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Introduction

Lancement d'une fusée.
Déterminer la trajectoire avec précision.

La position n'est alors connue qu'en fonction d'un certain
nombre de points d'abscisses fixes.

Le problème consiste à évaluer cette fonction
ailleurs qu'aux points donnés.

Interpolation

Extrapolation
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Linéarisation par morceaux

Droite entre deux points
consécutifs.

Méthode en général
imprécise.
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Méthode de collocation

Trouver un polynôme
qui passe par tous les points donnés.

Avec (x0,f0), (x1,f1), (x2,f2), ... , (xn,fn) et xi ≠ xj

Il y a n+1 conditions.

Trouver le polynôme Pn(x) tel que
Pn(xi) = fi pour i = 0, 1, ... , n

Exemple :

2 points → droite y = ax + b
(polynôme de degré 1)

3 points → parabole
y = ax2 + bx +c

(polynôme de degré 2)

Remarque :

Quelque soit la méthode, le
polynôme de collocation sera

toujours le même.
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Recherche de Pn(x) : première approche

Pn(x)  est donné par :

Pn(x) = a0 + a1 x + a2 x
2 + ... + an x

n

Le polynôme de collocation vérifie les n+1 conditions :

Pn(xi) = fi pour i = 0, 1 , ..., n.

Les n+1 coefficients a0, a1, ..., an sont donnés
par la résolution du système

de n+1 équations et n+1 inconnues :

Pn(x0) = a0 + a1 x0 + a2 x0
2 + ... + an x0

n

Pn(x1) = a0 + a1 x1 + a2 x1
2 + ... + an x1

n

...
Pn(xn) = a0 + a1 xn + a2 xn

2 + ... + an xn
n

Remarque :

Cette approche n’est pas un moyen pratique de calculer Pn(x).
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Unicité du polynôme de collocation

théorème:

Le polynôme de collocation de degré n
qui satisfait les n+1 conditions
Pn( xi ) = fi  pour i = 0, 1 , ..., n

est unique.

Preuve:

Supposons l'existence de deux polynômes de collocation
Pn et Qn qui satisfont les n+1 conditions

Pn(xi) = fi pour i = 0, 1 , ..., n.
Qn(xi) = fi pour i = 0, 1 , ..., n.

D(x) = Pn(x) - Qn(x)
est au plus de degré n.

D(xi) = Pn(xi) - Qn(xi) = fi - fi = 0

donc possède au moins n+1 racines : i = 0, 1 , ..., n.

Or un polynôme de degré n ne peut pas posséder
plus de n racines.

La seule possibilité D = 0.
Donc Pn = Qn
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Existence du polynôme de collocation

1.Cas linéaire ( n = 1 )

Avec P0(x0,f0) et P1(x1,f1), 2 conditions

Cherchons P1(x) = a0 + a1 x

conditions de collocation:

P1(x0) = a0 + a1 x0 = f0

P1(x1) = a0 + a1  x1 = f1

Solution sous la forme

P x
x x

x x
f

x x

x x
f1

1

0 1
0

0

1 0
1( )

( )

( )

( )

( )
=

−
−

+
−
−

⇒ polynôme de Lagrange de degré 1.

Note:

1

1
0

1

0

1

0

1

x

x

a

a

f

f








 ⋅









 =











det(A) = (x1 - x0) ≠ 0 si x1 ≠ x0

⇒ A régulière
⇒ Solution a0, a1 unique

⇒ P1(x) unique



Ift2421 8 Chapitre 4

Exemple:

Trouver le polynôme de collocation
passant par les deux points

xi : 1.0 4.0
fi : 2.0 0.5

P x
x x

1

4

1 4
2 0

1

4 1
0 5( )

( )

( )
.

( )

( )
.=

−
−

+
−
−

P x x x1

2

3

8

3

1

6

1

6
( ) = − + + −

P x x1

1

2

5

2
( ) = − +

-1 1 2 3 4 5 6

-0.5

0.5

1

1.5

2

2.5

3

3.5

x1

x2
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Existence du polynôme de collocation

2.Cas parabolique { n = 2 }

Avec (x0,f0), (x1,f1) et (x2,f2).

3 conditions

P2(x0) = a0 + a1 x0 + a2 x0
2 = f0

P2(x1) = a0 + a1 x1 + a2 x1
2 = f1

P2(x2) = a0 + a1 x2 + a2 x2
2 = f2

Pour avoir une solution unique:

1

1

1

0 0
2

1 1
2

2 2
2

0

1

2

0

1

2

x x

x x

x x

a

a

a

f

f

f

















⋅

















=

















det( ) det detA

x x

x x

x x

x x

x x x x

x x x x

=

















= − −
− −

















1

1

1

1

0

0

0 0
2

1 1
2

2 2
2

0 0
2

1 0 1
2

0
2

2 0 2
2

0
2

det( ) ( )( ) ( )( )

( )( )( ) ( )( )( )

( )( )[ ]

( )( )( )

A x x x x x x x x

x x x x x x x x x x x x

x x x x x x x x

x x x x x x

= − − − − −
= − − + − − − +
= − − + − −
= − − −

1 0 2
2

0
2

2 0 1
2

0
2

1 0 2 0 2 0 2 0 1 0 1 0

1 0 2 0 2 0 1 0

1 0 2 0 2 1

det(A) ≠ 0 si xi ≠ xj
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Solution sous la forme

P x
x x x x

x x x x
f

x x x x

x x x x
f

x x x x
x x x x

f

2
1 2

0 1 0 2
0

0 2

1 0 1 2
1

0 1

2 0 2 1
2

( )
( )( )

( )( )

( )( )

( )( )

( )( )

( )( )

=
− −
− −

+
− −
− −

+
− −
− −

⇒ polynôme de Lagrange de degré 2.

Exercice :
Interpoler F(1.7) dans la table

x          F(x)
0 1
1 1
2 2

1.  Interpolation linéaire
P1(x) = x

P1(1.7) = 1.7

2.  Interpolation quadratique
P2(x) = ½ (x2 - x +2)

P2(1.7) = 1.595

-1 1 2 3 4 5

1

2

3

4

5

P1(x)
P2(x)
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Formulation générale de la méthode de Lagrange

Soient les conditions de collocation:

x    f(x)
x0 f0

x1 f1

... ...
xn fn

Définissons le polynôme

π i j
j
j i

n

x x x pour i n( ) ( ) , ,...,= − =
=
≠

∏ 0 1
0

alors le polynôme Pn(x) défini par

P x
x
x

fn
i

i ii

n

i( )
( )

( )
=

=
∑ π

π0

satisfait les conditions de collocation.
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Exercice (suite):
Nous ajoutons un point

x          F(x)
0 1
1 1
2 2
3 5

3.Interpolation cubique

P x x x3
31

6
6( ) ( )= − +

P3(1.7) = 1.5355

-1 1 2 3 4 5

1

2

3

4

5

P1(x)
P2(x)

P3(x)

Inconvénients de méthode
de Lagrange

1.) il y a beaucoup d'opérations à faire
pour calculer le polynôme de

collocation.

2.)  II faut recommencer tout les calculs
si nous ajoutons un point.



Ift2421 13 Chapitre 4

Formule d'erreur du polynôme de collocation

Théorème:

Fonction d'erreur E:
E(x) = f(x) - Pn(x)

alors il existe ξ dans I = [x0, xn] tel que

E x
f

n
x x

n

i
i

n

( )
( )

( )!
( )

( )

=
+

−
+

=
∏

1

01

ξ

Preuve:

W t f t P t g x t xn i
i

n

( ) ( ) ( ) ( ) ( )= − − −
=

∏
0

Cette fonction possède n+2 zéros { x, x0, x1 ... , xn }
dans I = [x0, xn];

W'(t) possède n+1 zéros
W''(t) possède n zéros

...
W(n+1)(t) possède 1 zéro (noté ξ)

Si nous calculons les dérivées successives, nous trouvons:
W(n+1)(t) = f(n+1)(t) - 0 - (n+1)! g(x)

donc il existe ξ dans I = [x0, xn] tel que    g x
f

n

n

( )
( )

( )!

