Ift 2421

Chapitre 6

Résolution
des éguations
différentielles:;

Conditions initiales



Résolution numérique des équations différentielles

Rappels:
2 grandes classes.

1. Les équations différentielles ordinaires:
une seule variable.

2. Les equations aux dérivees partielles:
plusieurs variables.
(équation de la chaleur, des ondes, ...)

Ordred’une équation différentielle: déerivéelaplus éevee.

Equation différentielle linéaire :

dR(t)
émission radioactive: ~g; =- 1 R(t)

Equation différentielle non linéaire :

dN(t) |
Variation de population: ~ g~ aN(t)- bN (t)"

du(t) :

Convection: ~g - k(u(t) - T)

néecessite des conditions initiales.
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Résolution numérique des équations différentielles
Exemple du pendule:

Equation différentielle non linéaire
du second ordre.

|mpossible de trouver une solution analytique.

Pour de petit mouvements::
Sn(g) »q

Equation du pendule:
t: temps
g: Position angulaire

dqg ¢

q? LN

Conditions initiales usuelles:;
q(ty) =d,
q&t,) =q¢
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Méthode des séries de Taylor

Ordre 1:

y&t) = f(t,y(1))
y(to) = Yo

Dével oppement de Taylor au voisinagede t; =t; + ] h
2 3

h
Yia =Y, +hyq(tj) +?ym(tj) +€y(m(tj) +O(h4)

Devient:
2 3

h
Yiaa =Y, +hf(tj’yj)+?fqtj’yj)+€f m(tj’yj)+o(h4)

Remarques:

1. L'ordre local est en h”.
2. Pas d'estimée de |'errevr.
3. Les dérivees delafonction f(t,y(t)) se font:

df Tf qf TfF 9f

— = fqt,y)=——+ ¢=——+

R TR TRASE TR Y
4. Si I'ordrelocal est enh”, I'ordre global seraen h™.

f
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Exemple:

Appliquer laméthode de Taylor avec un pash=0.1
et un ordre local en h® pour:

y&t) = f(t,y(t)) =-t y*(t)
y(t) =y, =1

Solution analytique: Y(t) =572

Lepasest h=0.1, nousalonscalculer lesvaleurs de y(t)pour
t=0,t=0.1,t=0.2, ..., etc.

Si nous utilisons un ordre local en h3, NOUS avons,
2

V1=, Hhydt) + o yat,) +O(h)
Exprimons Y®t)

Ve = 4 y(0) =- y2(0+(-1) 2 Y(O) Y&
or Y4 = £ (Ly()) =t y*(0
doncY®1) =~ V(1) +(-) 2y(1) (-t y°(1)
y®t) =- yi(t) +2t°y(1)
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Laformule de Taylor d'ordre loca h® devient dors:

2

h
yj+1 = yj +h(' tj yz(tj))+?(_ yz(tj) +2tj2 y3(tj))+o(h3)

pour t, =1, +h
2

01
Yi=Yo- h to y2 (to) +7(' y2 (to) +2 t§ yB(to))
y, =1- 0005=0995

2
= ——» 099502487...

Valeur exacte: y(1) = 107 = 201

pour t, =1, +2h

2

h
Y, =Y, - ht yA(ty) (- yo(t) +2t7 yi(t,))

2

01
y, =0995- 01 (0.1(0.995)%) +7(- (0.995)° +2 017 (0.995)°)

y, = 0.9802486...

2 2
Valeur exacte: ¥(02) = 24022 204 0.980392156...

pour t; =t, +3h Etc.
Ordreglobal h.
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Méthode d'Euler (ordinaire)

Ordre 1:

y&t) = f(t,y(1))
y(to) = Yo

Méthode d'Euler = Méthode de Taylor
d'ordre local en h?.
Ordre global en h.

