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Dérivation et intégration numériques
Déterminer avec préecision :
1. Lavitesse a chaque instant

2. L'accélération de lafuseée
3. La consommation de carburant

Evaluer les dérivées premiéres et secondes
ainsi que |'intégrale de cette fonction.
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Principe général
dedérivation et d’intégration numériques

S

f(x) = P,(X) +E,(x)
aors

f€x) = F%x) + EXX)

f &x) = FE&x) + E®x)
etc...

et auss
Of (e = QP, (X)dx + QE, (X)dx

Bonne estimation de lafonction

P Bonnes estimations de ses dérivées
et de son intégrale.
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Dérivation du polyndme de Newton Grégory
f(X)=P,(X)+E,(x) = a 8k—Dkf +8n+ Oprett e (X)

Dériver le polyndme :

dP,(x) _dP,(x) ds dPn(x)l
dx ds dx ds h

car X=X, +sh

1digdaso, U 1odla§o v
= AL Dy =Ca D
hdsj S&ka °f hQ dst & g
_1g Df, +—(2s- NP, +

OO OO

h&1
g—[(s D(s- 2) +5(s- 2) +(s- DD f,+..

Dérivéedel’ erreur ;

dE,(x,) ldes
dx h dsgn+

hn+1f (n+1) (X)
d
8n + _hn+1 f (n+1) (X)

Note : le terme f™?(x) dépend de x.
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Dérivation du polyndme de Newton Grégory

Pours=0,1,..,n
les formules se ssmplifient.

Pour (s=0):

é 1 U
pix) = 16 DI‘0+—(25- D' f, + i
Xo) = el U
h &-[(s- D(s- 2+ (- D +S(s- D] fy+..

é U

Eng EDZf +—D3fo-zD4fo+...g

ne IS G

é n 0

et leterme d’ erreur est :

dE (%) _1d &S 0O ...
dx hd58n+1gh e

&Sénﬂd

(n+1)
ety x|

9" o
Efx)="—7h F P (X) terme qui est en O(h")
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Exemple:
Table def(x) = € a3 décimales:

x f(x) Df D¥ D D¥ lcih=0.2
1.3 3.669 Approximations de la
0.813 dérivéeenx = 1.7
15 4.482 0.179
0.992 0.041 .
1.7 5.474 0.220 0.007
1.212 0.048 PEL7) = 61212 = 6.606
19 6.686 0.268 0.012 '
1.480 0.060 . .
21 8166 0.328 0.012
1.808 0.072 PgLl7) = 02 (1212- 50-268)
23 9974 0.400 '
2.208 =5390
25 12.182

Erreur sur P¢:

Egx) =~ 5(02)' T ()

- 0669 £ EZL7) £ - 0547

x=17 x=19

Erreur sur P :

1
Ef(x) =3(02)* f @)

0073£ EM(17) £ 0109

x=17 x=2.1
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Dérivation du polyndme de Newton Grégory

Pours=0,1,..,n
les formules se ssmplifient.

Cas particulier (s= 1, polynbme de degré 2) :
1 1 0
P&x,) = E%ro +§ D foa

et leterme d’ erreur est :

1
Ed(x,) = ghzf ®X) terme qui est en O(h?)

Simplification :

f2

fax) » Px) =—2 =2

Aprestrandation d'indice:

fl ” f—l
f&x,) » oh Formule centrée
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Formules de calcul desdérivées
Dérivée premiere .

- f,
F &) = +O(h)

h
— fl' f—l 2
F&Xy) = +0O(h7) (différences centrées)
- f,+4f, - 3f
f([(xo): 2 2h1 O+O(h2)
- f,+8f, - 8f  +f
fx,) =— 12h ——=+0(h") (différences centrées)
Dérivée seconde :
f,- 2f, +f,
f&x,) = h2 +0O(h)
f,-2f,+ 1
f®xy) =—— 2 +O(h") (dlifférences centrées)
- f,+4f,- 5f +2f
fax,)=—2 2h2 L —0+0(h?)
- f,+16f, - 30f, +16f_, - f
fUx)=———— —=+0(h") (différences

centrées)

Dérivées d ordre supérieur : T (%) = hno +O(h)
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|nstabilité de la différentiation numérique
(propagation deserreurs)

fl' f—l

+0O(h?
oh (h*)

F&x) =

h® Oaorserreur ® O et f' exacte.

Erreurs sur les valeurs de lafonction

f—l
fl

I+

f-*l €1
fi e

I+

aors

f, - f +e
f([(XO) — 1 2h -1 e_|.2h—1 +O(h2)

I+

Si le pas h est trop réduit b
Beaucoup d’ erreur d’ arrondi

\ Ladérivation est un processus instable
(soustraction entre termes voisins)

Calculs en double précision ?