( )

=
+

+1

1

ξ
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Calcul pratique de l'erreur

Remarque:  ξ = ξ(x)  dans :

E x
f

n
x x

n

i
i

n

( )
( )

( )!
( )

( )

=
+

−
+

=
∏

1

01

ξ

1. Si f(x) est connue :
nous trouvons des bornes inférieures et supérieures

pour l'erreur E(x).

2. Si f(x) est inconnue :
nous ne pouvons pas estimer directement l'erreur

par la formule ci-dessus.

Remarques :

1. Lorsque la fonction tend vers une fonction polynomiale,
l’erreur tend vers 0.

 

2. Lorsque nous extrapolons la valeur de la fonction en un point
xe, l’erreur sur Pn( xe ) est grande en utilisant un polynôme de

collocation.

[ ]x x x donc x x est grande n e i
i

n

∉ −
=

∏0
0

, ( )

3. L'erreur est nulle pour les points de collocation.
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Exemple: y = sinus(x)

Avec la table
X             Y

0.1  0.09983
0.5  0.47943
0.9  0.78333
1.3  0.96356
1.7  0.99166 -0.5 0.5 1 1.5 2 2.5 3

-0.4

-0.2

0.2

0.4

0.6

0.8

1

Sin(x)

P2(x)

Estimer l’erreur d’interpolation commise en x=0.8 en utilisant le
polynôme de collocation P2(x) construit à partir des 3 premiers

points.
P2(x) = -0.00689813 + 1.09094 x - 0.236563 x2

P2(0.8) =  0.714452, or sin(0.8) = 0.717356

En dérivant, nous avons y’ = cos(x), y’’ = - sin(x)
et y’’’ = - cos(x)

La formule d’erreur E(x) devient :

E x x x x( )
cos( )

!
( . )( . )( . )=

−
− − −

ξ
3

01 0 5 0 9

x = 0.8 et ξ∈[0.1, 0.9]
donc nous avons

0.218  ≤ E(0.8) ≤ 0.00348
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Cas où les abscisses sont équidistantes

xi+1 - xi = h

Définition :

Différences descendantes

∆0fi = fi

∆1fi = fi+1 - fi

∆2fi = ∆1fi+1 - ∆1fi

........
∆n+1fi = ∆(∆nfi) = ∆nfi+1 - ∆nfi

Remarque :
L’ordre le plus élevé d’un tableau de n+1 valeurs est n.

Exemple la table des différences de f(x) = Sin(x)

x f(x)=∆0f ∆f ∆2f ∆3f ∆4f
0.1 0.09983

0.37960
0.5 0.47943 -0.07570

0.30390 -0.04797
0.9 0.78333 -0.12367 0.01951

0.18023 -0.02846
1.3 0.96356 -0.15213

0.02810
1.7 0.99166
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Formule de Newton Gregory descendante
(cas où les abscisses sont équidistantes)

Soit (xi,yi) i = 0, ... ,n tels que xi+1 - xi = h pour i = 0, ..., n-1.
Alors

P x f
f
h

x x
f

h
x x x x

f
n h

x x x x

n

n

n n

( ) ( )
!

( )( )

!
( ) ( )

= + − + − −

+ + − − −

0
0

0

2
0
2 0 1

0
0 1

2

∆ ∆

∆
Κ Κ

xi = x0 + i h
Or nous pouvons définir s par : x = x0 + s h

x - xi = ( s - i ) h
donc

P x f
f

k
s jn

k

j

k

k

n

( )
!

( )= + −










=

−

=
∏∑0

0

0

1

0

∆
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x f(x)=∆0f ∆f ∆2f
0.1 0.09983

0.37960
0.5 0.47943 -0.07570

0.30390
0.9 0.78333 -0.12367

0.18023
1.3 0.96356 -0.15213

0.02810
1.7 0.99166

Calculer Sin(0.8)
avec x0 = 0.1 et un polynôme

de degré 2.

P x f
f

s
f

s s2 0

1
0

2
0

1 2
1( )

! !
( )= + + −

∆ ∆

P x s

s s

2 0 09983 0 37960

0 07570

2
1

( ) . .

.

!
( )

= +

+
−

−

avec s = (x - 0.1) / (0.4)

Pour x = 0.8, nous avons
s = 7/4

Donc P2(0.8) = 0.71445

Notation :

s

k
s s s s k

k







 =

− − − +( )( ) ( )

!

1 2 1Κ

Le polynôme de collocation est donc

P x y
s

y
s

y
s

y
s

n
yn

n( ) = +






 +







 +







 + +







0 0

2
0

3
0 01 2 3

∆ ∆ ∆ ∆Κ
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Remarques :

1.Les points x0 , x1 , x2 , ... , xn doivent être ordonnés.
x0 < x1 < x2 < ... < xn

pour que la formule xi = x0 + i h soit valide.

2.Si nous ajoutons un nouveau point (xn+1, yn+1), il doit être à
droite de xn, xn+1 = xn + h

3.Le polynôme de collocation de degré n est :

P x f
s

f
s

f
s

n
fn

n( ) = +






 +







 + +







0 0

2
0 01 2

∆ ∆ ∆Κ

Le polynôme Pn+1(x) qui passe par les points précédents et le
nouveau point est donné par :

P x f
s

f
s

f
s

n
f

s

n
fn

n n
+

+= +






 +







 + +







 +

+






1 0 0

2
0 0

1
01 2 1

( ) ∆ ∆ ∆ ∆Κ

donc

P x P x
s

n
fn n

n
+

+= +
+







1

1
01

( ) ( ) ∆
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Exemple : Sin(x) (suite)

Nous voulons calculer le polynôme de degré 3 qui passe par les
4 premiers points.

x f(x)=∆0f ∆f ∆2f ∆3f ∆4f
0.1 0.09983

0.37960
0.5 0.47943 -0.07570

0.30390 -0.04797
0.9 0.78333 -0.12367 0.01951

0.18023 -0.02846
1.3 0.96356 -0.15213

0.02810
1.7 0.99166

Le polynôme de collocation de degré 2 qui passe par les 3
premiers points est :

P x s s s2 0 09983 0 37960
0 07570

2
1( ) . .

.

!
( )= + +

−
−

avec s =  2.5 x - 0.25

P x P x s s s3 2

0 04797

3
1 2( ) ( )

.

!
( )( )= +

−
− −

-0.5 0.5 1 1.5 2 2.5 3

-0.4

-0.2

0.2

0.4

0.6

0.8

1

Sin(x)

P3(x)

P3(x) = - 0.00127664 + 1.01723 x - 0.0491797 x2 - 0.124922 x3
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Erreur dans le cas de la formule de Newton Gregory

f x P x E x
s

k
f

s

n
h fn

k

n
k n n( ) ( ) ( ) ( )( )= + =

















+
+









=

+ +∑
0

0
1 1

1
∆ ξ

L’erreur E(x) peut être approchée par le prochain terme :

E x
s

n
h f

s

n
fn n n( ) ( )( )=

+






 ≈

+






+ + +

1 1
1 1 1

0ξ ∆

Remarques :

1.  Le terme d’erreur E(x) est de l’ordre O(hn+1).
 

 

2.  Si f(x) est connue : nous trouvons des bornes inférieures et
supérieures pour l'erreur E(x).

 
E x

s

n
h fn n( ) ( )( )=

+






 + +

1
1 1 ξ

 

 

3.  Si f(x) est inconnue : nous pouvons avoir une estimation de
l'erreur d’interpolation par la formule :

E x
s

n
fn( ) =

+






 +

1
1

0∆
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Exemple :