Y. = Y; +hydt;) +O(h?)

Vi =Y; (L, y(t))) +O(h?)

| nterprétation geéométrique:

y
Yi ;

: Solution
Yo |- : analytique

Xo Xot+h X
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Erreur globalevsErreur locale
Y, = Valeur calculée en x,.
Y, = Vaeur exacte en X,.
€& =Y,- Y, =erreurenY, Y,=VY,*6
Avec laméthode d'Euler, nous avons:
Y =Y +hi(t,Y)
En utilisant les séries de Taylor:

2

h
yn+1:yn+hf(tn’yn)+?y(u(xn) avec Xn£xn£xn+h

h2
i = Yoia Your = Yo - Yo HH £ 06 9,) - £ 06, Y]+ yex,)

éf (Xn’yn) - f (Xn’Yn) u

h2
€ =6 T hg (yn j Yn) H(yn - Yn) +?ym(xn)

2
€a =& Th 1,(X.N,)€ +=yH®X,) avec h, entre y, et Y,

2

h
en+1 £ (1+ hK)en +? ym(xn)
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Erreur globalevs Erreur locale (suite)
& =0
h? 1,
e £ (1+hK)e, +?y(u(X0) = Eh y ®X,)
2

a1 g h 1
€, £ (1+hK) & 0 yox,) g+~ y8x) = 5 [ (L+ hK) yaie,) + yatx, )

1
&, £ (L+hK)? yax,) + (1+hK) yax,) + yotx,)
6, £ [ (L+h)™yax,) +(L+ hK)™ 2y, ). +1 Y8k, )]

1
e EEhZM[(1+ hK)™ + (L+ i)™ 2+ +1 |

Sachant que :
l+s++ +gri=> 1
s-1
Nous obtenons ;
(1+hK)" - hM hM
£— hZM - —
N (1+ hK)lU & E o KT
hK hK
hK:1+hK+( ! ! 3) o Maclaurin

1+hK <e™ (K>0)

MMy IM_ DM (e - 1) = hM

e £—(e =
2K 2K 2K

T 2K o (€7 - ) =0(h)
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M éthode d'Euler modifiée

Taylor d’ ordre loca en h®:
2

h
Yia =Y, +hf(tj’yj)+?fG(tj’yj)-i-o(hg)
Différence avant pour évaluer ' :

f(tj+1’yj+1) - f(tj ’yj)
h

fat;,y,)= +0(h)

Formule d' Euler modifiée:

h
Vi =Y, o £ 9,0+ F (1 yp0] + O°)

h
Yiaa =Y +Ely1¢+ yﬂ-:i-ll + O(h3)

y
Y1
: Solution
Yo |- , analytique
Xo Xot+h X
Ift2421 10
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Méthode d'Euler ordinaire
Algorithme

Yo donne

Yisa =Y, thi(t,y(t,;))

Une seule étape de calcul

Ordre global en h.

M éthode d'Euler ordinaire
Pour résoudre;

yat) =-t y*(t)

Méthode d'Euler modifiée
Algorithme

Yo donne
Via =y, +h (L)
Voa =Y, o F Y+ (e Ti)
Deux étapes de calcul:

1. laprédiction.
2. Lacorrection.

Ordre global en h?.

M éthode d'Euler modifié
Pour résoudre;

yat) =-t y*(t)

y(0) =1 y(0)=1

ti Yi erreur ti yiprédit y;corrigé  erreur
0.1 1.0000 -5.0 10°3 0.1 1.000000 0.995000 2.5 10°
0.2 0.9900 9.6 103 0.2 00985100 0.980346 4.6 10°
0.3 0.9704 -1.3 10? 0.3 00961124 0.956878 6.0 10°
0.4 0.94215 -1.6 10? 04 0.929410 0.925868 6.0 10°

05 0.891579 0.888851 3.8 10°

0.6 0.847458 0.847458 5.2 10%

Note: L'étape de correction peut étre répétée 2 a 3 fois, au dela,
il est préférable de réduite h.

1ft2421

Chapitre 6



M éthode d'Euler ordinaire
yat) =-t y*(t)
y(0) =1

h=0.5

t; Yj

0 1
0.5 1

1. 0.75
15 0.46875
2. 0.303955
25 0.211566
3. 0.155616
35 0.119291
4. 0.0943882

M éthode d'Euler Modifié

h=0.5

t; Yj

0 1
0.5 0.875
1. 0.662472
15 0.479149
2. 0.345942
2.5 0.254107
3. 0.191201
35 0.147512
4, 0.116497

1ft2421
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Méthode de Runge Kutta
Développement al’ordre 2

Yo donne

kl :hf(xn’yn)
k,=hf(x +ah,y, +bk,)
yn+1 = yn +ak1+bk2

Trouver lesvaleursde: a, b, a et b.