Utile si e est une erreur machine (arrondi ou troncature).
Inutile si e est une erreur sur les données.
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Utilisation des sériesde Taylor
(pour reconstruire les formules de dérivation)

au voisinage de x = Xg, NOUS avons :

h? h? h*
X1:X0+h f(Xl):flzf0+hfo¢+?f0@'€f0@§fdv+...

h? h® h* .
X1=Xy- h f(X_l) = f-l = fo- hf0¢+?fo¢l‘; Efomgfolv'k

Reconstruire laformule fy :

f. -
f ) = +O(fF)

Soustraire les deux séries:

h? h°
fl - f-l =2h f0¢+? fo(@& fov+...

Diviser par 2h et isoler fo' :

f,- f., h? h*
+—f@—f +. ..
2h 6 " 120 °

f b=

Note : Série représentant |’ erreur = puissances paires de h
seulement.
L 'extrapolation de Richardson gagnera 2 ordres.
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Utilisation des sériesde Taylor
(pour reconstruire les formules de dérivation)

au voisinage de x = Xo.

h? h® h* .,
X, =X, +h f(x)=f, =f,+hf®r—f&—f@—f, +..
2 6 24

_ e h? h® h* ..
X,=%,-h f(x_l)—f_l—fo-hfo¢+?fm; GNEQ]C +...

Reconstruire les formules pour fy', fo'’, ...

f. -
f ) =2 +O(hF)

f.-2f . +f
f ox;) =" 2L +O(h")

Avec d autres expansions :

3 4
F(x,)=f, = f, +2h f 0+ 2h? focl&% foam% Five

f(x,)=f,="1,-2hfe+2h*f e 42 f@zg fv+
Reconstruire des formules plus complexes::

- f,+16f,- 30f, +16f - f.
12h?

T &) = =+0(h*)
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Ordre d’une approximation

f(x) est d’'ordren au voisinagede O s

f (X)
Xn
Ou M est une constante.

lim £M
X® 0

L a notation employée est
f(x) = O(x")

Remarque : On devrait plutét dire f(x) appartient a O(x").

Exemple: Remarque :
f(X) = SIn(x) - On atoujours
ona: O(h")=c h"+c ,,h"™+. ..
. |9Nn(x)
lim =1
x®0| X - Unterme d’ erreur O(h")
donc Sin(x) = O(x). signifie approximativement
que:
|| faut noter que : S ondivise h par 2,
ondivise leterme d’ erreur
O(1) E O(x) E O(x?) E... par 2"

EO(x") EO(X"ME...

1ft2421

en effet on a:
C @—Qn —ic h"
ngzg - 2n n
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Extrapolation de Richardson

- Pas=nh
() =, +0(h")

= f,(x) + Kh" + O(h™")

- Pas=2h
fF(x) = f,(x) +0O((2h)")

= f,(x) +2"Kh" + O((2h)™")

Alors

F(X) = 00+ (F,(0) - £,(x))+0O(h™)

2" -1
Précison amédioréd’un ordre

M éthode val able pour :
- Interpolation
- Dérivation numerique

- Intégration numérique
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Extrapolation de Richardson
Démonstration

D® f(x)- f (x)=ch"+c ™ +...

n+1

(2® f(X)- (%) =¢,(20)" +C,.y(20)" ..
=c,2"h" +
2"*(1)-(2 b
2" f(x)- 2", (%) - f(X)+ (%) =O(h™)

(2"- D0 - (2"- Dy (x) - 1,00 + F,(x) =O(h™)

(2" - D{F (- £,00} = £,(X) - f,(x) +O(h™)

1 n+1
on _ 1{ fh(x) B f2h(x)} +0O(h™)

PO - 1,(x) =

= {1,090 £, (0} +O(h™)

f(9= 1,00+ 57
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Exemple: Différences centrées :

- h=01
Dérivée premiereen x = 2.5
de f'(2.5) = (f-f.1)/2h + O(h?)
= (0.25337-0.31729)/0.2 +
X f(X) o(h?)
2.3 0.34718 =-0.3196 + O(h?)
2.4 0.31729
2.5 0.28587 - 2h=0.2
2.6 0.25337
2.7 0.22008 f'(2.5) = (fo-f.5)/2h + O(4h?)
= (0.22008-0.34718)/0.4 +
O(4h?)
=-0.3178 + O(4h?
Note: Technique d’ extrapolation
L’ extrapolation de f'(2.5) =-0.3196
Richardson peut étre +{ -0.3196 -(-0.3178)}/3 +
appliquée plusieurs fois. O(h*)
=-0.3203 + O(h%
fn
Amélioration de 2 ordres.
fon

fan
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| ntégration numérique

n+1 points de collocation

Approcher I’intégrale de lafonction

Of (x)x

Surface sous lacourbe entreaet b

—~

Position

0.1s Temps
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| ntégration numérique
(Quadrature de Newton Cotes)