L’approximation de l’erreur sur Sin(0.8) avec le polynôme
quadratique avec x0 = 0.1.

x f(x)=∆0f ∆f ∆2f ∆3f ∆4f
0.1 0.09983

0.37960
0.5 0.47943 -0.07570

0.30390 -0.04797
0.9 0.78333 -0.12367 0.01951

0.18023 -0.02846
1.3 0.96356 -0.15213

0.02810
1.7 0.99166

1. Nous ne connaissons pas la fonction f(x)
Une approximation de l’erreur est donnée par :

E x
s

f
s s s

2
3

03

1 2

6
0 04797( )

( )( )
( . )=







 =

− −
−∆

s = 2.5 0.8 -0.25 = 1.75

E2(0.8) = 0.002623

Remarque :
Sin(0.8) - P2(0.8) = 0.00290422
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2. Nous connaissons la fonction f(x) = Sin(x)
L’erreur est donnée par :

E x
s

h f2
3 3

3
( ) ( )=







 ξ   avec  0.1 ≤ ξ ≤ 0.9

f3(x) = - Cos(x)

E
s

h Cos2
308

3
( . ) ( )= −







 ξ

0 62161 0 9 01 0 995004. ( . ) ( ) ( . ) .= ≤ ≤ =Cos Cos Cosξ

0 4 0 62161 0 4 0 9950043 3 3. . ( ) . .∗ ≤ ≤ ∗h Cos ξ

− ∗ ≥ − ≥ − ∗0 4 0 62161 0 4 0 9950043 3 3. . ( ) . .h Cos ξ

or x = 0.8 donc s = ( 0.8 - 0.1) / 0.4

s
s s s

3
1

6
1 2

1

6

7

4

3

4

1

4

7

128







 = − − = −





 = −( )( )

7

128
0 4 0 62161

3
7

128
0 4 0 9950043 3 3. . ( ) . .∗ ≤ −







 ≤ ∗

s
h Cos ξ

0 00217564 08 0 003482512. ( . ) .≤ ≤E
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Avantages de la formules de Newton Gregory

1. Passage facile d’un polynôme de degré n à n+1.

P x P x
s

n
fn n

n
+

+= +
+







1

1
01

( ) ( ) ∆

2. La multiplication imbriquée minimise le nombre des
opérations.

P x s s s

s s

2 0 09983 0 37960
0 07570

2
1

0 09983 0 37960
0 07570

2
1

( ) . .
.

!
( )

. .
.

( )

= + +
−

−

= + − −






3. Approximation simple de l’erreur commise.

Inconvénients

Intervalles égaux et points ordonnés
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Différences divisées
Définitions :

Soit (xi , yi)  i = 0, 1, ... , n
avec des intervalles irréguliers :

Les premières différences divisées sont :

[ ]∆ x x
y y

x x
ou i j n i ji j

j i

j i

, , ,=
−

−
≤ ≤ ≠0

Les différences divisées du deuxième ordre sont :

[ ] [ ] [ ]
∆

∆ ∆
2 x x x

x x x x

x xi j k

j k i j

k i

, ,
, ,

=
−

−

Récursivement, les différences divisées du nième ordre sont 

[ ] [ ] [ ]
∆

∆ ∆
n

n

n
n

n
n

n

x x x
x x x x x x

x x0 1

1
1 2

1
0 1 1

0

, , ,
, , , , , ,

Κ
Κ Κ

=
−

−

− −
−

Nous avons donc une table des différences divisées.
Exemple :

x0 y0

∆[x0,x1]
x1 y1 ∆2[x0,x1,x2]

∆[x1,x2] ∆3[x0,x1,x2,x3]
x2 y2 ∆2[x1,x2,x3]

∆[x2,x3]
x3 y3
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Formule de Newton pour les différences divisées

(cas où les abscisses sont quelconques)

Soit (xi,yi) i = 0, ... ,n
Alors

[ ]
[ ]

P x f x x x x

x x x x x x x

n

n
n n

( ) , ( )

, , , ( ) ( )

= + − +

+ − − −

0 0 1 0

0 1 0 1

∆

∆

Κ

Κ Κ

vérifie les n+1 conditions de collocations.
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Exemple :
Calculons le Polynôme de degré 3 passant par :

x0=0 y0=1
0

x1=1 y1=1 1/2
1 -1/12

x2=2 y2=2 1/6
3/2

x3=4 y3=5

P x a a x x a x x x x a x x x x x x3 0 1 0 2 0 1 3 0 1 2( ) ( ) ( ) ( ) ( ) ( )( )= + − + − − + − − −

P x x x x x x3 1 0
1

2
0 1

1

12
0 1 2( ) ( ) ( ) ( ) ( )( )= + + − − − − − −

P x x x x3
3 21

12
9 8 12( ) ( )= − + − +

1 2 3 4 5

1

2

3

4

5

6

P3(x)

X0
X1

X2

X3



Ift2421 28 Chapitre 4

Calculons le Polynôme de degré 4 passant par les 4 points
précédents et ( x4 = 3, y4 = 5 ) :

P x a a x x a x x x x a x x x x x x

a x x x x x x x x
4 0 1 0 2 0 1 3 0 1 2

4 0 1 2 3

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )( )( )

= + − + − − + − − −
+ − − − −

P x P x a x x x x x x x x4 3 4 0 1 2 3( ) ( ) ( ) ( )( )( )= + − − − −

donc

P x P x x x x x4 3

1

4
1 2 4( ) ( ) ( )( )( )= − − − −

P x x x x x4
4 3 21

4

5

3

11

4

4

3
1( ) = − + − + +

1 2 3 4 5

1

2

3

4

5

6

P44(x)

P3(x)

X0
X1

X2

X3

X4
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Instabilité des polynômes d’interpolation d’ordre élevé

Considérons la fonction définie par :

f(x) = 0 -1.2 ≤ x ≤ -0.2
f(x) = 1 - | 5 x | -0.2 ≤ x ≤ 0.2
f(x) = 0  0.2 ≤ x ≤ 1.0

-1 -0.5 0.5 1

-0.5

0.5

1

1.5
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-1 -0.5 0.5 1

-0.5

0.5

1

1.5

P2(x)

-1 -0.5 0.5 1

-1

-0.5

0.5

1

1.5

P4(x)
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-1 -0.5 0.5 1

-1

-0.5

0.5

1

1.5

P6(x)

-1 -0.5 0.5 1

-6

-5

-4

-3

-2

-1

1

P8(x)
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Conclusion sur les polynôme de collocation

1.  Degré assez grand mais pas trop.

2.  Intervalle centré autour du point d’interpolation.

3. Il vaut mieux utiliser des polynômes de collocation de degré
moins grand sur différents sous intervalles.

Exemple :

f(x) est
interpolée par 3
polynômes de

degré 2.
-1 -0.5 0.5 1

-1

-0.5

0.5

1

1.5
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Interpolation par les splines cubiques

Définition :

Spline

Ruban flexible passant par les points (noeuds)

Généralisation mathématique
(Schoenberg, 1946)

Approximation par morceaux telle que :

1. Chaque courbe passe par les extrémités de chaque sous
intervalle.

2. Le raccord entre ces courbes est le plus doux possible.

Exemple:

1 2 3 4

0.2

0.4

0.6

0.8

1
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Spline cubique

permet un raccord 2 fois différentiable :

Continuité de f, f’ et f’’.

