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Interpolation
polynomiale:
Collocation



Introduction
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Lancement d'une fusée.
Déterminer latrajectoire avec précision.

La position n'est alors connue qu'en fonction d'un certain
nombre de points d'abscisses fixes.

L e probleme consiste a évaluer cette fonction
ailleurs qu'aux points donnes.

Interpolation

Extrapolation
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Position

—~

AT |
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Linéarisation par morceaux
Droite entre deux points

consécutifs.

Méthode en genéral
Imprécise.
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Méthode de collocation

Trouver un polynéme
qui passe par tous les points donnés.

Avec (Xo,fo), (X1,f1), (X2,f2), ..., (Xnfn) € X T X

Il'y an+1 conditions.

Trouver le polyndéme P,(x) tel que
Pu(xi)) =fipouri=0,1,..,n

A
=
=
S
=y
AT .
7 0.1s Temps
Exemple: Remarque :
2 points® droitey =ax+b Quelque soit laméthode, le
(polynéme de degré 1) polynéme de collocation sera

toujours le méme.

3 points® parabole
y = ax® + bx +c
(polynéme de degré 2)

1ft2421 4

Chapitre 4



Recherche de P,(x) : premiere approche

Pn(X) est donne par :

PiX)=a+aX+axi+..+a,x"

L e polynéme de collocation vérifie les n+1 conditions :

Pn(xi) =f; pouri=0,1,..n.

Les n+1 coefficients ay, &, ..., &, sont donnés
par larésolution du systeme
de n+1 équations et n+1 inconnues :

Pi(Xo) = @+ 31 X0 + @ Xo~ + ... + & Xo"
PaiX1) =@g+ & Xg + @ X° + ... + 8y X"

Pu(Xn) = @ + 81 Xn + 8 Xp° + ... + 80 X"

Remarque :

Cette approche n’ est pas un moyen pratique de calculer P,(x).

1ft2421
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Unicité du polynome de collocation

théoreme:

Le polyndme de collocation de degré n
qui satisfait lesn+1 conditions
Po(X)=fi pouri=0,1,..,n

est unique.

1ft2421

Preuve;

Supposons |'existence de deux polyndmes de collocation
P, et Qn qui satisfont les n+1 conditions
Pn(xi) =f; pouri=0,1,...,n.
Qn(xi) =f; pouri=0,1,..,n.

D(X) = Pn(X) - Qn(X)
est au plus de degrén.

D(Xi) = Pn(Xi) - Qn(xi) = fi - fi =0
donc possede au moinsn+lracines:i=0,1, ..., n.
Or un polyndme de degré n ne peut pas posséder
plus de n racines.

Laseule possibilité D = 0.
Donc P, = Q,
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Existence du polyndme de collocation
1.Caslinéaire(n=1)

Avec Py(Xo,fo) et P1(X31,f1), 2 conditions

Cherchons Py(X) = a + a1 X

conditions de collocation:

Pi(Xo) = &+ a1 X0 =fg
Pi(X1) =@+ & X1 =11

Solution sous laforme

b= X))

(Xo' Xl) ° (Xl' Xo)

P polynbme de Lagrange de degré 1.

Note: det(A) = (X1-Xo) * 08 X3t Xo
éL x,u é,u éf,u P A réguliere
~ I)% /: é 7 . .
SL XlH éalﬂ éflﬂ P Solution ay, a; unique

P Pi(X) unique
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Exemple:

Trouver le polyndme de collocation
passant par les deux points

Xj:1.0 4.0
fi : 2.0 0.5

_(x-4) (x-1)
P.(X) ——(1_ 2 2.O+—(4_ ) 05

x1

X2

Chapitre 4



Existence du polyndme de collocation
2.Cas parabolique{ n=2}
Avec (Xo,fo), (X1,f1) et (Xo,f2).

3 conditions

Pa(Xo) = 3 + & XO"'aZXOz:fO
Pz(xl):ao+a1x1+azx12:f1
Po(X2) =@+ Xo+ @ X" =1,

Pour avoir une solution unique;
€ x, X’Uéa,u éfl

é aé’u é.°q

d X X %= afig

& x, x;H&,H E&f.H

& x, XU e x X, U

2 >U e , U
det(A) =detgl x, X g=detdd X,- X, X{- X5y

8]- X, X22H g) 0 X22'X§H

det(A) = (X, - Xo)(xz2 - XS) - (X, - Xo)(x12 - XS)
= (Xg = X)(Xz = Xo)(X5 +Xg) = (X5 = Xo)(Xg = Xo)(X; +X,)
= (Xg = Xo)(X5 = Xo)[ X5 + %o = X - X,]

= (X3 = Xg) (X5 = Xo)(X5 = Xy)
det(A)® Osix;?
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Solution sous laforme

(X- x)(X- X;)
(Xo' Xl)(xo' Xz) °
+ (X' Xo)(x' Xz)
(Xl' Xo)(xl' Xz) '
(X x)(x- %)
(Xz B Xo)(xz B Xl) ’

P,(x) =

P polynbme de Lagrange de degré 2.

Exercice: °
Interpoler F(1.7) dans latable Pa( x)
X F(x) * P
0 1
3
1 1
2 2 )
1. Interpolation linéaire AN
P1(X) =X
P1(1.7) = 1.7 . - - - .

2. Interpolation quadratique
Py(X) = %2 (X - X +2)
P,(1.7) = 1.595
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Formulation générale de la méthode de Lagrange

Soient les conditions de collocation:

Définissons e polyndme

pi(X)=_C£)(x- X;)  pour i=0]1,...,n

jri

alors le polyndme P,(x) défini par

P (1),
P = %p(x)

satisfait les conditions de collocation.

1ft2421 11
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Exercice (suite):
Nous g outons un point

P3( x)

X F(x) P2(x)
0 1 4 P1(x)
1 1 ;
2 2
3 5 2
3.Interpolation cubique AN

P00 =5 (X~ x+6

P5(1.7) = 1.5355

| nconvénients de méthode
de Lagrange

1.) il y abeaucoup d'opérations afaire
pour calculer le polynbéme de
collocation.

2.) 11 faut recommencer tout les calculs
Si Nous gjoutons un point.
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Formule d’erreur du polynome de collocation

Théoreme:

Fonction d'erreur E:
E(X) = f(x) - Pn(X)

aorsil existe x dans| = [Xq, Xp] tel que

T (x- x)

S0 ey

Preuve:
A
W(t) = f(t)- P, (1)- g(X)_sz(t- X;)

Cette fonction possede n+2 zé&ros{ X, Xo, X1 ... , Xn }
dans | = [Xg, Xy];

W'(t) possede n+1 zéros
W"(t) possede n zéros

W™D(t) posséde 1 zéro (noté x)

S nous calculons les dérivées successives, nous trouvons:
WD) = f™D(t) - 0 - (n+1)! g(x)

(n+1)
_ )
doncil existe x dans| = [xo, x] tel que  9(X) = (n+1)!