Polyndme P,(x) de Newton Gregory

L’ intégrale du polyndme et de |’ erreur est :

Q:"f (x)dx = Q P (x)dx + Q”En(x)dx
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Quadrature simple du trapeze
(formule de Newton Cotes pour n=1)

Polyndéme P,(x) de degre 1
6la(x)dxz h@lPl(s)ds Formule d erreur :

X 1350
=1 OE,(0dx=h*f @) Oc. 2ds
QP(x)dx hesfo S o i % 2o

f,- f'jzo :hgf“’(xl)@S(S Vs
_hsf M 2 16
=hfax)g o2

(‘)X:a(x)dng[ o+ f]

Surface sous le trapeze.
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Méthode de Simpson 1/3

(quadrature ssimple)
Polyndme P,(x) de degre 2
(‘SZPZ(x)dx _ h@sz(s)ds Formule d' erreur :

Remarque ,

Qg—ds 0

Nous gagnons alors un ordre
pour |’ ereur

:g[fo +4f,+ 1,

2 iv ‘2@0
Q E,(x)dx =h°f"(x,) ngfgds

— D fiv x 10
=h>f (xl)g 005

Surface sousla parabole.
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Méthode de Simpson 3/8

(quadrature ssimple)
Polyndme P,(x) de degré 3
C\)XB P,(X)dx = héP?,(s)ds Formule d' erreur :

_ 3 X3 iv \%6
=M fo+3f, +3f, + f] & Ea(ck = FF1 () g =0

e 30

— LoV - - ¢

Pas de gain en pratique.
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Exemple:

f(x) = x°

0
1
8
27
64
125
216

OUlh, WN PP O|X

Calculer
Of (x)cx

Simpson 1/3
(n=2) h=3

. 3
6fuxu»§(%+4g+f9

3
= §(O+ 4* 27 + 216)
=324

Note:

7 4\6
$ .. _exu
QX dx =g
Uy

e

1ft2421

Regle du trapeze

(n=1) h=6

. 6
6u@m»§%+m

6
—E(O+ 216)
=648
Simpson 3/8
(n=3) h=2
6 *
Qf (x)dx » 5 (f,+3f, +3f, + f,)
3
:Z(O+3*8+3* 64 + 216)
=324
Remarque :

Assuré d avoir labonne
réponse car P3(X)
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Quadratures Simples
Résume :

- Laregledu trapeze (n=1)
Termed erreur d’ ordre 3

Integre exactement un polyndme de degré un
puisque f &x;) =0 dansce cas.

- Lesreglesde Simpson (1/3 et 3/8)
donnent un terme d' erreur d' ordre 5

|ntegrent exactement un polyndme de degré 3
puisque f"(X;) =0 dansce cas.

Probléemes:
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Quadratures composites

2 éetapes :

1. Construction d’ une succession de polynomes
de Newton Grégory mis bout a boui.

2. Addition des surfaces sous chacun
des polyndmes de la représentation

Construction par morceaux
chague morceau = quadrature smple

Nous parlons alors de quadratures composites.
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Quadrature composite du trapeze

L’ aire de chaque trapeze est :
h :
Ti:E(fi+fi_1) pour 1£1£n

h est constant = les intervalles sont égaux.

Laregle composite du trapeze est :

n

A =G T =A T =08 (f+1.)

i=1
:g{ fo+2f, +2f, +2f +. +2f , +f |
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Erreur sur la quadrature composite du trapeze

L’ erreur E(f) = I(f) - A(f) sur I'integrale est :

R 8
E(f)= 12 a f&x) avec X ,EX £ X
i=1
- h° 1g
= 0h- %) a fax)

2

17 (x,- %) f®x) avec X,EXEX

Remarque :
Si f(x) est un polynéme de degré 1 alors A(f) = I(f)
car f’’(x) = 0.
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Exemple:

P P
. Approximez! = QSN(X)dX avec N=",

P
Valeur exacte: | = QSIn(x)dx =[- Cos(x)]; =2

1 1
:h(§f0+f1+f2+f3+§f4)

h=P

I

3= x

x
2 4

A —(1+ J2) » 1896

h——

T T

avec OE£XxE
12 P

3
192‘Sn(x)‘£@»016149 avec O0EXEDp

Eie =1~ A ,=2- Z(1+ V2) » 2- 1896 » 01038

[E|=
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Exemple (suite) :
Remarque :

Nous pouvons utiliser laformule de I’ erreur
pour définir lalargeur d'un intervalle :

Comment choisir h pour que I’ erreur d'integration

P
obtenue sur | = QSN(X)dX par la méthode composite
des trapezes soit plus petite que 0.0005 ?