Exemple:

1 2 3 4

0.2

0.4

0.6

0.8

1
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Interpolation par les splines cubiques

Q x a x x b x x c x x d1 1 1
3

1 1
2

1 1 1( ) ( ) ( ) ( )= − + − + − +
Q x a x x b x x c x x d2 2 2

3
2 2

2
2 2 2( ) ( ) ( ) ( )= − + − + − +

...
Q x a x x b x x c x x di i i i i i i i( ) ( ) ( ) ( )= − + − + − +3 2

...
Q x a x x b x x c x x dn n n n n n n n− − − − − − − −= − + − + − +1 1 1

3
1 1

2
1 1 1( ) ( ) ( ) ( )

Trouver ai, bi, ci, di pour i = 1,2, ... , n-1.
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Condition 1 : Continuité des fonctions.
y Q x1 1 1= ( )

y Q x Q x2 1 2 2 2= =( ) ( )
...

y Q x Q xi i i i i= =−1( ) ( )
...

y Q x Q xn n n n n− − − − −= =1 2 1 1 1( ) ( )
y Q xn n n= −1( )

Condition 2 : Continuité des dérivées premières.
′Q x1 1( )

′ = ′Q x Q x1 2 2 2( ) ( )
...

′ = ′−Q x Q xi i i i1( ) ( )
...

′ = ′− − − −Q x Q xn n n n2 1 1 1( ) ( )
′−Q xn n1( )

Condition 3 : Continuité des dérivées secondes.
′′ =Q x S1 1 1( )

′′ = ′′ =Q x Q x S1 2 2 2 2( ) ( )
...

′′ = ′′ =−Q x Q x Si i i i i1( ) ( )
...

′′ = ′′ =− − − − −Q x Q x Sn n n n n2 1 1 1 1( ) ( )
′′ =−Q x Sn n n1( )
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Condition 3 : Continuité des dérivées secondes.

a. i =1
S Q x1 1 1= ′′( )

Q x a x x b x x c x x d1 1 1
3

1 1
2

1 1 1( ) ( ) ( ) ( )= − + − + − +
′′ = − +Q x a x x b1 1 1 16 2( ) ( )

∴ S b1 12=

∴b
S

1
1

2
=  pour i =1 (1)

b. i = 2, ... , n-1

S Q x Q xi i i i i= ′′ = ′′−1( ) ( )

Q x a x x b x x c x x di i i i i i i i( ) ( ) ( ) ( )= − + − + − +3 2

′′ = − +Q x a x x bi i i i( ) ( )6 2

∴ S Q x bi i i= ′′ =( ) 2

∴b
S

i
i=

2  pour i =2, ... , n-1 (2)

En combinant (1) et (2), nous obtenons :

∴b
S

i
i=

2  pour i =1, ... , n-1 (3)

Si on trouve S1, S2, ... , Sn-1, nous aurons b1, b2, ... , bn-1
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Q x a x x b x x c x x di i i i i i i i− − − − − − − −= − + − + − +1 1 1
3

1 1
2

1 1 1( ) ( ) ( ) ( )
′′ = − +− − − −Q x a x x bi i i i1 1 1 16 2( ) ( )

∴ S Q x Q xi i i i i= ′′ = ′′−1( ) ( )
S a h bi i i i= +− − −6 21 1 1    or    2 1 1b Si i− −=

a
S S

hi
i i

i
−

−

−

=
−

1
1

16  pour i =2, ... , n-1 (4)

∴ S S S a a an n1 2 1 1 2 2, , , , , ,Κ Κ− −⇒

c. i = n
Q x a x x b x x c x x dn n n n n n n n− − − − − − − −= − + − + − +1 1 1

3
1 1

2
1 1 1( ) ( ) ( ) ( )

′′ = − +− − − −Q x a x x bn n n n1 1 1 16 2( ) ( )
S a h b a h Sn n n n n n n= + = +− − − − − −6 2 61 1 1 1 1 1

∴ a
S S

hn
n n

n
−

−

−

=
−

1
1

16  pour i =n (5)

En combinant (4) et (5), nous obtenons :

a
S S

hi
i i

i
−

−

−

=
−

1
1

16  pour i =2, ... , n-1, n (6)

ou alors

a
S S

hi
i i

i

=
−+1

6  pour i =1, 2, ... , n-1 (7)

∴ S S S a a an n1 2 1 2 1, , , , , ,Κ Κ⇒ −
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Condition 1 : Continuité des fonctions.
a. i =1

y Q x1 1 1= ( )

Q x a x x b x x c x x d1 1 1
3

1 1
2

1 1 1( ) ( ) ( ) ( )= − + − + − +

∴ d y1 1=  pour i =1 (8)

b. i = 2, ... , n-1

y Q x Q xi i i i i= =−1( ) ( )

Q x a x x b x x c x x di i i i i i i i( ) ( ) ( ) ( )= − + − + − +3 2

∴ d yi i=  pour i =2, ... , n-1 (9)

En combinant (8) et (9), nous obtenons :
∴ d yi i=  pour i =1, 2, ... , n-1 (10)

∴ y y y d d dn n1 2 1 1 2 1, , , , , ,Κ Κ− −⇒

de même:
Q x a x x b x x c x x di i i i i i i i− − − − − − − −= − + − + − +1 1 1

3
1 1

2
1 1 1( ) ( ) ( ) ( )

∴ y a h b h c h di i i i i i i i= + + +− − − − − − −1 1
3

1 1
2

1 1 1

pour i =2, ... , n-1 (11)



Ift2421 40 Chapitre 4

c. i = n
y Q xn n n= −1( )

Q x a x x b x x c x x dn n n n n n n n− − − − − − − −= − + − + − +1 1 1
3

1 1
2

1 1 1( ) ( ) ( ) ( )

∴ y a h b h c h dn n n n n n n n= + + +− − − − − − −1 1
3

1 1
2

1 1 1 (12)

En combinant (11) et (12), nous obtenons :

∴ y a h b h c h di i i i i i i i= + + +− − − − − − −1 1
3

1 1
2

1 1 1 pour i =2, ... , n (13)

ou bien

∴ y a h b h c h di i i i i i i i+ = + + +1
3 2

pour i =1, ... , n-1 (14)

dans (14) substituons ai, bi di par (3), (7), (10) et isolons Ci:

c
y y

h

h S h S
i

i i

i

i i i i=
−

−
++ +1 12

6  pour i =1, ... , n-1 (15)

∴ S S S c c cn n1 2 1 2 1, , , , , ,Κ Κ⇒ −
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Condition 2 : Continuité des dérivées premières.
Il ne reste donc qu'à trouver S1, S2, ... , Sn

a. i =1
′ = ′Q x y notation1 1 1( ) ( )

Q x a x x b x x c x x d1 1 1
3

1 1
2

1 1 1( ) ( ) ( ) ( )= − + − + − +

′ = − + − +Q x a x x b x x c1 1 1
2

1 1
1

13 2( ) ( ) ( )

∴ ′ =y c1 1  pour i =1 (16)

b.  i = 2, ... , n-1

′ = ′ = ′−y Q x Q xi i i i i1( ) ( )

′ = − + − +Q x a x x b x x ci i i i i i( ) ( ) ( )3 22 1

∴ ′=y ci i  pour i = 2, ... , n-1 (17)

En combinant (16) et (17), nous obtenons :

∴ ′=y ci i  pour i = 1, ... , n-1 (18)

∴ S S S c c c y y yn n n1 2 1 2 1 1 2 1, , , , , , , , ,Κ Κ Κ⇒ ⇒ ′ ′ ′− −

de même: ′ = − + − +− − − − − −Q x a x x b x x ci i i i i i1 1 1
2

1 1 13 2( ) ( ) ( )

∴ ′ = + +− − − − −y x a h b h ci i i i i i( ) 3 21 1
2

1 1
2

1  pour i = 2, ... , n-1 (19)



Ift2421 42 Chapitre 4

c. i = n

′ = ′−y Q xn n n1( )

Q x a x x b x x c x x dn n n n n n n n− − − − − − − −= − + − + − +1 1 1
3

1 1
2

1 1 1( ) ( ) ( ) ( )

′ = − + − +− − − − − −Q x a x x b x x cn n n n n n1 1 1
2

1 1 13 2( ) ( ) ( )

′ = + +− − − − − −Q x a h b h cn n n n n n1 1 1
2

1 1 13 2( )   pour i = n (20)