1ft2421 13 Chapitre 4




Calcul pratique de I'erreur

Remarque: X = x(X) dans:

TG (- x,)

=00 =y 9

1. Si f(Xx) est connue::
nous trouvons des bornes inférieures et supérieures
pour I'erreur E(X).

2. S f(x) est inconnue :
NOUS Ne pouvons pas estimer directement I'erreur
par laformule ci-dessus.

Remarques::

1. Lorsque lafonction tend vers une fonction polynomiale,
I”erreur tend vers 0.

2. Lorsgue nous extrapolons la valeur de lafonction en un point

Xe, I €rreur sur Py( Xe ) est grande en utilisant un polynéme de
collocation.

A
X, | [xo,xn] donc O (x, - x;) est grand
i=0

3. L'erreur est nulle pour les points de collocation.

1ft2421 14 Chapitre 4




Exemple: y = sinus(x)

Avec latable ) P
X Y
0.1 0.09983
0.5 0.47943 sin(x)
0.9 0.78333
1.3 0.96356
1.7 0.99166 05 05 1 15 2 25 3

Estimer | erreur d’ interpolation commise en x=0.8 en utilisant le
polyndéme de collocation P,(x) construit a partir des 3 premiers
points.

P,(x) = -0.00689813 + 1.09094 x - 0.236563 x*

P,(0.8) = 0.714452, or sin(0.8) = 0.717356

En dérivant, nous avonsy’ = cos(x), y’’ =- sin(x)
ety’’ =-cos(x)
Laformule d’ erreur E(X) devient :

E(x) =- C;S(X) (x- 01)(x - 05)(x- 09)

x =0.8 et xi [0.1, 0.9]
donc nous avons

0.218 £ E(0.8) £ 0.00348
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Cas ou | es abscisses sont equidistantes

Xi+1 - Xj = h

Définition :
Différences descendantes

Dofi — fi
D'f; = fisy - i
szi — lei+1 - D1f|

Dn+1fi - D(an|) - ani+1 - ani

Remarque :
L’ ordre le plus éleve d’' un tableau de n+1 valeurs est n.

Exemple latable des différences de f(x) = Sin(x)

X f(x)=Df Df D*f D’ D'f

0.1 0.09983

0.37960
0.5 0.47943 -0.07570
0.30390 -0.04797
0.9 0.78333 -0.12367 0.01951
0.18023 -0.02846
1.3 0.96356 -0.15213
0.02810

1.7 0.99166
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Formule de Newton Gregory descendante
(cas ou | es abscisses sont equidistantes)

Soit (x,yi)) 1 =0, ... ,ntelsquexj+1 - x;=hpouri =0, ..., n-1.
Alors
D f

2'h

P00 = Ty + 2 (- )+ 2 2 (X X)(K- %)

D'f,
n'h" (X_ XO)K (X_ Xn-l)

+K +

AN

h h h h h h
f KEI E:L KE K3 * Xr.
Xi=Xo+1h
Or nous pouvons définir spar : X =Xg+ sh
X-Xi=(s-1)h
donc
d e f, k0
P =fo+ad ¢ O (s- )=
=o€ k! j=0 7]
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_ Df, Df,
P,(x)=1f,+ i S+ o s(s- 1)

P, (x) =0.09983+ 0.37960 s

- 007570
+ o s(s- 1

avecs=(x-0.1)/(0.4)

Pour x = 0.8, nous avons
s=7/4

Donc P,(0.8) = 0.71445

Notation :

s(s- D(s- 2)K (s- k+1

X f)=Df Df D’

0.1  0.09983
0.37960

0.5  0.47943 -0.07570
0.30390

0.9 0.78333 -0.12367
0.18023

1.3 0.96356 -0.15213
0.02810

1.7  0.99166

Calculer SIn(0.8)
avec Xo = 0.1 et un polynéme
de degré 2.
B0 _
kg

1ft2421

’¢

Le polyndme de collocation est donc

I:)n (X) - yo + £9DYO
&1

82;5

DZYo 8 DBYO"'K +8nﬂquo
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Remarques::

1.LespointsXg, X1, X2, ..., X, doivent étre ordonnes.
Xo<X1<Xo<..<Xp
pour que laformule xj = Xp + 1 h soit valide.

2.5 nous gjoutons un nouveau point (Xn+1, Yn+1), il doit étre a
droite de X, Xn+1 = Xn + N

3.Le polynéme de collocation de degré n est :

P(x)=f,+ .DI‘ +a§o D f,+ +a§9D“f
(X) Qg0 " &g : &g

Le polyndme Pn.1(X) qui passe par les points précédents et le
nouveau point est donné par :

— £O £O £9 e S 9 +1
Pl = fo gDl + g lD fosk +g LD o v g L 5P

donc

a0 =R )+ L D™,
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Exemple : Sin(x) (suite)

Nous voulons calculer le polyndéme de degré 3 qui passe par les
4 premiers points.

X f(x)=Df Df D4 D¥f Df
0.1  0.09983
0.37960
05  0.47943 -0.07570
0.30390 -0.04797
09  0.78333 -0.12367 0.01951
0.18023 -0.02846
13 096356 -0.15213
0.02810
17  0.99166

L e polynéme de collocation de degré 2 qui passe par les 3
premiers points est :

- 007570
P, () = 009983+0.37960 s+ —— —— (s - 1)

avecs= 25x-0.25

- 004797
3!

Py(x) = R, (x) + s(s- 1)(s- 2)

0.8 Si n(x)

0.4 P3(x)

-0.5 0.5 1 1.5 2 2.5 3
-Qf2
-0.4

P3(X) = - 0.00127664 + 1.01723 x - 0.0491797 x* - 0.124922 x*
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Erreur dans le cas de la formule de Newton Gregory

f(x)=P,()+EM) =&
|

Remarques::

1. Leterme d erreur E(x) est de I’ ordre O(h™?).

2. S f(X) est connue : nous trouvons des bornes inférieures et
supérieures pour |'erreur E(X).

_&S 0 n+l ¢ (n+l)
E() =g, 2™ " (x)

3. S f(X) est inconnue : Nous pouvons avoir une estimation de
I'erreur o’ interpolation par laformule:

E(x) = gn o5 —D”l
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Exemple:

L’ approximation de I’ erreur sur Sin(0.8) avec le polyndme
guadratique avec xo = 0.1.