2

E:_12 (X, - %X,) T ®X) avec O0EXEDp

E| = hZ\Sn(x)\ h2£00005

~

U
12
h® £ FO.OOOS

~

U
h £ 0.044

n> » 718

0.044

Donc n3 72 intervalles.
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Quadrature composite de Simpson 1/3

Nombre pair d’intervalles = nombre impair de points
nb = 2m+1

Sur chague paire de sous intervalles,
la courbe est remplacée par une parabole.

Pour chaque triplet de valeurs :

h
Szg(fZi-2+4f2i—1+f2i) 1£1£m

Laregle composite de Simpson 1/3
pour trouver I’integrale I (f) est :

\X2m 6n h om
A(T)=0 f(dx=a S=a (. ,+41, + 1)
0 i=1 3i=1

:g{ fo +4f1 + 2f2 +4f3+"’+4f”‘1 * fn}
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Erreur detroncature globale pour Simpson 1/3

E=E +E,+.+E,

E =

h°aef v (x,) + fY(x,)+...+f iV(anz)Cf’V
908 n/2 5/ 2

5

— h_ iv — i 4 ¢iv - 1 (b' a)5
E=-1go" T = gob- AT =- 10

f iv (X)

Remarque :

- S f(x) est un polyndbme de degré inféerieur ou égal a 3
aorsA =lI.

E=Oca f'(X)=0

E =0o(h*)
S nous doublons |le nombre de sous intervalles
alors|’erreur est coupée par un facteur de » 16.
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Remarque:

3 points

a 4]

L e polyndme de degré 2, P,(x), est passant par ces 3 points
est unique.

Mais, il y auneinfinité de polynémes de degre 3, (cubiques
P3(x)) passant par 3 points donnes

b b h
QR = QR () =3 (% +4%: +v,)

ou P3(x) est une cubique quelconque

Preuve (exercice)
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Quadrature composite de Simpson 3/8

Sur chague triplet de sous intervalles,
la courbe est remplacée par une cubique.

Pour chaque 4uplet de valeurs::

3
S :gh(fo+3f1+3f2 + f3)

Laregle composite de Simpson 3/8
pour trouver I’integrale I (f) est :

A(f) :on”f(x)dx

:gh{ fo+3f, +3f, +2f,+...+2f . +3f, , +3f ,+f}

n-

Erreur detroncature globale pour Simpson 3/8

E=E +E,+.+E , (n=3k)

_ 3 iv(xl) + fiv(xz)"'---"'f iV(Xn/:s)c..)n
E=-20"¢ n/3 iz/3
E_ h_5n fiV(X)_ (b_ a) h4fiV(X)_ 1 (b_ a)sfiV(X)
80 80 - 8 n’

L’ ordre de I’ erreur est le méme que pour Simpson 1/3 : O(h*)
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| ntégration de Romberg

Méthode qui utilise:
La quadrature composite du trapeze
et latechnique d’ extrapolation de Richardson.

| =Qf (WX =T,+E

T :2{ fo+2f, +2f, +2f +. . +2f  +f }

(b- a)
12

h? f &x) aEx£Eb
T -1 =

ah’+ahn*+ah’®+ah’+... (*)

* Formule d’ Euler Maclaurin
ou les coefficient g sont independants de h.

La méthode de Romberg consiste a appliquer e procedé
d’ extrapolation de Richardson alaformule d’' Euler Maclaurin.

C'est une amélioration de la méthode composite du trapeze.
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| ntégration de Romberg

n=2"

Définition :

Ti» = Valeur delaquadrature composite
al’ éapei pour n sous domaines.

1. Premiere étape:
Calcul des quadratures composites :

T, :g{ fo+2f, +2f, +2f +. . +2f  +f ]

TLg Nig ot 421+ 1)
TL% 4h{f +2f,+. +2f , +f}
TLg 8h{f +2f+ +2f  +f )
(C...
st y
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| = Qf ()dx =T,,, +O(h?)
=T, +O((2)?)

=T, +0((4)?)

etc...