Développement de Taylor :

h2
Yoa = Yo TG, Y0) + 7 F &KX y0) +0(h®)
or
f&X,,y,) =(f, +f,y9,
=(f, +1,f),
2

h
yn+1:yn+hf(xn’yn)+?(fx+fyf)n+o(h3) (1)

Algorithme de Runge Kutta d’ ordre 2 :
Y=Y, tanf(x,,y,)+bhf(x +ahy +bhf(x 6y ))

Développons au premier ordre :
f(x, +ah,y, +bhf(x,.y,)) @f,+(f,),ah+(f,),bhf,

yn+1=yn+(a+b)hfn+h2{(fx)nab+(fy)nbbfn} 2)

1ft2421 13 Chapitre 6




Méthode de Runge Kutta : développement al’ordre 2

Yo donne

kl :hf(xn’yn)
k,=hf(x +ah,y, +bk,)
yn+1 = yn +ak1+bk2

Trouver lesvaleursde: a, b, a et b.

2

h
Vo = Yo+ E (6, ¥5) + = (F,+ £, £), +O(0%) ()
ymf=w*%a+bﬁﬁn+h10khab+(hxbbﬁ} (2)

En forcant (1) = (2), nous avons :

a+b=1
1 3
ab =§ Ordrelocal en h
Ordre global en h?.
bb=2
2

Choix Courants:

1 1
a:§® b:Eeta:b:1® Type| : Euler modifié

1
a=0® b—leta—b—E ® Typell
1 3

2
a=_®@b=ea=b=7 @ Typelll
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Méthode de Runge Kutta d’ordre global 2
L e plus courant :

Yo donne

kK, =hf(x,,¥,)

3 3
k2 :hf(xn +§h’yn +§ kl)

2 1
yn+1 = yn +§k1 +:_3k2 + O(h3)

Méthode de Runge Kutta d’ordre global 4
L e plus courant :

Yo donne

kl :hf(xn’yn)
1 1
k2 :hf(xn +§h’yn +§ kl)

1 1
k3 :hf(xn +§h’yn +§ k2)

ke =hf(x, +h,y, +k,)

1 1 1 1
yn+1 = yn +gk1 +:_3k2 +:_3k3 +gk4 +O(h5)
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L es méthodes de Runge Kutta Pas encore d’ approximation
sont tres efficaces car : de |’ erreur commise.

Nécessité de choisir le pas en

1. Elles suivent de prés la : )
P fonction de |’ erreur maximale

solution analytique.

recherchée.
2. Avec une valeur du pas Solution : calculer avec un
relativement éevé. paséga ah, h/2, ...
Jusqu’ ala stabilité de la
3. Moins colteux que les solution.
autres méthodes pour un Colt devé!

O(h") donné. ) o
L es méthodes qui gjustent le

pas sont dites méthodes a pas
adaptatif.

Méthode de Runge
Kuttad' ordre global h* :

y&t) =-t y*(t)
y(0) =1

h=0.1

h=0.5

t; Yi y; Rédl

0 1 1
0.1 0.9950249 0.9950249
0.2 0.9803922 0.9803922
0.3 0.9569377 0.9569378
0.4 0.9259258 0.9259259
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Algorithme de Runge Kutta M erson
d’ordreglobal 4 avec estimédel’erreur.

klzhf(xn'yn)

Yo donne

1 1 1 1 1
kz=hf(Xn+§h,yn+§ ky) k3=hf(Xn+§h,yn+gk1+gkz)

1 1 3 1 3
Ki=hT(x +5hy, +gki+gk) ke =hT(x +hy, +2k - Sks+2k,)

yn+1 yn _k +3k +6k +O(h)
el 3 4 1

0
E»a—k - —k, +—K, - —K.1
781517102 1547 30 °H

Algorithme de Runge Kutta Fehlberg
d’ordreglobal 5 avec estimédel’erreur.

yo donné kp =hf(x,V,)

1 1 3 3 9
kZ:hf(xn+Zh,yn+—k) ko =ht(x,+ghy, + =k +k)