X f(x)=Df Df D4 D¥f Df
0.1  0.09983
0.37960
05  0.47943 -0.07570
0.30390 -0.04797
09  0.78333 -0.12367 0.01951
0.18023 -0.02846
13 096356 -0.15213
0.02810
17  0.99166

1. Nous ne connaissons pas la fonction f(x)
Une approximation de I’ erreur est donnée par :

E,(X) = gig[ffo =

1ft2421

s(s- D(s- 2)

- (- 0.04797)

§s=2508-025=1.75

E»(0.8) = 0.002623

Remarque :

22

Sin(0.8) - P5(0.8) = 0.00290422
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2. Nous connaissons lafonction f(x) = Sin(x)
L’ erreur est donnée par :

_£O 3¢£3
Ez(x)—g35h F°(X) avec 0.1EXE0.9

f3(x) = - Cos(X)
a80
E,(08) =- &%h Cos(x)

0.62161= Cos(0.9) £ Cos(x ) £ Cos(01) = 0.995004
04°*062161 £ h®Cos(x) £ 0.4%*0.995004

- 04°*%0.621613 - h®Cos(x) 3 - 0.4°*0.995004

orx=0.8doncs=(0.8-0.1)/0.4

80 1 17316 7
S 63 V- 2=4428 457 1o

L 047*062161£ - S2h?Cos(x) £ ——04+0.995004
128 " &35 128 "

0.00217564 £ E, (0.8) £ 0.00348251
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Avantages de la formules de Newton Gregory

1. Passage facile d’ un polynéme de degré n an+1.

b+ &S Oy
Pua(0 = P00 +g | =D,

2. Lamultiplication imbriguée minimise le nombre des
opérations.

- 007570
P, (x) =0.09983+ 0.37960 s + o s(s- 1)

0.07570 ;
5 (s- 1)9

= 009983+ s @.37960-
(4]

3. Approximation ssimple de |’ erreur commise.

Inconvénients

Intervalles égaux et points ordonnés
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Différences divisées
Dé&finitions :

Soit (xj,y) 1=0,1,...,n
avec desintervallesirreguliers:

Les premieres différences divisées sont :

D[xi,xj]:u oUOEIL JENI? |
X X

L es différences divisées du deuxiéme ordre sont :

e

ieme

55,

Récursivement, les différences divisées du n©™ ordre sont
]_ D"l[xl,xz,K ,xn]- D"l[xo,xl,K ,xn_l]

D”[x X, KX
0 1 Xn_ Xo

Nous avons donc une table des différences divisées.

Exemple:

Xo Yo

D[Xo,X]_]
X1 V1 D[ Xo,X1,X2]

D[X1,X2] D[ X0,X1,X2,X3]
X2 Y2 D[X1,X2,X3]

D[X2,X3]
X3 Y3
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Formule de Newton pour les différences divisées
(cas ou | es abscisses sont quelconques)

Soit (x,yi) 1 =0, ... ,n
Alors

P(x)=f, +D[X0’X1](X' Xo) + K
+D”[xo,x1,K ,xn](x- Xo)K (X - X,.1)

véerifie les n+1 conditions de collocations.
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Exemple:
Calculons le Polyndme de degré 3 passant par :

Xo=0 y():l
0
X1=1 Y1= 1 1/2
1 -1/12
Xo=2 y2:2 1/6
3/2
X3=4 y3:5

P3(X) :ao+a1(x' Xo)+a2(x' Xo)(x' x1)+a3(x- Xo)(x' Xl)(x' Xz)

1 1
P, (X) :1+O+§(x- 0)(x-1)- E(x- 0)(x- D(x- 2)

1
P,(X) :E(- x® +9x° - 8x +12)

6

5

4

3 P3(x)
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Calculons le PolynGme de degré 4 passant par les 4 points
précedentset (x4 =3,¥4=5) :

P,(X) =a, +a,(X- Xp)+a,(X- %) (X- X)) +ag(X- Xo) (X X)(X- X;)

+a4(x- Xo) (X' Xl)(x' Xz)(x' X3)

P,(X) = Py (X) +a, (X~ Xp) (X= X )(X- X,)(X- X3)

donc
P00 = Py()- 3 X(x- D(x- 2)(x- 4
1, 5, 11, 4

P(X)=-—-x*+=x%- =x*+—x+1
2 (%) 4 3 4 3
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Instabilité des polyndémes d’interpolation d’ordre éleve

Considérons la fonction définie par :

f(x) =0 12EXE-02
f(x)=1-|5x| -02£X£0.2
f(x)=0 0.2£XE£10
1.5
1
0J5}
1 0.5 0.5 1
-0.5¢L
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.5¢
Pa(X)
5_
0.
.5}
-1l
30
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1.5¢

P
0/5 6(X)
1 05 O.I5
-0.5¢
-1t

Pg (X)
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Conclusion sur les polyndme de collocation

1. Degré assez grand mais pas trop.

2. Intervalle centré autour du point d’ interpolation.

3. Il vaut mieux utiliser des polyndémes de collocation de degré
moins grand sur différents sous intervalles.

1.5
Exemple:
f(x) est 51
interpolée par 3
polynémes de
degre 2. -‘1 T o‘. 5 | | o.‘5 ) 1

-0.5

-1t
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Interpolation par les splines cubiques

Définition :
Spline

Ruban flexible passant par les points (noeuds)
Généralisation mathématique
(Schoenberg, 1946)
Approximation par morceaux telle que:

1. Chague courbe passe par les extrémités de chague sous
intervalle.

2. Leraccord entre ces courbes est le plus doux possible.

Exemple:
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Spline cubique

permet un raccord 2 fois difféerentiable :

Continuitédef, f' et f'’.