Tl,n
T2,n/2
Tl,n/2 T3,n/4
T2,n/4
Tl,n/4
O(h®) O(h*)  O(h°)

2. Deuxieme étape:

1% Extrapolation de
Richardson
T, T n- T =
e 0
T =T + T -T =
2,2 1,2 2% - 1§ 1 1,2@
e 0
T =T _ + T -T =
2,% 1,2 22 - 1§ n 1,%@
etc.
Nous avons alors:

| = Qf (X)dx = T, +0(n")
=T , +0((2h)?)

etc...

1ft2421

35

3. Troisieme étape :

2°™ Extrapolation de
Richardson
1 e C')
T,=T, T, - T
3,2 2,5 1§ = 4g
e C‘)
T,=T, T, - T
3,5 2,2 24 1§ — sg
etc.
Nous avons alors:
b
| = (}f (X)dx=T +O(h6)
32

=T, +0((2h)°)
'8
efc...
Nouvelles itérations possibles
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| ntégration de Romberg

Nous avons donc comme formule générale:

Tk+1,g - 4k1— 1(4ka’” ) Tk’”’Z)

Remarque:

Apres la premiere étape d'extrapolation,
|la méthode de Romberg est donne
|la méthode de Simpson 1/3.

onE g 2,0
1intervalle de longueur 2h Tia = 2h&5 1o +5 1.5

.-
&2 !

+f +=f,

(SHE ek

2 intervalle de longueur h T, =

N | =

4T1,2 - T1,1
3

:g(2f0+4f1+2f2- fo- 1)

:g(fo+4f1+ f,)
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Exemple:

Calculer une valeur approchée de | par la méthode de Romberg.
entre 0.0 et 0.8
Xx | 00 0.2 0.4 0.6 0.8

f(Xx) \ 0.000 0.199 0.389 0.565 0.717
Attention :

1. Premiere étape:
Calcul des quadratures composites :

h
n=4 T1,4 :E{ 1:o +2f1+2f2 +2f3+ 1:4}

02
T = 7{ 0+2*0199+2*0.389+ 2* 0565+ 0.717}
T,, = 03023

2h
n=2 T1,2 = ?{ 1:o +2f2 + 1:4}

2h
T, = ?{ 0+2*0.389+0.717}
T,, =0299

4h

T,, = 02868
Ordre de I'erreur O(h?)

1ft2421 37 Chapitre 5



1ft2421

2. Deuxieme étape:
1%° Extrapolation de Richardson

T2,2 - T1,4 + 22]: 1(T1,4 B T1,2)

1
T,, = 03023+ 1(0.3023- 0.299)

T,, = 03034

T2,1 = T1,2 + 22]: 1(T1,2 B T1,1)

1
T,1 =0299+; 1(0.299- 0.2868)

T,, = 0.303066

Ordredel'erreur O(h?

3. Troisieme étape :
Extrapolation de Richardson

2éme

24]: 1(T2,2 B T2,1)

T;, = 03034+ 1(o.:«sos4- 0.303066)
T,, = 03034222

T3,1 = T2,2 +

Ordredel'erreur O(h®)
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M éthode des Quadratur es gaussiennes

1ft2421

Polyndme de Legendre
1 d
P(x)= T (x*-1)" n=123...
P(x)=1
R(X) =x

1

P, (x) :§(3X2 -1
1 3

P, (X) :E(SX - 3X)

1
P,(X) = §(35x4 - 30x* +3)
1
P.(x) = 5(63x5 - 70x> +15X)

1
P, (X) = 4—8(693x6 - 945x* +315x° - 5)
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Racines des polyndmes de Legrendre

Théoreme:
Pn(x) possede n racines reelles, toutes situées entre -1 et 1.

Exemple: X
n=1 R(XX)=x=0 U x=0

1
' n=3 P3(x):§(5x3-3x):
S 0 x(5x%- 3)=0
1.5 1 0.5 0.5 1 1.5 ‘IX:O
.
0.5 U i 3
[ X = %=
|
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M éthode des Quadratur es gaussiennes

Théoreme:

Si P est un polynéme de degré inférieur ou égale a 2n-1, alors

& Pt = & w,P(t)

LW =
OU ! Ol j=1 tl = t]
ji
et N
to, t1, to, ..., t, SONt les zéros du N'™™ polyndme de L egendre.

Exemple : Quadrature gaussienne avec 2 termes.
Soit P(t) un polynéme quel conque de degré inférieur ou égal a 3.
d
Posons : Q,P(t)dt =w,P(t,) +w, P(t,) n=2

Trouvonst,, t;, wi, W, pour que le membre de droite donne la
valeur exacte de |’ intégrale, quelque soit le polyndme de degré
inférieur a 3 consideéré.
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Soit P(t) = a;t” +a,t” +at +a, &, a, a, a quelconque.