1932 7200 7296
k,=hf(x, + —h y, +

+
2197 g 2197 ke * 2197 2197 <)
439 3680 845
k5=hf(Xn+h,yn+2—16k 8k, + 513k mk)
1 8 3544 1859
k6:hf(Xn+§h,yn-§k1+2k2- Kk

2565 < ¥ 2104 K¢ - 4_0 13

25 1408 2 1 .
=y + + +—k, +=k. +
yn+1 yn 216 kl 2565 k3 3 k4 6 k5 O(h )

- 61 128 128 2197 297, 1,2
»
8360 4275 3 75240 ¢

<
50" " 5564
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Exemple : Algorithme de Runge Kutta Fehlberg
d’ ordre global 5 avec estimé de |’ erreur.

yat) =-t y*(t)

y(0) =1

h=0.1
t; Yi Erreur
0 1 0.0
0.1 0.95025 7.47241 10°%
0.2 0.980392 1.97673 10
0.3 0.956938 2.75904 107
0.4 0.925926 2.98256 10
0.5 0.888389 2.69385 10
0.6 0.847457 2.01399 107

Ve = 0.847457

M éthode efficace et populaire
avec controle de |’ erreur.
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M éthodes a pas unique

M éthodes a pas multiples

(multistep methods)
utilisent seulement le pas utilisent plusieurs pas
précéedent : précédents :
YoetYé YoetYé
etauss Y, ietY$,
Exemples .
M éthodes de Taylor et de (Yn-2€tY$, possible)
Runge Kutta.
M éthodes ouvertes M éthodes fer meées
(de type prediction
correction)

N’ utilisent que les valeurs

1ft2421

précedentes

yn, yn—l, yn—2

19

utilisent autant les valeurs

précedentes

yn, yn—l, yn—2

gue les valeurs suivantes

yn+1 ’ yn+2 rer

Exemple : méthode d' Euler

modifiée.
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Méthode d’ Adams
Equations différentielles sous laforme
dy = f (x,y)dx
aintégrer sur [Xn, Xn+1] :

\Xn+l

Q d= Ql f(x,y)dx

remplacer lafonction f(x,y(x))
par un polynéme de collocation : Xpn, Xn-1, Xn-2, ...

Polyndme quadratique de Newton Grégory descendant :

PZ(S) = fn +SDfn—1 +

S(s+1) S(s- (s- 2) ,
Df # - h°f @)

2

Calcul desintégrales:

. 1 5 .
Yns1 = Y +h§fn +§Dfn_1 +EDZf n-2l:|+o(h4)

h
=Y, [ 281, - 161,.,+5f, ] +O(h*)

Note:
Lerésultat serad’ ordrelocal n+2 pour un polyndme de degré n.
Attention : Degrétrop éleve b erreurs d arrondis.
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M éthodes d' Adams

. 1 5 .
Ynir = Yn +h§fn +§Dfn_1 +EDZf n-2l:|+o(h4)

h
=y +E[23fn -16f,,+5f, ,| +O(h)
Remarques::
1. Pour démarrer, lesvaleursde Y§, Y8 et Y4
(donc fy, fy, et f,) sont nécessaires.
Amorcgage : methode de Runge Kutta.

2. Pas question d' adapter |e pas directement.

3. Probleme : extrapolation avec le polyndme de collocation ;
moins précis qu’ interpolation.

Adams (ordre local en h’)

h
Y=V, +§[3 f - fn_l] +0(h%)
Adams (ordre local en h°)

h
Yner = Yn +£[55fn - 99 fn—1+37fn—2 B 9fn-3] +O(h5)
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Méthodes d’ Adams Moulton
(prédiction correction)

2 etapes :
1. une étape de prediction
ou nous extrapolons

P approximation de Yn.

2. une étape de correction
ou nous interpolons

pour trouver Y. enseservantde f.;
tel que predit par la premiere étape.

M éthode d’ Adams Moulton
(d’ ordre local en h?)