Exemple:
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Interpolation par les splines cubiques

- - -
o - - -
L e e e o o -

\
! N ; e, :
l *
: i | N\
s % | n
g | 1 33{ 3“': ¥ Bl 'ﬂ“": ‘.’Sv\.:'\
Vohe h'l : L\'} l| ~hc-| h;‘ "lc‘ﬂ i hn-| N
X, L I3 IL . b o x"“ xn__‘- xﬂ'\ LTn

Ql(x) :al(x' X1)3+b1(X- X1)2 +C1(X' X1)+d1
Q,(X) =a,(x- X2)3+b2(X- X2)2 +C,(X- X,) +d,

Qi (x) =a;(x- Xi)3+bi.(.).(_ Xi)2 +¢(X- X;) +d,

Qn-l(x) :an-l(x_ Xn-1)3+bn-1(x_ Xn-l)2 +Cn-1(x_ Xn-1)+dn-1

Trouver g, b;, ¢, dipouri =1,2, ..., n-1,
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Condition 1 : Continuité des fonctions.
Y1 = Qu(x,)
y2 = Ql(XZ) = QZ(XZ)
Yi = QIl(XI) = Qi (%)
yn-l = Qn—Z(Xn.—lll) - Qn—l(xn—l)
yn = Qn—l(xn)

Condition 2 : Continuité des dérivées premieres.
Qfkx,)
Qkx,) = QMx,)
Qe (x) = Qgx,)
Qn¢2 (Xn- 1) : an—:l(xn— 1)
an:l(xn)

Condition 3 : Continuité des dérivées secondes.
Q®x,) =S,
Qx,) = Qx,) =S,
Q® (%) :“(.?i@xi) =3,

Q®,(X,.1) = Qnm;l(xnl) =S,
Q8 (X,) =S,

1ft2421 36
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Condition 3 : Continuité des dérivées secondes.

a.i1=1

S, = Qx,)

Ql(x) = al(x - X1)3 +b1(X - X1)2 + Cl(x - Xl) + dl

qu;x) = 6a1(x - Xl) + 2b1

\ S, =2b,

S1

\ b ) pour i =1 (1)
b.1=2,..,n-1

S; = Qi (x) = Q)

Qi (x) =a;(x- Xi)3+bi(x' Xi)2 +¢(X- %) +d,

Q®¥x) =6a,(x- x;) +2b,

\ S =Qdx)=2h
Si
\ b ) pouri =2, ...,n-1 (2)

En combinant (1) et (2), nous obtenons :
Si
\ b ) pouri=1,..,n1 (3)

Siontrouve S, S, ..., S..1, housaurons by, b, ..., by
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Qi—l(x) = ai—l(x - Xi-1)3 +bi_1(X - Xi-1)2 +Ci_1(X - Xi-1) +di—1
Q& (x) =6a; ,(x- %) +20,_,

S; = Qi (x;) = Qdx;)

S, =63, ,h,+20, or 2b,=S,

—

%17 " 6n pouri =2, ..., n-1 (4)
\ S5, K,S,. P a,a, K ,a ,
c.1=n
Qn-l(x) - an-l(x_ Xn-l)3 +bn-1(x - Xn-l)2 +Cn-1(x - Xn-l) +dn-1

an—;[(x) = 6an—1(x - Xn—l) + 2bn—1
Sn = 6an— 1hn—1 + 2bn—1 = 6an—1hn—1 + Sn—l

\ &1 T e pour i =n (5)

En combinant (4) et (5), nous obtenons :

a . = Si - Si—l _
17 "en pouri=2,..,n-1,n (6)
ou alors
2. = Si+1' Si ]
i 6h pouri=1,2, ..,n1 (7)

\ S5, K LS, P oag,a, LK oLa, g
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Condition 1 : Continuité des fonctions.

a. =1

y: = Qu(xy)

Ql(x) = al(x' X1)3 +b1(X - X1)2 +C1(X' Xl) +d1

\ d, =y, pour i =1 (8)
b.i=2,..,n-1

Y =Q1(%) = Qi (%)

Qi (x) =a;(x- Xi)3+bi(x' Xi)2 +¢(X- X;) +d,
\ d; =y, pouri =2, ...,n-1 (9)

En combinant (8) et (9), nous obtenons :
\ d; =Yy, pouri=1,2, ..,n1 (10)

\ Vi, YoK Y, P odyydyKoLd
de méme:

Q.1(X) =ay (X~ Xi.1)® +b (X~ X.1)® +C (X- X;.;) +di

\ ¥V = ai-lhi:i)l +bi-1hi2-1 +¢,h, +di
pouri=2,..,n1 (11)
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c.i=n
yn :Qn—l(xn)

Qn-l(x) :an-l(x_ Xn-1)3+bn-1(x_ Xn-l)2 +Cn-1(x_ Xn-1)+dn-1

\ yn = an-lhr?-l + bn-lhr12-1 + Cn-lhn-l + dn—l (12)

En combinant (11) et (12), nous obtenons :
\ Y, =a.,he, +bh? e h +di pouri=2,..,n (13)

ou bien
\ Via =&l +bh7 +ch +d, pouri=1,..,n-1 (14)

dans (14) substituons &, b; d; par (3), (7), (10) et isolons C;:

_Yia- ¥ 2hS +hS,,
G=T 6 pouri=1,..,n1 (15)

\ S5, K LS, P oc,C, K LC
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Condition 2 : Continuité des dérivées premieres.
Il nerestedonc qu'atrouver S, S,, ..., S,
a.l=1
Qfkx,) (=yg notation)

Ql(x) = al(x' X1)3 +b1(X - X1)2 +C1(X' Xl) +d1
qu(X) = 33-1()(' X1)2 +2b1(X- Xl)l +Cp

\ yf=¢ pour i =1 (16)

b.i1=2,..,n-1

ye=Qg, (%) = Q&kx;)
Q&x) = 3a; (X - Xi)2 +2, (x - Xi)l * G

\ y&=¢ pouri=2,..,n-1 (17)
En combinant (16) et (17), nous obtenons :

\ y&=¢ pouri=1,..,n-1 (18)

\ S5, K L,S, P oc,C K L C P YEYEK LYE,

deméme: Q¢ (X) =3a, ,(X- X;.1)* +2b 1 (X~ X;;) +¢

\ in{X) = 3ai—1hi%1 +2bi—1hi2—1 +C.ypouri=2,..,n1 (19)
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c.l=n

y$=Q¢,(x,)

Q. .(X)=a_,(x-x_)°+b _(x-x _)*+c _,(x-x_,)+d .

Q¢.(x)=3a,_,(x- X, )*+2b (X- X _,)+C_ ,

Q¢.(x) =3a,;hy, +2b, h _,+c, pouri=n (20)
En combinant (19) et (20), nous obtenons :

y&x) = 3ai-1hi2—1 +2b .h, +C, pouri=2,..,n (21

En égalant (18) et (21) pour le domaine communi = 2, ..., n-1,
nous obtenons:

¢, =3a.,h’, +2b_h  +c., pouri=2, .., n1 (22)
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Dans (22), utilisons les formules (3), (7) et (15):

\ b =7 pour i =1, ..., n-1 (3)
_ Si+1 B Si
a =" eh pouri=1,2, ..,n1 (7)

iYi+l

i h 6 pouri=1,..,n1 (15

_Yiua- ¥ 2hS +hS

pour i =2, ..., n-1, nous obtenons:

Yiu - ¥i  2hS; +hSi, Si - Sii1y,.2
- = 3(——1)h.
hi 6 3( 6hi_1 ) i-1
S.
22
4 Yi - Vi
hi—1
20.1Si S
6
éy -y v -y U
\ MaSia (20, +20)S +hi8i+1=6ey'“h . y'h e
e i i-1 U
Pouri =2, ...,n-1donc (n-2) équationsaninconnues s, ..., S,
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Nous avons un systeme de (n-2) equations
aninconnues S, ..., S, arésoudre.

ey. - -y.u
i=2 hS, +2(h +h,)S, +hS, - 6€}y3h Y, ) Y2h yll;l
e 2 1 U
ey, - u
i=3 h,S, +2(h, +h,)S, +hS, - 6§y4h Ys _ Ye,h yzg
e 3 2 U
ey. - u
1=4 h,S; +2(h, +h,)S, +h,S; :6ey5h Ya Y4h YSQ
e 4 3 U
Gy - ] J
i = n } 1 hn— zsn-z +2(hn-2 +hn—1)Sn-1+hn—1Sn = 6éyn yn_l - yn_l yn—le
é hn—l hn-2 0

Nous reduisons ce systeme a (n-2) inconnues en imposant des valeurs
(Conditions frontieres) pour S, et S, aux extrémités de l'intervalle;

X X uésS, u éz, u

Ué« U é_ U
& X X 0 GeSsg ebyg
e X X X ues,u ez, u
é uaé a é& U
a X X X l:lxéMl]:éMl]
é O O O uUgé yu ému
é uaé ua é& U
é 0 O O uée Mg e My
€ 0 x x x40 %,
€ ue  ~u e “u
8 X X 65,..0 éz..0

p S,,S,K,S, P a,b,c.,d b Q(x)
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L es coefficients de chague polynome de degré 3

Ql(x) :al(x' X1)3+b1(X- X1)2 +C1(X' X1)+d1
Q,(X) =a,(x- X2)3+b2(X- X2)2 +Cy(X- X,) +d,

Qi (x) =a;(x- Xi)3+bi.(.).(_ Xi)2 +¢(X- X)) +d,

Qn-l(x) :an-l(x_ Xn-1)3+bn-1(x_ Xn-l)2 +Cn-1(x_ Xn-1)+dn-1

sont donneés par :

(8- 8)
5T flshi
S,
b, =
C = Yin = ¥i (Zsi +Si+1)hi
" h 6
d =y,
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Splines cubiques : Conditions frontieres

1. Extrémités libres (free boundary conditions) Type l

Dans les splines dites Naturelles (natural spline), nous aoutons

les 2 équations :
8120
Sn=0

La spline aun comportement parabolique linéaire aux bouts.
(prés de extrémités)

La premiere équation devient :

ey, - -y, u
2n, +h,)S, +h,s, =6g Y2 I
e 2 1 U

Laderniere équation devient :

€Y, - -y ,U
hn_ZSn_z + 2(hn-2 + hn—l)Sn_l — 6éyn - Yn-1 _ ynlh Y2
e n-1

HCTN

n-2

1ft2421
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Exemple:

Faire passer une spline cubique naturelle par les points suivants :

i 1 2 3 4
i 1 2 3 4
f(x) 4 -2 1

Splinenaturelle: S, =0et 4, =0

] o 362)/3 Y2_ Yo - Y13u
?2(h1+h2) h, u ?Szl}_ ) h, h, ug
& h 2 +h)IESh €y, v Y-y,

eg h, h,

¢ 1065,0_&(3+2)- (-2- 40
& 4 el gd1-3- (3+2) g

Nous avons donc la solution ;

$1=0,$5=204,5=-156et$,=0
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al = 6h1 1b1 231 Qu(x)
o =Yoo Vi (25, +5,)n,

1 hl 6 y :

d, =y,

a, =34,b,=0,c,=-94,d, =4 .

Q,(x) =34(x- 1°- 94(x- 1) , \./

+4
a_(S?»'Sz)b_i °
? 6h, "2 2 4
C. = Y3- Y5 ) (252 +83)h2
2 h, 6 )
d, =y,
a, =- 6,b2 =10.2,c, =08, 0 - 2 3 4
d,=-2 2
Q,(X) =-6(x- 2)° +102(x - 2)° Q%)
+08(x- 2)- 2
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— =3
= "6n, BT o
o =Ya Vs (25, +3,)n,
= h, 6
d; =y,

a,=26,0,=-78,c,=32,d,=3

Q,(X) = 2.6(x - 3)%- 78(x- 3)?

Q(x)

+32(x- 3 +3
6r
Q(x)
41
21
1 V 3 4 \
21
Q(x)
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2. nous gjoutons les 2 conditions : Type 2
Sl — Sz
Sn=Sna

La spline a un comportement parabolique aux bouts.
(pres des extrémités)

La premiere équation devient :

ey, - -y, u
(3h1+2h2)52 +h253 :6_éy3 Y> ) Y- Y, U

U
ehz h1 u

Laderniere équation devient :

c

ey - _ N
N, oSno + (2, + 3, )8, , =6g et Tt ez

é hn—l hn—2

o

Exemple (suite)
Utilisons des conditions frontieres de type 2.

$=5=155
S$=5=-115

1ft2421 50 Chapitre 4




3. nous goutons les 2 conditions : Type 3

S; = Extrapolation linéaire de S; et S3
Sh = Extrapolation linéaire de S, et S.;

wn
N
W
|
|
l
}
L.V
R
w»n
r=
| )
|
|
I
N
=

Sl/ — -7 : : : ' =~ -~ \Sn

oo A

; hl : h2 ' ' hn—Z : hn-1 : -

Xl XZ X3 X2 Xp-1 X,
SB_ S2 _ S2 - Sl Sn—2 - Sn—l Sn—l_ Sn

h2 - h1 hn—2 B hn—l
aeh +h,0 h, g 5 = h, . 5 +aehn_2 +hn_1c_>S
g h ﬂ h2 3 n hn_2 n-2 g hn_2 ﬂ n-1

La premiere équation devient :
§h1+h2)(h1+2h2)9+8 (-0 _ eve- v, yo- wi

S, = 65

hz B ’ hz eh - h1 H

Laderniere équation devient :

hnz_ -hnz_ h.,+h _,)h _,+2h =Y PR
n_z( 2h_2 1)+5n-1a{ 1 221(-2 1 2);+ 623’ ~ Yor Y 1h 2y 2%

n n n-

S

Exemple (suite) : S, =29, S, = 11, S;=-7, Sy = -25
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4. nous imposons des valeurs aux pentes des extrémités Type 4