51(a3t3 +at® +alt+a)dt =w, (aty +aty +at, +a,)
W, (agt; +ayt; +at, +a)

2
2,(0) +8,(3) +a,(0) +85(2) =3, (Wity' +W,t5) + 8, (Wity +W,t5)

+a1(W1t1 + W2t2) + a'O (Wl + W2)

(D wit)+w,t; =0

2
(2) W1t12 +W2t22 = 5
(3) Wity +W,t, =
(4)  wytw, =
D Wit; +W,t; =0
(3)*t2 w,t +w,t,t2 =0

M- @*t7  wyt,(t; - t7) =0
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W,t, (L, - t)(t, +1,) =0

W,=0ou t,=0ou t,=t, ou t, =-t;

O,P(t)dt =P (£> P<£>

Quel que soit le polyndme P(t) de degre £ 3.
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Application :
Soit f(t) quelconque et (Maclaurin) :

fG(O) RO ., (WO ,
2| 3l

f(t)=1(0)+ R

P(t) polynbme de degré 3.
F(t)=P()+R,

f(t) » P(t)

Jd d
Qlf (t)dt » o} P(t)dt = P(t,) + P(t,)

O, f V)t » f (1) + (t,)

0, f (t)dt » f (£> <£>
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Quadrature gaussienne avec n termes

Soit P(t) un polynéme quel conque de degreé inférieur ou égal a
2n-1.

d
Posons : Q,P(t)dt =w,P(t,) +w,P(t,)+...+w, P(t,)

Trouvonsty, ty, ..., th, Wy, Wo, ..., W, pour que le membre de droite
donne lavaleur exacte de |’ intégrale, quelque soit |e polynéme
de degré inférieur a 2n-1 considéere.

Application :

Soit f(t) quelconque :

(2n-1)
f40) &), f®O), T .,

fO =10+, 2l 3 7 (2n- 1) Ren

P(t) polynbme de degré 2n-1.

f(t) » P(t)

O, (t)dt » O P(t)ct =w, P(t,) +w,P(t,)+...4w, P(t,)

O, F (Ot » W, f (1) +w, f (t,)+...4w,  (t,)
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Rappsd :

- Danslaformule de Gauss an termes, ty, to, ..., t, sont les
racines du polyndme de Legendre Pn(t) de degré n.

w, =L (Ot

ou L;(t) sont les polyndmes de base qui correspondent aux
abscissest, ty, ..., t, dans laformule de Lagrange du polynéme
de collocation.

Exemple: n=2
O, F (Ot »w, f (t,) +w, f (t,)

LB B
3
V3
3 1
i—-i(\/ét-l)

V3
Ve <1
J 1 16J3 U
w, = Q,Ly(t)dt =- 561(\@ t- Ddt=- Z&--t?- tg
_ _ ; 0

28 2
1ém/3 0 a&/3 06U

W = - a2 1+ o241
VTT2g2 5 é2 o

(t'tz) _t-
(tl'tz)_ _

L, (1) =

W, =
Méme chose pour W,
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Nous allons donc construire une table contenant
Pour différentes valeurs de n,
les racines du polynéme de Legendre de degré n
et les valeurs des poids correspondants.

1ft2421

Racines Coefficients
0.5773502692 1
-0.5773502692 1

0.774596692 0.5555555556
0 0.8888888889
-0.774596692 0.5555555556
0.8611363116 0.3478548451
0.3399810436 0.6521451549
-0.3399810436 0.6521451549
-0.8611363116 0.3478548451
0.9061798459 0.2369268850
0.5384693101 0.4786286705
0 0.5688888889
-0.5384693101 0.4786286705
-0.9061798459 0.2369268850
Remar que:

47

Lafonction f(x) doit étre connue.
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Application a un domaine d’intégration quelcongque

X=b A
I=Q,9(x)dx s =
D |
Effectuer un changement x / |
devariable: ! |
S L lc
X = X(t) - p 1
tel que lorsquet varie de DE _ BC
-lal AE AC
X variedeaab. X-a _ b-a
dx = x§t)dt t-(-1) 1- (-1

. (b-ajt+@+h)

2
_(b-4a)
dx = > at
X=b b-a = b-aJ
I'=Q_ 9(x)ax = TQ-lg(X(t))dt = Tolf (t)at

w, f () +w, f (t,)+..+w, f (t,)}

W, g(X(ty)) + W, g(X(t,)) +...+w, g(X(t,))}

(@)
N
QD

(@)
1
QO
— — —

W, g(%) +W,g(X,)+...+W,g(x,)}

n choix de |’ usager.
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Exemple:

Calculer I’ intégrale suivante par la méthode

de Gaussa 3 termes ;
20.5 ,
| =— O " dx
VP
1
=—(t+1
x=2(t+])
1
dx = —dt
X~

1
> \/E{Wlf (t,) +W, f (t,) + W, f (t,)} = 0520500184

L2 - L 077459667+1)2
f(t)=e?* —e 16 = 099682962
1., 1
f (tz) = e_ 162" —e 16 = 0.939413062
Lz - R (177a50667)°
f(t,)=e —e 16 = 0821334696
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M éthode des Quadratur es gaussiennes
La méthode de Gauss est tres utile.

Nécessite moins de calculs;

Exemple formule de Gauss a 2 termes:

c)lp(t)dt = P(- £) P(ﬁ)

est exacte quelque soit P(t) de degré inférieur ou egal a 3.

Pour avoir le méme résultat avec Newton Cotes, il faut utiliser
S mpson 1/3 ou 3/8 (Polynéme P(x) de degré 3).

QRO = QR =3 v+ 4y, +v,)

Qo P,(X)dx = gh[ P, + 3P, +3P, + R

Il y a3 ou4termesaévauer!
Seulement 2 pour la méthode de Gauss.

Probleme:

Si lafonction est inconnue U Nous avons une table.
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M éthode des coefficients indéter minés

Si lafonction est inconnue U Nous avons une table.
O f ()dk=a w, f (x)
i=0

w; : Poids de la quadrature.
X; . Points de la quadrature

Principe :

Si les points sont fixes,
déterminer les poids. (f(x) = P(x))

1ft2421

Remarques :

1. Se servir des bornes :
Xo=-letx,=1

(smplification des calculs)

2. Imposer |es polyndmes de base
x pourj=0an.
Calculer les poids.
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Exemple:

Trouver a, b et c tel que:
(‘Slf(x)dx:a f(-)+b f(0)+c f (2

Imposer |es polyndmes de base
X' pourj=0az2.
f(x)=1 f(x)=x, f(x)=x°

(=1  Ox=[x,=2=a@®+b@)+c()

at+b+c=2

F0=x  Odx=xY 0za(-1)+b@+c()
O =& H,

-a+c=0

, N
f(x) = X2, élxzdx:%x?’a :%:a(1)+b (0) +c (1)

1
a+c—g
3

Solution:

o
1
wlH
(@)

I
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Remarque:

Si nous utilisons le résultat précédent pour calculer:
Jot+2h

QO f (x)dx

Effectuer un changement de variable : x = x(t)

tel quelorsguet variede-1al
X varie de X a Xg+2h.

EA G
x/_p//:
A_______ix__,?_ﬁ ______ ic
X : o
X(t)- X _ X +t2h- X, _2ht+2x,+2h _
t- (-0~ 1- (-9 X= > =ht+x,+h
dx =hdt
X=X +2h _b-a _b-a
1=qQ, f(x)dx= —Q f (x(t))dt = — 0 g(t)dt
2hj
> 30+ 300+ g(tgg

> <h{ £ (X(0)) + 4 (X(6) + £ (2D}
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Dérivation des splines cubiques

Spline i-1

Spline i

XbF=-—---
>
xi-———-

M = = e o~ o

i+

Dans|’intervalle de longueur h;,
la spline est un polyndme

Py (¥ =a(x- x)>+b(x- x)* +G(x- x)+d,
ses dérivées sont :
P$(x) =3a,(x- %)% +2h (x- %) +¢
P(X) = 63, (X- %) +2b
Aux abscisses de collocations :
PE(x) =¢
P(x) = 2
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|ntégration des splines cubiques

L’ intégration de la spline devient :

Xn+1 n %+
Of (dx=a P (x)dx
X =1 x

n <« ~ X1
:i%ig%(x- Xi)4 +%(X' Xi)3 +32|(X' Xi)2 +diX§>q

' éa h ; ;
:élg%(x”l_ Xi)4 +§(Xi+1_ Xi)3+E(Xi+1_ Xi)2 +d; (X - Xi)H

Exprimeée en fonction
des pas

h:Xi+1_Xi
Of (k=4 grh' + Th*+ Sn ra

Pour un pas constant  =h, nous avons:

Xn+1

Of (x)dx—h—a a +h—a b +h?a C +ha d

=1
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Intégrale impropres et indéfinies