En combinant (19) et (20), nous obtenons :

′ = + +− − − − −y x a h b h ci i i i i n( ) 3 21 1
2

1 1 1  pour i = 2, ... , n (21)

En égalant (18) et (21) pour le domaine commun i = 2, ... , n-1,
nous obtenons:

c a h b h ci i i i i i= + +− − − − −3 21 1
2

1 1 1  pour i = 2, ... , n-1 (22)
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Dans (22), utilisons les formules (3), (7) et (15):

∴b
S

i
i=

2  pour i =1, ... , n-1 (3)

a
S S

hi
i i

i

=
−+1

6  pour i =1, 2, ... , n-1 (7)

c
y y

h

h S h S
i

i i

i

i i i i=
−

−
++ +1 12

6  pour i =1, ... , n-1 (15)

pour i = 2, ... , n-1, nous obtenons:

y y

h

h S h S S S

h
h

S
h

y y
h

h S h S

i i

i

i i i i i i

i
i

i
i

i i

i

i i i i

+ + −

−
−

−
−

−

−

− − −

−
−

+
=

−

+

+
−

−
+

1 1 1

1
1

2

1
1

1

1

1 1 1

2

6
3

6

2
2

2

6

( )

( )

∴ h S h h S h S
y y

h

y y

hi i i i i i i
i i

i

i i

i
− − − +

+ −

−

+ + + =
−

−
−







1 1 1 1

1 1

1

2 2 6( )

Pour i = 2,  ... , n-1 donc (n-2) équations à n inconnues S1, ... , Sn
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Nous avons un système de (n-2) équations
à n inconnues S1, ... , Sn à résoudre.

i h S h h S h S
y y

h

y y

h

i h S h h S h S
y y

h

y y

h

i h S h h S h S
y y

h

y y

h

i n h Sn n

= + + + =
−

−
−









= + + + =
−

−
−









= + + + =
−

−
−









= − +− −

2 2 6

3 2 6

4 2 6

1 2

1 1 1 2 2 2 3
3 2

2

2 1

1

2 2 2 3 3 3 4
4 3

3

3 2

2

3 3 3 4 4 4 5
5 4

4

4 3

3

2 2

( )

( )

( )

( )h h S h S
y y

h

y y

hn n n n n
n n

n

n n

n
− − − −

−

−

− −

−

+ + =
−

−
−







2 1 1 1

1

1

1 2

2

6

Nous réduisons ce système à (n-2) inconnues en imposant des valeurs
(Conditions frontières) pour S1 et Sn aux extrémités de l'intervalle:

x x

x x x

x x x

x x x

x x x

x x

S

S

S

S

S

z

z

z

z

z
n

n

n

n

0

0

2

3

4

2

1

2

3

4

2

1

Ο Ο Ο

Ο Ο Ο

Μ

Μ

Μ

Μ

Μ

Μ

































⋅

































=

































−

−

−

−

⇒ ⇒ ⇒S S S a b c d Q xn i i i i i1 2, , , , , , ( )Κ
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Les coefficients de chaque  polynôme de degré 3

Q x a x x b x x c x x d1 1 1
3

1 1
2

1 1 1( ) ( ) ( ) ( )= − + − + − +
Q x a x x b x x c x x d2 2 2

3
2 2

2
2 2 2( ) ( ) ( ) ( )= − + − + − +

...
Q x a x x b x x c x x di i i i i i i i( ) ( ) ( ) ( )= − + − + − +3 2

...
Q x a x x b x x c x x dn n n n n n n n− − − − − − − −= − + − + − +1 1 1

3
1 1

2
1 1 1( ) ( ) ( ) ( )

sont donnés par :

( )

( )

a
S S

h

b
S

c
y y

h

S S h

d y

i
i i

i

i
i

i
i i

i

i i i

i i

=
−

=

=
−

−
+

=

+

+ +

1

1 1

6

2

2

6
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Splines cubiques : Conditions frontières

1. Extrémités libres (free boundary conditions)     Type 1

Dans les splines dites Naturelles (natural spline), nous ajoutons
les 2 équations :

S1 = 0
Sn = 0

La spline a un comportement parabolique linéaire aux bouts.
(près de extrémités)

La première équation devient :

2 61 2 2 2 3
3 2

2

2 1

1

( )h h S h S
y y

h

y y

h
+ + =

−
−

−









La dernière équation devient :

h S h h S
y y

h

y y

hn n n n n
n n

n

n n

n
− − − − −

−

−

− −

−

+ + =
−

−
−







2 2 2 1 1

1

1

1 2

2

2 6( )
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Exemple :

Faire passer une spline cubique naturelle par les points suivants :

i 1 2 3 4
xi 1 2 3 4

f(xi) 4 -2 3 1

Spline naturelle : S1 = 0 et S4 = 0

2

2

6

6

1 2 2

2 2 3

2

3

3 2

2

2 1

1

4 3

3

3 2

2

( )

( )

h h h

h h h

S

S

y y
h

y y
h

y y
h

y y
h

+
+









 ⋅









 =

−
−

−









−
−

−



























[ ]
[ ]

4 1

1 4

6 3 2 2 4

6 1 3 3 2
2

3









 ⋅









 =

+ − − −
− − +











S

S
( ) ( )

( ) ( )

4 1

1 4

66

42
2

3









 ⋅









 =

−










S

S

Nous avons donc la solution :

S1 = 0, S2 = 20.4, S3 = -15.6 et S4 = 0
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( )

( )

a
S S

h
b

S

c
y y

h

S S h

d y

1
2 1

1
1

1

1
2 1

1

1 2 1

1 1

6 2

2

6

=
−

=

=
−

−
+

=

, ,

,

a b c d1 1 1 134 0 9 4 4= = = − =. , , . ,

Q x x x1
33 4 1 9 4 1

4

( ) . ( ) . ( )= − − −
+

1 2 3 4

-2

0

2

4

6

Q1(x)

( )

( )

a
S S

h
b

S

c
y y

h

S S h

d y

2
3 2

2
2

2

2
3 2

2

2 3 2

2 2

6 2

2

6

=
−

=

=
−

−
+

=

, ,

,

a b c

d
2 2 2

2

6 10 2 0 8

2

= − = =
= −

, . , . ,

Q x x x

x
2

3 26 2 10 2 2

0 8 2 2

( ) ( ) . ( )

. ( )

= − − + −
+ − −

1 2 3 4

-2

0

2

4

6

Q2(x)
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( )

( )

a
S S

h
b

S

c
y y

h

S S h

d y

3
4 3

3
3

3

3
4 3

3

3 4 3

3 3

6 2

2

6

=
−

=

=
−

−
+

=

, ,

,

a b c d3 3 3 32 6 7 8 32 3= = − = =. , . , . ,

Q x x x

x
3

3 22 6 3 7 8 3

3 2 3 3

( ) . ( ) . ( )

. ( )

= − − −
+ − +

1 2 3 4

-2

0

2

4

6

Q3(x)

1 2 3 4

-2

0

2

4

6

Q1(x)

Q2(x)Q3(x)
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2. nous ajoutons les 2 conditions :      Type 2

S1 = S2

Sn = Sn-1

La spline a un comportement parabolique aux bouts.
(près des extrémités)

La première équation devient :

( )3 2 61 2 2 2 3
3 2

2

2 1

1

h h S h S
y y

h

y y

h
+ + =

−
−

−









La dernière équation devient :

h S h h S
y y

h

y y

hn n n n n
n n

n

n n

n
− − − − −

−

−

− −

−

+ + =
−

−
−







2 2 2 1 1

1

1

1 2

2

2 3 6( )

Exemple (suite)

Utilisons des conditions frontières de type 2.