Q&x,) =y# Imposée
Q¢,(X,) = y¢ Imposée

Ql(x) = al(x - X1)3 +b1(X - X1)2 +C1(X - Xl) +d1
qu(X) = 3a1(x - X1)2 + 2b1(X - Xl) *tC
Q&kx;) =c¢, =yf

Yo r;l Y1 _ (281 +682)h1 — y1¢
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De méme
Qn—l(x) :an—l(x_ Xn—1)3+bn—1(x_ Xn—l)2 +Cn—1(x_ Xn—1)+dn—1

an:l(x) - 38‘n-l(x_ Xn-l)2 +2bn-1(x_ Xn-l) +Cn-1

an:l(x) = 3 an-1 hr121 + 2 bn—l hn—l + Cn-l = yrg:
S - S, S . éy -y ., 2h .S . +h .S U
320 nlhnZ_ +2n—1hn- +én n-1 _ n-1%n-1 n-1 nu:yrg:
6h,_, ' 2 ' & h, 6 U
hn—l hn—l Yo~ Yna
+ =y¢- -t
6 Sna 3 S, =Yy¢ h . (b)

Nous devons maintenant gjouter ces 2 équations aux n-2
éguations que nous avons dg 3, et résoudre le systeme den
éguations a n inconnues.
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Exemple:

Faire passer des splines cubiques par |es points suivants :
Avec des conditions frontieres de types 1, 2 et 3.

I 1 2 3 4 5 6
Xi 1 2 3 4 5 6
f(X;) 4 -2 3 1 4 0
Larésolution du systeme nous donne:
0 ] | 16.893 38.6
21.474 16.893 1
o o 10895 _|-18.464 Syes = 166
Pt T 16.105 Swez T 4 064 134
~14.526 -11.393 o
0 -11.393 274
10
L
Y
X
irErp(dI,x,y,xZ)
interp(dp, X, Yy, x2)
interp(dc, x,y,x2)
inte L
- | | | | | | |
0 1 2 3 4 5 6 7 8
Xi’X2
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Interpolation par les splines cubiques

Algorithme de résolution de systeme tridiagonal

(MDMD> (D> (D> (D> (D> (D> (D> (DfD(D) %~

N

12 Qi3
1 A
0 ay,
0O O
0O O
0O O
0O O

0

a4
o)
o)
o)

O 0 O
O 0 O
a3 0 0
dzp Q43 0

a5,1 a5,2 a5,3
O a6 1 a6,2

0 0 a;, a72|L'BS7

Une résolution par élimination de Gauss est équivalente a:

1ft2421

1. Factorisation :
a;, = 0
a|,3 - al 3

55
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Les lignes courbes : Courbes de Bézier

Inventées dans le but de mieux contréler la conception (CAO)
d’ automobile chez la compagnie Renault par Pierre Bézier.

L a notion de points de contrdle apparait dans le but de
manipuler la courbe plus facilement.

Cependant, la modification d'un seul point de contrdle entraine
une modification de la courbe entiere: on parle alors de contrble
global.

On se libére de cette contrainte en définissant une courbe de
Bézier par morceau.

On peut définir une portion de courbe de Bézier a partir de n+1
points a l'aide de polyndmes particuliers qui jouent le role de
facteurs de pondération entre les points.

L e polynbme de Bézier de degré n est donné par :
n!

Cg %]0 n-i,,i aao
p(u):e_ogi B(l_ u)y'up, avec &B:W

Représentation parameétrique :

p(u) = ?(U)C‘) avec Ofufl
" &y(u)o
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_ &0
avec P =&y G O£i£n (n+1 points)

Ces fonctions de pondération sont les polyndémes de Bernstein.

BEZ, ,(u) = g'g(l- u)™'u'

L e polynéme de Bézier de degré n est équivalent a:

d o o
x(u) :@Ogi 5(1_ u"'u'x

g &80 n-i, i
YW =8 g 1- vy,

Remarque :

_339 _nkeky ok — ok
BEZk,k(u)—gké(l u)*‘u" =u

aé(t:')(l_ u)*°u® = (1- u)*

BEZ,, (u) = 805
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Courbes de Bezier cubiques :

Nous avons alors les polynémes de Bernstein suivants :

BEZ,, = (1- )’
BEZ, ,(u) = 3u(1- u)’
BEZ, ,(u) = 3u?(1- u)

BEZ,,(u) = u®

donc
x(U) = (1- u)®x, +3u(l- u)®x, +3u*(1- u)x, +u’x,
y(u) = (1- )’y +3u(1- u)®y, +3u°(1- u)y, +u’y,
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Propriétés des courbes de Bézier :

1. Une courbe de Bézier passe toujours par le premier et le

dernier point.
p(0) = p,
p(D) = p,

2. Lacourbe de Bézier est contenue dans |'envel oppe convexe
formeée par les points de controle.
L 'envel oppe convexe d'un ensemble de points est |e plus petit
ensemble convexe contenant tout ces points.

dx dy
3.Au=0, g5 =% Xo) et 5, = 3Vi" Vo)

dy _ (Y1~ ¥o)
Lapentedelacourbeau=0est gy = (x - x ) -

C'est lapente de la droite passant par po €t ps.
De laméme fagon, en u =1, |la pente de la courbe de Bézier au

dernier point est la méme que la pente de la droite joignant les 2
derniers points.
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P

Ps

Py

Chapitre 4

60

Ift2421



P,, P; et P, sont alignés.
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P,
! 4
| //
| /
\ /
‘ /
‘ /

/
| /
/
,

P
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Représentation matricielle des courbes de Bezier cubiques :

P _cg %]91- iy V &39_
(U)_eogiﬁ( U) up, avec 8ié_

peut étre ecrit pour une courbe de Bézier cubique:

&1 3 -3 1¥pu
é e, u
~ 3 -6 3 0:xp,.
—[3 112 é uériq
P(u) [u ,u ,u,1]§_3 3 0 0up, U

e ue u
el 0 O Ogeps

P(U) = uT I\/IBez p
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Exemple d'utilisation des courbes de Bézier :

Courbe Fermée:

YN,

Py Po=Ps P4
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Les Surfaces courbes de Bézier: 3D

P(uv)=a a p,BEZ; .(v)BEZ,,(u)

j=0 k=0

Pour étendre les calculs precedents a des surfaces, il sagit
d'gouter un parametre v et la surface est donnée par:

Pour des surfaces de Béziers cubiques, nous allons avoir besoin

1ft2421

de 16 points (4x4)

65

en notation matricielle, nous avons :
x(uv)=[u® v u Mg, X M]

3 2
Bez Bez[v v v
y(u,v):[u3 u’ u 1]MBEZY METM[V3 vZi v
z(u,v):[u3 u’ u 1]MBEZZM;M[V3 v: v
éxao Xo1  Xoz XQ3@
u
X — gxl,O Xl,l X1,2 X1’3l:|
?XZ,O X2,1 X2,2 X2,3l:|
é U
&30 X31 X3z X33
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Les lignes courbes: Courbe B-Spline cubique
B-Spline cubique:

Inventée aussi dans le but de mieux contrdler le design.(DAO et
CAO).