21 d
:(‘Sxe"‘dx :Q—\/f I3:(§x\/x2+1dx
=Qx € dx+(Qxedx

01 e dyd _ 41 %
3

avecheXdX de 8 Vo Q
®e1 -0

lime— e '+=0
ye 0gy° 7}

:@Axe'xdx A® ¥

A |4
1 0.26424
10 0.99950
100 1.00001
1000 1.00001
10000 1.00001
¥ 1.0000
|, =7
21
2=Q Jx X B® 0
=7
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| ntégrales multiples

1. Leslimites de I’ intégration sont des constantes.

Icl nous avons :

J

OO f (x,y)dA= (3(61‘ (x,y)dy)dx - Q((‘Sf (x,y)dx)dy

Pour calculer cette intégrale, nous considérons x contant lorsque
nous intégrons par rapport ay et y contant lorsgue nous
intégrons par rapport a x.

Nous appliquons aors la méthode que nous voulons.

‘ 2= Rx. 9
P
o ,
F ) I
F 1 | 5 ‘."r
£ | Ll
¥ o
:‘.-"'-'nlJ : ‘
|
| ¥ |
f |J : |
! ..-"'l-__"l—_hl ¢ |!
>< TI><__ | d
/ | (- S
,-#'j. | | ! _H_H_""‘“"-t-
_ | | y
X b | R :
|
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Exemple:

Intégrer lafonction donné par latable suivante dans laregion A
déterminée par x=1.5, x=3.0 et y=0.2, y=0.6.

X\y 0.2 0.3 04 0.5 0.6

1.5 0.990 1.524 2.045 2.549 3.031
2.0 1.568 2.384 3.177 3.943 4.6/72
2.5 2.520 3.800 5.044 6.241 7.379
3.0 4.090 6.136 8.122 10.030 11.841

Nous allons intégrer avec la méthode des trapezes dans la
direction x et la méthode de Simpson 1/3 eny.

Commengons par y constant :
30 30
y=02 (. f(xy)dx=q.f(x02)dx
h
:E(fl +2f,+21;+1,)

05
=~ (0990 +2(1568) + 2(2520) +4.090)
= 33140

8 05
y=03 Q. f (x03ck = (1524 +2(2384) + 2(3800) + 6136)
= 50070
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En faisant de méme, nous obtenons::

y = 04: (‘501‘ (x,04)dx = 66522
5

y =05 (‘S’Df (x,05)dx = 82368
5

y =06 O, f (x06)dx = 97435

I ntégrons maintenant en y suivant laregle de Simpson 1/3.

NG h
Q, f (x.y)dy =5+ 4T, +4f, +41, + 1)

01
= 3 (33140 +4(5.0070) + 4(6.6522) + 4(8.2368) + 9.7435)
= 2.6446
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| ntégrales multiples avec limites variables

2. Leslimites de |’ intégration sont variables

|ci, nous avons par exemple :

Jd

00 f (x.y)dA= Q@X?(lx, y)dydx

L a surface sous laquelle nous cherchons le volume n’ est pas un
rectangle dans le plan défini par les axes x et y.

larégion considéree est .

y

e —
- 1

I
I
|
| A
|/l
| ¥ |
fe [ e e
| /* I/ |
&7 gl ’ I W
[ = k /| , v
AT A
7 ~ |
d-—1 P 70
|4 |
com=¥ ol 1 L4y
T
e —
b A n‘ | l :
— . é l l “}u X
da g m 1
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Si nous utilisons une quadrature composite du trapeze
avec 5 sous intervalles dans chaque direction,
nous obtenons :

=

—(f, +2f +2f_+2f, +2f_+ 1)

N [ N

S
S (fy +2f, +2f +2f, +2f, +f))

h,
S, =

> (f, +2f +2f +...)

S :h—26(fu+2fv+2fw+2fx+2fy+ f))

d K+l
Nous avons lavaleur de QQF (X, Y)aydX par -

| :h_2><(Sl+ZSZ +25,+2S,+25 +S5)
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Exemple:

d K+l
Calculer QQF (X,Y)dydX avec une quadrature composite du
trapeze avec 5 sous intervalles dans chaque direction :

f(xy) =xy
f(O,y):O X2+1:1
10/5
S ——(O+O+O+0+o+o) 0
f(0.2y) =0.2y
104/5
S, == (0+00832+01664 + 02496 + 0.3328 + 0.208)
= 01082
116/5
S = —(O+11856+03712+05568+O7428+O464)
= 0.2692
S, = 05549
S, =10758
20/5
S =, (0+08+16+24+32+20) =20

02
= (0+0.2164 + 05384 +11098+ 21516 + 2.0) = 06016
Valeur analytique : | = 0.583333
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