de A est: Il A ll. = 33
La norme infinie de A est: Il A IIl. = 136

Le conditionnement de A en norme infinie est

Cond (A ).. =33 x 136 = 4488
La matrice est donc trés mal conditionnée.
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S’il y a des erreurs sur b :

10 7 8 7| |y 321

75 6 5||u| |229
6 10 9| |uy| | 331
75 9 10| |u,| |309

Nous trouvons la solution :

u, 92
u, | |-126
uy, | 45
u, =11
3217 [32 01
229 |23 —01
I -l = 331|733l Tl oal] =™
309 [31]| ||l-o4]|
il N = 000303
lbl., 33 7
927 1 82
) —126| |1 ~136
=l = as| 711l Tl as|| T3
—11] 1| ~21]|
o~ 136 _ .
b, — 1 7
T Y S DN
cond(A) || Il = Il
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S’il y a des erreurs sur A :

10 7 81 72][u] [32
7 501 6 502 |u,| |23
8 6 10 9||u| |33
699 499 91 10| |u,| |31

Nous trouvons la solution :

u ] [-333
| | 802
u, | |-073
u, 2.09
100 7 81 727 [10 7
7 501 6 502| |7 5
a4l = 8 6 10 9| 6
699 499 91 10| |7 5
0 0 01 02
0 01 0 .02
- o o o ol 7%
-01 -01 01 0]
~333] [1 [~ 4233
802| |1 7.02
o . 073| " |1]| T =173
200] (1] | ro9f|_
T2 < 4882 = 408
802 ~ 33
" =4 Ja” -4
o Scond(A)
] Tl

56

=7.02
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Amélioration itérative.

Solution approchée x* = x
pour le probleme A x =b.
Cond(A) raisonnable.

3 étapes pour 1'améliorer:

1. calculerr=b - A X en double précision.

2.résoudre Ae=r

(rapide).

3.poserx =x +e.

Exemple :
Nous voulons résoudre
4 21| x 6
M MEH
par I’inverse, mais cet inverse
est entaché d’erreurs :

e 04 -25 e 375 -25
(A7) =1_2s5 55 Tl-25 5

Nous trouvons
AV h 1.15

¥ =AT)D=)0s
—-1.10 - 01775

r = e =
- 1.05 - 0.3025
Avec un raffinement itératif,

nous trouvons :

0.9725}

rEr e {0.9475

1ft2421

|

Remarques:

1. On peut effectuer plusieurs
¢tapes d'amélioration d'erreur.
dans l'exemple, un second
raffinement conduit a

1.005
o1t

2. Cette technique fonctionne
bien lorsque cond(A) n'est
pas trop grand
(voir Théoréme no.1)

3. L'amélioration itérative
est équivalente
a une méthode de point fixe.
Xn+l — G( Xn )
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Méthodes itératives

1.Jacobi :

Soit le systeme
8x;+ x, — x;,=8
2x,+ x,+9x, =12

X, —=Tx,+2x, =4

Nous pouvons réarranger le systeme :
x, =1.000-0.125x, +0.125x,

x, =0571+0.143x, + 0.286x,
x; =1333-0.222x, - 0.111x,

Estimations successives de la solution : (méthode de Jacobi)
1ére 2éme 3éme 4éme Séme 6éme 7éme 8éme
X1 0 1.000 1.095 0.995 0.993 1.002 1.001 1.000
X3 0 0571 1.095 1.026 0.990 0.998 1.001 1.000
X3 0 1.333 1.048 0.969 1.000 1.004 1.001 1.000

C’est la méme méthode que la méthode appliquée a une simple
équation mais appliquée a un ensemble d’équations.
Nous pouvons réécrire le systeme sous la forme :

Xn+1 — G(XH)Z b’_ B x n

Point fixe
O x™! et X" sont les "™ et (n+1)™ itérés du vecteur x.
G est une transformation linéaire plutdt qu’une fonction non
linéaire
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Considérons la notation matricielle du systeme

8 I —-1|]|x 8
Ax=bs|1 -7 2||x,|=|—-4
2 I 9|]|x 12

Posons A=L+D+ U

0 0O &8 0 0 0 1 -1
L={1 0 O0,D=|0 -7 OL,U=|0 0O 2
2 10 0O 09 00 O

Ax=(L+D+U)x=b
=
Dx=-(L+U)x+b
x=-D'(L+U)x+D"'b
x'=_D'(L+U)x"+D'b
Xn+1=G(Xn)

Exemple (suite)

1.000 0 124 -125
b’=D"'b=|0571|, B=D'(L+U)=|-.143 0 -286
1.333 222 111 0
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La Méthode que nous venons de décrire est la méthode de
Jacobi, ou méthode des déplacements simultanés.

Algorithme de la méthode de Jacobi

Pour résoudre un systeme linéaire de N équations, réarranger les
lignes pour que chaque élément de la diagonale soit le plus
grand des éléments de sa \igme
Soit A x = b ce réarrangement.