La notion de points de contrble existe aussi dans le but de
manipuler la courbe plus facilement mais contrairement aux
courbes de Bézier, |'effet de la manipulation d' un point de
controle demeure locale.

On peut définir une portion de courbe de B-Spline cubique a
partir de 4 points avec |'aide de polyndmes particulier qui jouent
le réle de fonctions de "mélange” entre les points.

Contrairement aux courbes de Bézier cependant, les|® et 4°
points N’ appartiennent pas nécessairement par la courbe ainsi les
4 points agissent comme des points de controle.
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Comme pour les splines cubiques, les mémes contraintes de
continuité sont utilisées pour joindre les segments de B-Splines.

On prend des groupes de 4 points se chevauchants :

®p;

Cependant sl on désire terminer la courbe aux points extrémités
Py et Py, il suffit de genérer 4 nouveaux points

l.e. P1=P,= Pyans que Py = P2 =P
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L’équation paramétrique d’une B-Spline cubique est :

pour n+1 points p; =(X;,yi) 1 =0, ...,n.
La B-Spline cubique pour I’ intervalle (pi,pi«1)
pouri=12,..,n1

2
B, (u) = A by Pisx avec
k=-1

ou les by sont des fonctions de ‘mélange’.

1- u)®
b1=( )
6
3
u , 2

=—- +—

by =75 - U+
1" 2 2 26
3

b, =—, Ofufl
f(u)
sl
6
5
6
4
6
i
6
2
6
1
6
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Représentation matricielle des courbes de B-Splines

cubiques :

2
B, (u) = a b, p;.

k=-1

peut étre ecrit pour une courbe B-Spline cubique:

&1 3 -3 16p,0

e ue

A 3 = 6 3 Ol:é pi u

&3 0 3 0kp,,u
e U

61l 4 1 0P

c

c
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Passer par les extrémités dans les courbes B-Splines

cubiques :

Démonstration :

Si nous désirons terminer la courbe aux points extrémites py et

1ft2421

P, 11 sUffit de générer 4 nouveaux points:

P-2 = P-1 = Po €t Pr+2 = Pr+1 = Pn

e-1 3 -3 luep.,u
e ue u
=gl 3 o 5 oigp,,0
e ue u
el 4 1 0papi. i
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Eval uons cette équation pour |e nouveau premier segment c-a-d
B.1 en posant p., = p.1 = po aors:

&1 3 -3 16p,0

& ©,. U
3 -6 3 0°X
1(u)——[u u®,u 1]e plu

C O 3 Ol:@ Py U
e ue u
el 4 1 Ogap.

&1 3 -3 1uep0

e -
1(u)__[u . 1]ea 6 3 0%

‘.3.‘
&

uepou
0O 3 0uép,u

1 4 1 0gEp.g

1
B_,(u) zg(pl - Po) u® + Po

Pour u = 0, nous obtenons bien : B_1(0) = po.
Note : un développement similaire peu étre fait pour py.
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Po
P3
P,
°
ep,.
Py
Py
°
P,
' °
Py
Py Py
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Joindre 2 courbes B-Spline:

Ps

Ift2421

P2, P3 €t ps SONt Alignés
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Les Surfaces courbes B-Spline : 3D

Pour étendre les calculs precedents a des surfaces, il sagit

d'gouter un parametre v et la surface est donnée par:

1
x(u,v):i[u3 u’> u 1]Min,ijT[v3 vi v 1

1 .
y(u,v):ﬁ[u3 u’> u 1]Min,ijT_v3 v?

1 .
z(u,v):ﬁ[u3 u’> u 1]MbZi,ijT_v3 v?

T

1T

éxi—l,j—l Xi—l,j Xi-l,j+1 X;.
X, = @hi.j-1 Xi,j Xi,j+1 Xi,j+2
" gxiﬂ,j—l Xistj  Xispjar X
éxi+2,j—1 Xi+2,j Xi+2,j+1 X
Pour des surfaces B-Splines cubiques, nous allons avoir besoin
de 16 points (4x4)
Pi-1,j+1
Pi-1,j ° Pi-1,j+2
Pi-1,j-1 ° Pije1 d
hd pl',j ® pi.j+2
Pij-1 g *
®
Pi+1,j+2
Pi+1,j-1 p_o ’ ¢
® i+1,j
Pi+2,j+1
Pis2j ° Pis2,j+2
Pi+2,j-1 hd 1\
L]

1ft2421
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Interpolation de surfaces par des surfaces
polynomiales de collocation

But : interpoler un point en 3 dimensions.

Pour une fonction a 2 variables z = f(x,y)

X\y 0.2 0.3 0.4 0.5

1.0 0.640 1.003 1.359 1.703
1.5 0.990 1.524 2.045 2.549
2.0 1.568 2.384 3.177 3.943

z=f(x,y)=¢" Sin(y)+y- 01

Nous voulons interpoler la valeur de lafonction en f(1.6,0.33).

2 approches possibles :
1. Interpoler directement la fonction au point considére.
2. Calculer I'éguation de la surface de collocation et utiliser

|” équation de cette surface pour interpoler lavaleur dela
fonction au point d'intérét.
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1. Interpoler directement la fonction au point considére.

Ensemble de points

Pour x constant,
interpolation enyy.

0.5 0.4 0.3 02 01
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Interpolation en X poury = 1.6

.5
0.