S1 = S2 = 15.5
S3 = S4 = -11.5
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3. nous ajoutons les 2 conditions :      Type 3

S1 = Extrapolation linéaire de S2 et S3

Sn = Extrapolation linéaire de Sn-2 et Sn-1

S S

h

S S

h
3 2

2

2 1

1

−
=

− S S

h

S S

h
n n

n

n n

n

− −

−

−

−

−
=

−2 1

2

1

1

S S
h h

h

h

h
S1 2

1 2

2

1

2
3=

+





 − S

h

h
S

h h

h
Sn

n

n
n

n n

n
n= − +

+





−

−
−

− −

−
−

1

2
2

2 1

2
1

La première équation devient :
( )( ) ( )

S
h h h h

h
S

h h

h
y y

h
y y

h2

1 2 1 2

2
3

2
2

1
2

2

3 2

2

2 1

1

2
6

+ +







 +

−
=

−
−

−









La dernière équation devient :
( ) ( )( )

S
h h

h
S

h h h h

h
y y

h
y y

hn
n n

n
n

n n n n

n

n n

n

n n

n
−

− −

−
−

− − − −

−

−

−

− −

−

−
+

+ +







 + =

−
−

−







2

2
2

1
2

2
1

1 2 1 2

2

1

1

1 2

2

2
6

Exemple (suite) : S1 = 29, S2 = 11, S3 =-7, S4 = -25



Ift2421 52 Chapitre 4

4. nous imposons des valeurs aux pentes des extrémités   Type 4

′ = ′Q x y1 1 1( ) Imposée
′ = ′−Q x yn n n1( )  Imposée

Q x a x x b x x c x x d1 1 1
3

1 1
2

1 1 1( ) ( ) ( ) ( )= − + − + − +

′ = − + − +Q x a x x b x x c1 1 1
2

1 1 13 2( ) ( ) ( )

′ = = ′Q x c y1 1 1 1( )

( )y y

h

S S h
y2 1

1

1 2 1

1

2

6

−
−

+
= ′

h
S

h
S

y y

h
y1

1
1

2
2 1

1
13 6

+ =
−

− ′ (a)
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De même

Q x a x x b x x c x x dn n n n n n n n− − − − − − − −= − + − + − +1 1 1
3

1 1
2

1 1 1( ) ( ) ( ) ( )

′ = − + − +− − − − − −Q x a x x b x x cn n n n n n1 1 1
2

1 1 13 2( ) ( ) ( )

′ = + + = ′− − − − − −Q x a h b h c yn n n n n n n1 1 1
2

1 1 13 2( )

3
6

2
2

2

6
1

1
1

2 1
1

1

1

1 1 1S S

h
h

S
h

y y

h

h S h S
yn n

n
n

n
n

n n

n

n n n n
n

−
+ +

−
−

+







 = ′−

−
−

−
−

−

−

− − −

h
S

h
S y

y y

h
n

n
n

n n
n n

n

−
−

− −

−

+ = ′ −
−1

1
1 1

16 3 (b)

Nous devons maintenant ajouter ces 2 équations aux n-2
équations que nous avons déjà, et résoudre le système de n

équations à n inconnues.
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Exemple :

Faire passer des splines cubiques par les points suivants :
Avec des conditions frontières de types 1, 2 et 3.

i 1 2 3 4 5 6
xi 1 2 3 4 5 6

f(xi) 4 -2 3 1 4 0

La résolution du système nous donne:

=

38.6

11

16.6

13.4

7

27.4

=Stype 1

0

21.474

19.895

16.105

14.526

0

=

16.893

16.893

18.464

14.964

11.393

11.393

Stype 2
Stype 3

0 1 2 3 4 5 6 7 8
5

0

5

10

y
i

interp( ),,,dl x y x2

interp( ),,,dp x y x2

interp( ),,,dc x y x2

,x
i

x2
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Interpolation par les splines cubiques
Algorithme de résolution de système tridiagonal

a a

a a a

a a a

a a a

a a a

a a a

a a

S

S

S

S

S

S

S

1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

4 1 4 2 4 3

5 1 5 2 5 3

6 1 6 2 6 3

7 1 7 2

1

2

3

4

5

6

7

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

, ,

, , ,

, , ,

, , ,

, , ,

, , ,

, ,

























































=





























a

a

a

a

a

a

a

1 4

2 4

3 4

4 4

5 4

6 4

7 4

,

,

,

,

,

,

,

Une résolution par élimination de Gauss est équivalente à :

1.  Factorisation :

a a
a

a
a a pour i n

a a
a

a
a a a

i i
i

i
i i

i i
i

i
i i i

, ,
,

,
, ,

, ,
,

,
, , ,

, ,2 2
1

1 2
1 3 1

4 4
1

1 2
1 4 3 3

0 2= − = =

= − =

−
−

−
−

Κ

2.  Substitution arrière :

a
a

a
pour i n

a
a a a

a

n
n

n

i
i i i

i

,

,

,

,

, , ,

,

, ,

*

4

4

2

4

4 3 1 4

2

1 1= = −

=
− +

Κ
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Les lignes courbes : Courbes de Bézier

Inventées dans le but de mieux contrôler la conception (CAO)
d’automobile chez la compagnie Renault par Pierre Bézier.

La notion de points de contrôle apparaît dans le but de
manipuler la courbe plus facilement.

Cependant, la modification d'un seul point de contrôle entraîne
une modification de la courbe entière: on parle alors de contrôle

global.

On se libère de cette contrainte en définissant une courbe de
Bézier par morceau.

On peut définir une portion de courbe de Bézier à partir de n+1
points à l'aide de polynômes particuliers qui jouent le rôle de

facteurs de pondération entre les points.

Le polynôme de Bézier de degré n est donné par :

P u
n

i
u u p avec

n

i
n

i n i
n i i

i
i

n

( ) ( )
!

!( )!
=







 −







 =

−
−

=
∑ 1

0

Représentation paramétrique :

p u
x u

y u
avec u( )

( )

( )
=







 ≤ ≤0 1
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avec p
x

yi

i

i

=






  0 ≤ i ≤ n   (n+1 points)

Ces  fonctions de pondération sont les polynômes de Bernstein.

BEZ u
n

i
u ui n

n i i
, ( ) ( )=







 − −1

Le polynôme de Bézier de degré n est équivalent à :

x u
n

i
u u xn i i

i
i

n

( ) ( )=






 − −

=
∑ 1

0

y u
n

i
u u yn i i

i
i

n

( ) ( )=






 − −

=
∑ 1

0

Remarque :

BEZ u
k

k
u u uk k

k k k k
, ( ) ( )=







 − =−1

BEZ u
k

u u uk
k k

0
0 0

0
1 1, ( ) ( ) ( )=







 − = −−
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Courbes de Bézier cubiques :

Nous avons alors les polynômes de Bernstein suivants :

BEZ u0 3
31, ( )= −

BEZ u u u1 3
23 1, ( ) ( )= −

BEZ u u u2 3
23 1, ( ) ( )= −

BEZ u u3 3
3

, ( ) =

donc
x u u x u u x u u x u x( ) ( ) ( ) ( )= − + − + − +1 3 1 3 13

0
2

1
2

2
3

3

y u u y u u y u u y u y( ) ( ) ( ) ( )= − + − + − +1 3 1 3 13
0

2
1

2
2

3
3
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Propriétés des courbes de Bézier :

1. Une courbe de Bézier passe toujours par le premier et le
dernier point.

p p( )0 0=
p pn( )1 =

2. La courbe de Bézier est contenue dans l'enveloppe convexe
formée par les points de contrôle.

L'enveloppe convexe d'un ensemble de points est le plus petit
ensemble convexe contenant tout ces points.

3. À u = 0, 
dx
du

x x= −3 1 0( )  et 
dy
du

y y= −3 1 0( )

La pente de la courbe à u = 0 est 
dy
dx

y y

x x
=

−
−

( )

( )
1 0

1 0
.

C'est la pente de la droite passant par p0 et p1.