En partant d’une solution initiale xD, chaque élément du vecteur

x™1 est donné par :
b. N oq.
x = Z—Uxﬁ.") n=12,...
a; =14

J#l

Une condition suffisante de convergence est

)

Si cette condition est vérifiée, alors x™ va converger vers la
)

solution quelque soit le vecteur initial x*.
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2.Gauss-Seidel :

Ax=(L+D+U)x=b

(L+D)x=-Ux+b

Nous avons le processus itératif :

X" =_D'Lx™"-D'Ux"+D"b

Estimations successives de la solution :
(méthode de Gauss-Seidel)

1iére zéme 3éme 4éme Séme 6éme
X1 0 1.000 1.041 0997 1.001 1.000
X3 0 0.714 1.014 0996 1.000 1.000
X3 0 1.032 0990 1.002 1.000 1.000
Exemple :
£ = 1000 —0.125x" +0.125x"
X0 = 0571+0.143x"" +0.286x."

A" =1333-0222x") — 01 11x{""

en commencant avec X; = (O,O,O)T.
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Algorithme de la méthode de Gauss-Seidel

Pour résoudre un systeme linéaire de N équations, réarranger les
lignes pour que chaque élément de la diagonale soit le plus
grand des éléments de sa \igme,
Soit A x = b ce réarrangement.

En partant d’une solution initiale x'", chaque élément du vecteur
x™*1 est donné par :

b i—la N a

NETSSL A SRV e N

Qi =1 Gy j=it1 A

12

Une condition suffisante de convergence est

N
‘%‘ > Z
j=1

J#l

i=12,...,N

a i

)

Si cette condition est vérifiée, alors x™ va converger vers la
)

solution quelque soit le vecteur initial x™.
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2.Relaxation :

W i-1 N

(n+l) _ (m), " (n+1) (n) _

X" =x+ (bi—E a;x; —E a;x;") n=12,...
ajj j=1 j=i

La convergence ne se produit habituellement que pour O<w<2.
Note :
Siw < 1, on parle de sousrelaxation.

Siw =1, c’est la méthode de Gauss Seidel.
Si w > 1, on parle de surrelaxation.

Exemple :
Etude de la convergence pour différentes valeurs de w avec le
systeme :
-4 1 1 1 1
1 -4 1 1 1
11 -4 1T
1 1 1 -4 1

La solutionestx =( -1, -1, -1, —l)T.
x" =(0,0,0,0)".

w 10 1.1 12 13 14 15 16 17 18 19
nb 25 18 13 11 14 18 24 35 55 100

nb le nombre d’itérations pour avoir une erreur inférieure 4 107
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Résolution des systemes
d’équations
non linéaires




Exemple de systeme non linéaire

(-1.8,0.8) 1

X"+y =4

e +y=1

(1,-1.7)

Méthodes de résolution:
1. Point fixe (a plusieurs variables)

X(n+1) =G ( X(n) )
avec G: R" - R"

2. Newton (a plusieurs variables)
a. x"V =x" - [P (x™) TTF (x™)
avec F: R" - R"

b. Différence finie pour approcher
la différentielle (type sécante).
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Méthode du point fixe a plusieurs variables
Exemple :
1. Prendre un réarrangement du systeme
{xz +y2 =4 :{x} :|:_W]:|:Gl(x,y)}
e +y=1 Yy l-e* G, (x,y)
2.Convergence si :

0G| |06, 0G| |06,
x‘<1 et‘ay‘+‘ay‘<1

3.Algorithme : x© donné et itérations

Avec x© = (-2, )T, nous avons :

x!) = (-1.73205, 0.86447)",
x® = (-1.80343, 0.82308)",
x® = (-1.82278, 0.83527)",
x® = (-1.81723, 0.83843)",
x® = (-1.81578, 0.83753)",
x© = (-1.81619, 0.83729)",
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Méthode de Newton a plusieurs variables
1.LF(x) =0

Prendre un réarrangement du systéme
xP+yt=4 x*+y?-4=0
=

e"+y=1 e'+y—-1=0
2.Calcul de
0F OJF
, dx W _{—ZX —Zy}
T|0F, OF, | |-t -1
0 x W

3. Algorithme : X donné et itérations

LD —[F’(x("))]_lF(x(”))

’ -1 . N z
Note : L’opération [F (X("))] F(x™) consiste a résoudre un
systeme linéaire 2x2 a chaque itération. (coliteux)

Avec x? = (-2, DT, nous avons :
-1 4 -2
F(x©) = fF(x©) =
=) {—0.1353}6 = o133 -1

01708 ~18292
RN )y _ M _
[Fa) Fo )_{0.1584}6“6 {0.8416}
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b. Méthode de différences finies pour évaluer la différentielle
1. 11 faut choisir un petit parametre delta de perturbation.

2. Les dérivées partielles sont approchées par

G, 1

o 6—[G<x+8”y> G, (x,)]
et

G, 1

e 5—[G<x y+8,)-G(x.y)]

3. Les itérés se font comme dans la méthode de Newton
a plusieurs variables.

Note :

Parfois, la matrice inverse des dérivées partielles n’est pas
évaluée a chaque itération ; mais plutot a toutes les n itérations.
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