3
l?)
1 r_
O N
0 1 2 3
X
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Interpolation en 'y

y z Dz D’z D’z
0.2 0.640
0.363
0.3 1.003 -0.007
x=0.1 0.356 -0.005
0.4 1.359 -0.012
0.344
05 1.703
0.2 0.990
0.534
0.3 1.524 -0.013
x=15 0.521 -0.004
04 2.045 -0.017
0.504
05 2.549
0.2 1.568
0.816
0.3 2.384 -0.023
x=20 0.793 -0.004
04 3.177 -0.027
0.766
05 3.943
Etape 1:
x=1.0
&0 B0

2= Po(y) =20+ g 2Dn 46,207 +83_D32
S=(y-yo)/h=(0.33-0.2)/0.1=1.3

P3(0.33) = 0.640+1.3*0.363+1.3*0.3* (-0.007)/2+1.3* 0.3* (-
0.7)(-0.005)/6

P5(0.33) = 1.1108

1ft2421 78 Chapitre 4




P3(0.33) = 1.6818

x=2.0
P5(0.33) = 2.6245
Etape 2 :
Interpolation en x
X z Dz Dz D’z
1.0 1.1108
0.5710
y=10.33 15 1.6818 0.3717
0.9427
2.0 2.6245

=te) 80
z2="P,(x) =z, +81;Dzo +82§DZZ°

X- X, 16-10

>=T 05

12

Z=Py(1.6)p33= 11108+ 1.2* 0.571+%* 1.2* 0.2*0.3717

1ft2421

= P2(1.6)0_33 = 1.8406
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2. Calculer I'equation de la surface de collocation et utiliser
I’équation de cette surface.

L'équation de la surface de collocation est:

P, 5(X,y) = -0.065 - 0.018 x - 0.004 x* + 3.28167 y - 2.02667 X y
+2.33333x%y + 1.15y?- 0.65 x y* - 0.1 x* y* - 1.66667 y° +
1.16667 x y* - 0.333333 x* y*

P(0.33, 1.6) = 1.8406
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Moindres carrés



Introduction

T (OC) R; (Oth)
20.5 765
32.7 826
51.0 873
73.2 942
95.7 1032

Résistance
(ohms)

1100 |-

Lissage par moindres carrés
(régression lineaire)
Quelle est lameilleure
droite ?
(observation ou théorie)

1000 |-

900 |-

R=aT+b r

700 | 1 | | 1
20 40 60 80 100

Température ( °C )
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Lissage par moindres carres

But :

Trouver un polyndme de degré fable passant par beaucoup de
points.

Déterminer P,(x) avec n £ m-1
qui minimise |’ écart quadratique

R, ={e}” +{e;} " +{e} " +K +ey}”

'] . P
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Lissage par moindres carres
(régression linéaire)

Danslecasdeladroite, Pi(X) =ax+b=y

=8 (Y- )" =4 (- ax - b =R, (a0

i=1

Trouver aet b pour que R, soit minimum.

TR, _ TR, _

R, minp P O et P =0
MR, & ~
0 égé(v ax - b) (Y ax-b)— 0
R, ¢

MO

ﬁ:aa%(\(i-ax-) (Y - ax-b)——o

i=1

Qo

(%, - ax - b)(- x,) =0

1
=

T Qo=

((Y ax - b)(-1)=0

aa X/ +ha X; = a X; Y,
Equations Normales

adxtom =8y P abiyact

1ft2421
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Lissage par moindres carres
(régression linéaire)

Exemple:
Ti (°C) R; (Oth) Ti2 T R
20.5 765
32.7 826
1.0 873
73.2 942
95.7 1032
Totd : 273.1 4438 18607.27 | 254932.5

él8607.27 2731uéau  é254932.50

é €“nun =
& 2731 50y &

4433,0H

P.(x) =ax +b=3.395x + 702.2

1ft2421
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1100

1000

900

800

700 | 1 | | 1
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Remarque : les problemes de ce type peuvent aussi étre résolus
par la méthode des systemes surdétermines.

y, =ax; +b ex; 1 ey, u
é U.. é. U
= + < y Sy Y
Yo Z D &'z M- @20 AT py = ATH
’ I S
_ € u e, u
ym _axm-l-b eXm 1U eme
éx, 1u éy, U
, . é U ..« . e
eX; X, K Xmuxéxz 10 eu ex; X, K XmUXéY2u
g1 1 Pem ool 81 1 He o
& 14 & Y
eXn &Ym
e ug.u—¢€ U
Xy T X, K +X, m &0 é Yi+tYT K +TYy,
o , 9 <~ , . <0 N
Qax axdyeu €a xyu
€9 U’%OL'J:Q Q u
@ Xi m g u @a- yl g
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Lissage par moindres carres
(réegression non lineaire)
Polyndome

Dans d' un polynéme de degré arbitraire,
PiX)=ay+aXx+ax’+..+a,x"

Soit e = Yi - Pn(Xi)

m m
_ 2 2_21 2
Rz—aei —a(Yi' PN(Xi))
i=1 i=1
Minimum pour :

ﬂR2 4 :

—_ J\ —

=a 2(Y| - PN (Xi))(' X )—O
Ta; o
g Y &g
a X K-axXx g, . &aX
i=1 i=1 ~edygu ai=1
m m U 2 f em
9 .2 o nuall €9 U e
axi K axl U)£1U:éax
i=1 i=1 - 6K O A=l
K K K Us o &
g g Ueya &g

axt ko oax'u éa X

i=1 i=1 g @I:l
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Lissage par moindres carres
(réegression non lineaire)
Different d’un polyndme

Autre formes:
1.y=ax’

2.y =ae™

Nous obtenons des systemes linéaires difficiles a résoudre.

Changement de variables :

z=1n(y)
w = In(x)

1. In(y) =In(a) + b In(x)
Modifications qui conduisent ala méthode linéaire:
z=A+bw

2.1n(y) =In(a) + b x

Modifications qui conduisent ala méthode linéaire:
z=A+bx
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Exemple : Régression eny = ae™ avec latable:

X 1.0 2.0 4.0
y 2.0 7.2 500.1
2.1n(y) =In(a) + b x
X 1.0 2.0 4.0
In(y) 0.693 1.974 6.215
Modifications qui conduisent ala méthode linéaire:
z=A+bx
X z = In(y) XZ x In(y)
1 0.693 1 0.693
2 1.974 4 3.948
4 6.215 16 24.859
Qx axyeu Qxzld |
€o Ué,.d-¢©€ o u 500
gax;, mg eAH eaz g
&1 7uébu é2950 300

&7 3WEAUT &ggoll

200

¢u_e188 0 b=188 |”
GA & 1427 a=e ' =024 o0
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Autres méthodes de lissage
Moindres carrés : méthode populaire
D’ autres méthodes de lissage

basées sur d’ autres mesures pour |’ erreur,
par exemple:

R, = max|e

1£ifm

Iy
Ro=ale]
i=1

La méthode des moindres carrés est pratique pour
principalement deux raisons .

1. L’ écart quadratique est dérivable (pas de valeur absolue).

2. En accord avec |e principe de vraisemblance maximale des

statistiques.

1ft2421
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