Yo, Y1, Y, donnés
. h .
Y1 = Y +E[23fn - 16 fn—l +5fn—2] + O(h )
Calcul de fruy = f (i1 Vosr)

hr
Yoy +E[5f“ﬂ +8f, - f,,|]+0O(h")
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M éthodes d’ Adams M oulton
Remarques::

1. Le correcteur : méme ordre que predicteur, mais préecision
plus grande.

2. Lavaleur exacte entre le prédicteur et le correcteur.

3. Deux évaluations de lafonction f a chague étape
(comparée a4 pour Runge Kutta du méme ordre).

4. Pour amorcer : Runge Kutta du méme ordre.

M éthodes d’ Adams M oulton
(d’ ordrelocal e hv)

Yo, Y1, Y2, Y3 donnés

. h 251,
Yner = Yn +£[55fn_ 29 fn—1+37fn—2 B 9fn—3]+7—20h y'(X)

Cdlcul de .F;]+1 = f (Xn+1’ yn+1)

_ hrp ~ 19 .,
yn+1 - yn +§[9 fn+1 +19 fn - 5fn-1 + fn-2] - ﬁoh y (X)
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Méthode d’ Adams Moulton
Mesure de la précision

19
Yeact ? ycorrige - %(ycorrige - ypredit)

N décimales exactes lorsgue :

ycor rige

-~ Yorear| 10" £142

L’ erreur globale est stable donc

pas de divergence.

Comparaison des méthode pour

résoudre :
y&t) =-t y*(t)
y(0) =1

M éthode t;=01 t,=0.2
Solution analytique 0.995025 0.980392
Euler O(h?) 1.000000 0.990000
Taylor O(h°) 0.995000 0.980248
Taylor O(h%) 0.995000 0.980346
Euler Modifié O(h®) 0.995000 0.980346
RK typell O(h®)  0.995000 0.980297
RK typelll O(h®) 0.995000 0.980394
RK O(h°) 0.995025 0.980392
Adams Moulton  0.995025 0.980392

1ft2421
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251 .
yexact = ypredit +7—20h5y (X)

9 . .
70" Y )

yexact = ycorrige

2710 .
O = ypredit - ycorrige +7—20h y (X)

720
5.,V -
h y (X) - 270(ycorrige - ypredit)
Donc

~ 19 720
yexact - ycorrige - 7—202—70(ycorrige - ypredit)

Yewact = Yeorrige ~ 21—790(ycorrige - ypredit)
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Résoudre un systeme d'équations différentielles
du premier ordre:

Exemple: pdx
fgr - Y Conditionsinitiales:
! dy X(0) = Lety(0) =-1
l—=tv+
far YT
Méthode de Taylor avec ordre local en h*:
h? h®
X;q = X; thxdt)) +?x(u(tj) +€xcm(tj) +0(h*)
2 3

h h
Yia =Y, +hyq(tj) +?ym(tj) +€y(m(tj) +O(h4)

| X¢= Xy +1

{ye=ty+x

| X®=Xy¢+ X/ +1

% y&=y+ty¢+ x¢

1 XU= X ¢+ Xy @+ Xdy + X¢/¢
Y= yor yo+ ty @+ xa
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Euler modifié

|>’Z+1-x +hf(t,x(t))

i~

tYia yj+hf(tj1y(tj))
i -
f X =X +§l Pt %)+ 1 (ti+1’xi+1)]
|
. h ~
%yjﬂ =Y, +§l f (tj ’yj) + 1 (tj+1’yi+1)]

Exemple: | XC= xy +1 Conditions initiales:
{y¢:ty+x X(0)=1ety(0)=-1
h=0.1
Prédiction:
1% =% +hf(ty,x(t,)) =1+04D)(- Y +0] =
.
Y1 =Y, thf(ty,y(ty)) =- 1+ 01 (0)(- 1)+1]
Correction:
[ hr _q_. 01
§% =%+ o[ f (G, %) + 1 (t, %) = 1+ -(- 1+[09(- 09) + 01))

_ 01
LYy = Yo+ 5[ F(to,¥o) + 1 (t,, 5)] = - 1+~ (1+[01(- 09) +0.9145))

| %, = 09145
1y, =-09088
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Equation différentiellesd’ ordre supérieur

Ordren:

yP (1) = f(t,y(t), y&t),...,y" U (1))

Conditionsinitiales:

y® (t) = v& donnéspourk =0, 1, ..., n-1.

Remarque :
|l est rarement possible de trouver une solution analytique.