De la même façon, en u =1, la pente de la courbe de Bézier au
dernier point est la même que la pente de la droite joignant les 2

derniers points.
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P2, P3 et P4 ne sont pas alignés.

P2, P3 et P4 sont alignés.
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Représentation matricielle des courbes de Bézier cubiques :

P u
n

i
u u p avec

n

i
n

i n i
n i i

i
i

n

( ) ( )
!

!( )!
=







 −







 =

−
−

=
∑ 1

0

peut être écrit pour une courbe de Bézier cubique:

[ ]P u u u u

p

p

p

p

( ) , , ,=

− −
−

−





































3 2

0

1

2

3

1

1 3 3 1

3 6 3 0

3 3 0 0

1 0 0 0

P u u M pT
Bez( ) =
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Exemple d'utilisation des courbes de Bézier :

Courbe Fermée:

Passage plus proche d'un point de contrôle:
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Les Surfaces courbes de Bézier: 3D

Pour étendre les calculs précédents à des surfaces, il s'agit
d'ajouter un paramètre v et la surface est donnée par:

P u v p BEZ v BEZ uj k j m k n
k

n

j

m

( , ) ( ) ( ), , ,=
==

∑∑
00

Pour des surfaces de Béziers cubiques, nous allons avoir besoin
de 16 points (4x4)

en notation matricielle, nous avons :

[ ] [ ]x u v u u u M X M v v vBez Bez
T T

( , ) = 3 2 3 21 1

[ ] [ ]y u v u u u M Y M v v vBez Bez
T T

( , ) = 3 2 3 21 1

[ ] [ ]z u v u u u M Z M v v vBez Bez
T T

( , ) = 3 2 3 21 1

avec X

x x x x

x x x x

x x x x

x x x x

=



















0 0 0 1 0 2 0 3

1 0 1 1 1 2 1 3

2 0 2 1 2 2 2 3

3 0 3 1 3 2 3 3

, , , ,

, , , ,

, , , ,

, , , ,
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Les lignes courbes: Courbe B-Spline cubique

B-Spline cubique:

Inventée aussi dans le but de mieux contrôler le design.(DAO et
CAO).

La notion de points de contrôle existe aussi dans le  but de
manipuler la courbe plus facilement mais contrairement aux
courbes de Bézier, l'effet de la manipulation d’un point de

contrôle demeure locale.

On peut définir une portion de courbe de B-Spline cubique à
partir de 4 points avec l'aide de polynômes particulier qui jouent

le rôle de fonctions de "mélange" entre les points.

     

Contrairement aux courbes de Bézier cependant, les ler et 4e

points n’appartiennent pas nécessairement par la courbe ainsi les
4 points agissent comme des points de contrôle.
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Comme pour les splines cubiques, les mêmes contraintes de
continuité sont utilisées pour joindre les segments de B-Splines.

On prend des groupes de 4 points se chevauchants :

Cependant si on désire terminer la courbe aux points extrémités
P0 et Pn, il suffit de générer  4 nouveaux points

 i.e.  P-1 = P-2 =  P0 ainsi  que Pn+1 = Pn+2 = Pn.
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L’équation paramétrique d’une B-Spline cubique est :

pour n+1 points pi =(xi,yi)  i = 0, ... ,n.
La B-Spline cubique pour l’intervalle (pi,pi+1)

pour i = 1,2,..., n-1

B u b pi k i k
k

( ) = +
=−
∑

1

2

avec

où les bi sont des fonctions de ‘mélange’.

b
u

b
u

u

b
u u u

b
u

u

− =
−

= − +

= − + + +

= ≤ ≤

1

3

0

3
2

1

3 2

2

3

1

6

2

2

3

2 2 2

1

6

6
0 1

( )

,
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Représentation matricielle des courbes de B-Splines
cubiques :

B u b pi k i k
k

( ) = +
=−
∑

1

2

peut être écrit pour une courbe B-Spline cubique:

[ ]B u u u u

p

p

p

p

i

i

i

i

i

( ) , , ,=

− −
−

−





































−

+

+

1

6
1

1 3 3 1

3 6 3 0

3 0 3 0

1 4 1 0

3 2 1

1

1

2

B u
u M p

i

T
b( ) =

6
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Passer par les extrémités dans les courbes B-Splines
cubiques :

Démonstration :

Si nous désirons terminer la courbe aux points extrémités p0 et
pn, il suffit de générer 4 nouveaux points:

p-2 = p-1 = p0 et pn+2 = pn+1 = pn

L’équation de la B-Spline est :

[ ]B u u u u

p

p

p

p

i

i

i

i

i

( ) , , ,=

− −
−

−





































−

+

+

1

6
1

1 3 3 1

3 6 3 0

3 0 3 0

1 4 1 0

3 2 1

1

1

2
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Évaluons cette équation pour le nouveau premier segment c-à-d
B-1 en posant p-2 = p-1 = p0 alors :

[ ]B u u u u

p

p

p

p

−

−

−=

− −
−

−





































1
3 2 1

2

1

0

1

1

6
1

1 3 3 1

3 6 3 0

3 0 3 0

1 4 1 0

( ) , , ,

[ ]B u u u u

p

p

p

p

− =

− −
−

−





































1
3 2 1

0

0

0

1

1

6
1

1 3 3 1

3 6 3 0

3 0 3 0

1 4 1 0

( ) , , ,

B u p p u p− = − +1 1 0
3

0

1

6
( ) ( )

Pour u = 0, nous obtenons bien : B-1(0) = p0.

Note : un développement similaire peu être fait pour pn.
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Joindre 2 courbes B-Spline:

p2 , p3 et p4 ne sont pas alignés

p2 , p3 et p4 sont alignés
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 Les Surfaces courbes B-Spline : 3D

Pour étendre les calculs précédents à des surfaces, il s'agit
d'ajouter un paramètre v et la surface est donnée par:

[ ] [ ]x u v u u u M X M v v vb i j b
T T

( , ) ,=
1

36
1 13 2 3 2

[ ] [ ]y u v u u u M Y M v v vb i j b
T T

( , ) ,=
1

36
1 13 2 3 2

[ ] [ ]z u v u u u M Z M v v vb i j b
T T

( , ) ,=
1

36
1 13 2 3 2

avec X

x x x x

x x x x
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


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

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2 1 2 2 1 2 2

Pour des surfaces B-Splines cubiques, nous allons avoir besoin
de 16 points (4x4)
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Interpolation de surfaces par des surfaces
polynomiales de collocation

But : interpoler un point en 3 dimensions.

Pour une fonction à 2 variables z = f(x,y)

x\y 0.2 0.3 0.4 0.5
1.0 0.640 1.003 1.359 1.703
1.5 0.990 1.524 2.045 2.549
2.0 1.568 2.384 3.177 3.943

z f x y e Sin y yx= = + −( , ) ( ) .01

Nous voulons interpoler la valeur de la fonction en f(1.6,0.33).

2 approches possibles :

1.  Interpoler directement la fonction au point considéré.

2. Calculer l'équation de la surface de collocation et utiliser
l’équation de cette surface pour interpoler la valeur de la

fonction au point d'intérêt.
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1.  Interpoler directement la fonction au point considéré.
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Pour x constant,
interpolation en y.
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Interpolation en x pour y = 1.6
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Interpolation en y
y z ∆∆z ∆∆2z ∆∆3z

0.2 0.640
0.363

0.3 1.003 -0.007
x = 0.1 0.356 -0.005

0.4 1.359 -0.012
0.344

0.5 1.703
0.2 0.990

0.534
0.3 1.524 -0.013

x = 1.5 0.521 -0.004
0.4 2.045 -0.017

0.504
0.5 2.549
0.2 1.568

0.816
0.3 2.384 -0.023

x = 2.0 0.793 -0.004
0.4 3.177 -0.027

0.766
0.5 3.943

Étape 1 :
x = 1.0

z P y z
S

z
S

z
S

z= = +






 +







 +







3 0 0

2
0

3
01 2 3

( ) ∆ ∆ ∆

S=(y-y0)/h = (0.33-0.2)/0.1 = 1.3

P3(0.33) = 0.640+1.3*0.363+1.3*0.3*(-0.007)/2+1.3*0.3*(-
0.7)(-0.005)/6

P3(0.33) = 1.1108
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x = 1.5
P3(0.33) = 1.6818

x = 2.0
P3(0.33) = 2.6245

Étape 2 :

Interpolation en x
x z ∆∆z ∆∆2z ∆∆3z

1.0 1.1108
0.5710

y= 0.33 1.5 1.6818 0.3717
0.9427

2.0 2.6245

z P x z
S

z
S

z= = +






 +







2 0 0

2
01 2

( ) ∆ ∆

S
x x

h
=

−
=

−
=0 16 10

05
12

. .