Equation du pendule:
(pour de petits mouvements)
t: temps
g: Position angulaire

2

daq g _
m2+Lq_O

Conditions initiales usuelles:;
q(ty) =d,
q&t,) =q¢

L
44t) = 0,Cost 1) +-agSing 1)
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Transformation d'une équation différentielled'ordre 2
en un systemed’'ordrel:

Ordre 2 :
y&t) = f(t, y(t), y&t))

Conditionsinitiales:

Y(to) = Yo et Y&t,) = v§

En posant : X(t) = y§t)
Systeme equivalent :

| XAL) = f (8, (1), X(1))
1 y&t) = x(t)

avec conditionsinitiales: Y(t,) =Y, et X(t,) = ¢
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Remarque:

|l est toujours possible de transformer
une équation différentielle d'ordre n
en un systeme d'equations différentielles d'ordre 1.

Equation différentielle d'ordre n:

yP (1) = f(t,y(t), y&t),...,y" U (1))

Conditionsinitiales :
y® (t,) = v& donnéspourk =0, 1, ..., n-1.

En posant: X, (t) =y (t) pourk =0, 1, ..., n-1.

Nous obtenons un systeme de n équations d'ordre 1.

§XRD) = (1)
: Xf(t) = X, (t)
P X8 () = X4 (1)

IXE, (1) = F(t, % (1), % (1),..., X, 1 (1))

1
i =y (t)

Avec conditions initiales:
X (to) = Y (t,) pourk=0, 1, ..., n-1.
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Exemple: Résoudre

d”x . OX Conditions initiales:
gz~ U Xt x=0 x(0) = 0.5 et x'(0) = 0
Mise sous la i dx
forme de far Y Conditionsinitiales:
systeme: | dy x(0) =0.5
el CR OVAR: et y(0) = x'(0) = 0

Euler avech=0.1
‘|,Xj+1 = Xj +h f (tj ’X(tj)1xqtj))
1
1Yia =Y, +hf (tj ’y(tj)1yq(tj))

lci j =0:
1'X1 :Xo"'hyo

7

£ = Yo +h[@- X2) Yo - X,

1 %, =05+ (02)(0)
1y, =0+(01)[(1- 025)0- 05]

Calculer x"(0) et x"(0.1)

X%0) = (L- X2)Yo - %,
X®%O0D) = (1- 2)Y, - %,
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Méthodes d’ Adams Moulton d’ordre global 4
Pour les systemesd’ordre 2.

- Xo, X1, X2, X3 donnés
et Yo, Y1, Y2, Y3 donnés

- Calcul des prédicteurs:
= X, + 2|55, - 59f,, , +37f, , - 9f, .| +O(h°)

Xn+1 n 24
. h
Yner = Yn +Q 55gn B 59gn—l + 37gn-2 B 9gn-3] + O(hs)

- Nouveaux estimés de lafonction ;
f = 1:( n+1’ n+1’yn+1)
gn+1 = g( n+1’)?n+1’ yn+1)

- Cdlcul des correcteurs::

hr ~
X = X o[, +10f, - B, + f,.] +O(h%)

hp
Ve = Yo ¥ 57(9G0sa +199, - 5G,.1 + Jn..] +O(h°)

Correcteur : méme ordre que le prédicteur.
Valeur exacte entre le prédicteur et le correcteur.
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Exemple :
Soit le systeme .
I XC=xy +t x(0)= 1
%yd:: ty+x avecpour conditionsinitiales: y(0) =-1

t X X' t y y'
Valeurs 0.0 1.0 -1.0 0.0 -1.0 1.0
de 0.025 0.9759 -0.9271 0.025 -0.9756 0.9515

départ 0.050 0.9536 -0.8582 0.050 -0.9524 0.9060
0.075 0.9330 -0.7929 0.075 -0.9303 0.8632

Prédiction 0.10 0.10
Correction
Calcul des prédicteurs :
_ 00 5
X(01) = X075 + [55f0075 591 05 T 37 T 05 - 9f0]
= 09330 + [55( 0.7929) - 59(- 0:8582) + 37(- 0.9271) - 9(- 1))
= 091396