.
.

z = P2(1.6)0.33 = 1.1108 + 1.2 * 0.571 + ½ * 1.2 * 0.2 *0.3717

z = P2(1.6)0.33 = 1.8406
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2. Calculer l'équation de la surface de collocation et utiliser
l’équation de cette surface.

L'équation de la surface de collocation est:

P2,3(x,y) = -0.065 - 0.018 x - 0.004 x2 + 3.28167 y - 2.02667 x y
+ 2.33333 x2 y + 1.15 y2 - 0.65 x y2 - 0.1 x2 y2 - 1.66667 y3 +

1.16667 x y3 - 0.333333 x2 y3
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P(0.33, 1.6) = 1.8406
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Ift 2421

Chapitre 4

Interpolation
polynomiale :

Moindres carrés
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Introduction

Ti (°C) Ri (ohms)
20.5 765
32.7 826
51.0 873
73.2 942
95.7 1032

Lissage par moindres carrés
(régression linéaire)

Quelle est la meilleure
droite ?

(observation ou théorie)

R = a T + b
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Lissage par moindres carrés

But :

Trouver un polynôme de degré fable passant par beaucoup de
points.

Déterminer Pn(x) avec n ≤ m-1
qui minimise l’écart quadratique

R e e e eN2 1
2

2
2

3
2 2= + + + +{ } { } { } { }Κ
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Lissage par moindres carrés
(régression linéaire)

Dans le cas de la droite,  P1(x) = a x + b = y

Soit ei = Yi - yi   

R ei
i

m

2
2

1

=
=
∑

R Y y Y a x b R a bi i
i

m

i i
i

m

2
2

1

2
2

1

= − = − − =
= =
∑ ∑( ) ( ) ( , )

Trouver a et b pour que R2 soit minimum.

R
R

a
et

R

a2
2 20 0min ⇒ = =

∂
∂

∂
∂

∂
∂

∂
∂

R

a
Y a x b

a
Y a x bi i i i

i

m
2

1

2 0= − − − −




 =

=
∑ ( ) ( )

∂
∂

∂
∂

R
b

Y a x b
b

Y a x bi i i i
i

m
2

1

2 0= − − − −




 =

=
∑ ( ) ( )

( )

( )

( )(

( )(

Y a x b x

Y a x b

i i i
i

m

i i
i

m

− − − =

− − − =

=

=

∑

∑

0

1 0

1

1

Équations Normales 

a x b x x y

a x bm y

i i i i

i i

2∑ ∑ ∑
∑ ∑

+ =

+ = ⇒ a, b : y=ax + b
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Lissage par moindres carrés
(régression linéaire)

Exemple :
Ti (°C) Ri (ohms) Ti

2 Ti Ri

20.5 765
32.7 826
51.0 873
73.2 942
95.7 1032

Total : 273.1 4438 18607.27 254932.5

18607 27 2731

2731 5 0

254932 5

4438 0

. .

. .

.

.


















 =











a

b

P1(x) = a x + b = 3.395 x + 702.2
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Remarque : les problèmes de ce type peuvent aussi être résolus
par la méthode des systèmes surdéterminés.

y ax b

y ax b

y ax b

x

x

x

a

b

y

y

y

A Ax A b

m m m m

T T

1 1

2 2

1

2

1

2

1

1

1

1

= +
= +

= +

⇔



























 =



















⇒ =
Μ Μ Μ

x x x

x

x

x

a

b

x x x

y

y

y

m

m

m

m

1 2

1

2 1 2

1

2

1 1 1

1

1

1

1 1 1

Κ

Μ

Κ







 ⋅



















⋅








 =









 ⋅



















x x x x x x

x x x m

a

b

x y x y x y

y y y
m m

m

m m

m

1
2

2
2 2

1 2

1 2

1 1 2 2

1 2

+ + + + + +
+ + +









 ⋅









 =

+ + +
+ + +











Κ Κ

Κ

Κ

Κ

x x

x m

a

b
x y

y
i i

i

i i

i

2∑ ∑
∑

∑
∑













⋅








 =













a x b x x y

a x bm y

i i i i

i i

2∑ ∑ ∑
∑ ∑

+ =

+ =
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Lissage par moindres carrés
(régression non linéaire)

Polynôme

Dans d’un polynôme de degré arbitraire,

Pn(x) = a0 + a1 x + a2 x
2 + ... + an x

n

Soit ei = Yi - Pn(xi)

( )( )R e Y P xi
i

m

i N i
i

m

2
2

1

2

1

= = −
= =
∑ ∑

Minimum pour :

∂
∂
R
a

Y P x x
j

i N i i
j

i

m
2

1

2 0= − − =
=
∑ ( ( ))( )

1
1 1 1

1

2

1

1

1

1

1

1

2

1

0

1

1

1

1

i

m

i
i

m

i
N

i

m

i
i

m

i
i

m

i
N

i

m

i
N

i

m

i
N

i

m

i
N

i

m
N

i
i

m

i i
i

m

i
N

i
i

m

x x

x x x

x x x

a

a

a

x

x y

x y

= = =

= =

+

=

=

+

= =

=

=

=

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

∑

∑

∑



























⋅



















=






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

Κ

Κ
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Κ

Κ
Κ
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



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






Ift2421 88 Chapitre 4

Lissage par moindres carrés
(régression non linéaire)
Différent d’un polynôme

Autre formes :

1.  y = a xb

 

2.  y = a ebx

Nous obtenons des systèmes linéaires difficiles à résoudre.

Changement de variables :

z = ln(y)
w = ln(x)

1. ln(y) = ln(a) + b ln(x)
Modifications qui conduisent à la méthode linéaire :

z = A + b w

2. ln(y) = ln(a) + b x
Modifications qui conduisent à la méthode linéaire :

z = A + b x
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Exemple : Régression en y = a ebx avec la table :

x 1.0 2.0 4.0
y 2.0 7.2 500.1

2. ln(y) = ln(a) + b x

x 1.0 2.0 4.0
ln(y) 0.693 1.974 6.215

Modifications qui conduisent à la méthode linéaire :
z = A + b x

x z = ln(y) x2 x ln(y)
1 0.693 1 0.693
2 1.974 4 3.948
4 6.215 16 24.859

x x

x m

b

A
x z

z
i i

i

i i

i

2∑ ∑
∑

∑
∑













⋅








 =













21 7

7 3

29 5

8882









 ⋅









 =











b

A

.

.

b

A

b

a e








 =

−






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=
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Autres méthodes de lissage

Moindres carrés : méthode populaire

D’autres méthodes de lissage
basées sur d’autres mesures pour l’erreur,

par exemple :

R e
i m

i∞
≤ ≤

=
1

max

R ei
i

m

1
1

=
=
∑

La méthode des moindres carrés est pratique pour
principalement deux raisons :

1.  L’écart quadratique est dérivable (pas de valeur absolue).
 

2.  En accord avec le principe de vraisemblance maximale des
statistiques.