0025
y(01) =- 09303+ [55(08632) - 59(0.9060) + 37(0.9515) - 9(L0)|
= - 09092296875

Nouveaux estimés de lafonction ;
f, = f( t .., n+1,yn+1) 0.91396(- 0.9092296) + 01 = - 0.7309995

Got = O(tor, Ko, Vs ) = 04(- 09092296) + 0.91396 = 0823037

Calcul des correcteurs :

o
x(01) = 09330 + [9( 0.7309995) +19(- 0.7929) - 5(- 08582) + (- 09271)] = 09139581

[9(0 823037) +19(08632) - 5(0.906) + 0.9515| = - 09092274

x(01) = 09139581
y(01) = - 09092274

o
y(01) =- 09303 +
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Compar aison des méethodes
pour les equations differentielles

Euler Runge Kutta Adams
Modifié d’ ordre 4 Moulton
Type de Pas Pas Pas
méthode unique unique multiple
Erreur
locale o(h®) o(h°) o(h°)
Erreur
globale o(h?) o(h% o(h%
nb
d’ évaluation de 2 4 2
fonction
Stabilité bonne bonne bonne
Facilité pour
changer le pas oul oul non

Recommandée NON OUl OUl
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Chapitre 6

Résolution
des équations
differentielles:

Conditions limites



Problemes aux limites

Equation différentielle d’ ordre 2

y®t) = f(t, y(t), y&t))

Avec les 2 conditions limites :

y(to) = Yoet Y(t) =V,

Type différent de celles données
avec des conditions initiales.

Les méthodes vues précédemment ne s appliquent pas
car nous ne connaissons pas Y&t,)

Exemple:
Déformation d' une poutre :

w(X) : déformation en
fonction de |’ abscisse x.

g : charge uniforme.
E : Coefficient d' éladticite.
L : longueur de la poutre.
S: tension aux limites.

| : moment central d’inertie.

1ft2421

d’w S X
o —E W - b

Avec les conditions limites
w(0) =w(L) =0
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Problemes|linéaires aux limites

Pour une equation différentielle linéaire d’ ordre 2
ou d'un autre ordre tant qu’ elle est linéaire.

y&t) = H(t) + G() y(t) + F(1)y&t) (1)
Nous avons:

Théoreme:
S yi(t) et yo(t) sont deux solutions de (1)
alors
ys(t) =ay,(t) +(1- a)y,(t)
est aussi solution de (1).

L e théoreme pour des
éguations différentielles

linéair es seulement.

Cas homogene : 3
: v/
OuH =0, nous acceptons |
0

toute combinaison linéaire;

Pour tout a et b,

y3(t) = a ya(t) + b yx(t)
est aussi solution de (1).

1ft2421
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M éthode detir
Probléeme linéaire a résoudre
X@t) =t +(1- 0.2t)x(t)

Avec les conditions aux limites (frontieres) :
X(1) =2etx(3)=-1

On essaie un premier tir en remplacant
par les conditionsinitiales :

Xl(l) =2
x'1(1) =-15
Premier tir:
5 .
. f

On cherche & toucher x(3) = -1
N oW

-1 ry oo T r T T L IR

. T v
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
Calcul Euler-mod avec x'(1)=-1.5

Raté : nous trouvons x;(3) = 4.811
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M éthode detir
Probléeme linéaire a résoudre
X@t) =t +(1- 0.2t)x(t)

Avec les conditions aux limites (frontieres) :
X(1) =2etx(3)=-1

On essaie un deuxiemetir en remplacant
par les conditionsinitiales :

X2(1)22
X’z(l):-?)
Deuxiemetir:
5
4
a
¥ 3
2
Q
§ 2
&8
21
i
6 0
[ =4
o -
-1 ML LR N D A DU JAR N SN SN
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

Calcul Euler-mod avec x'(1) x -3

Encore raté : nous trouvons x»(3) = 0.453

1ft2421 38 Chapitre 6



Combinaison destirs
Mais nous avons :
X(t) =ax (t) +(1- a)x,(t)
gui seraauss une solution.
de
X@t) =t +(1- 0.2t)x(t)

|| faut donc déterminer a pour avoir X3(3) = -1.

X3(3) =ax(3) + (1- a)x,(3)
- 1=a(4811 +(1- a)(0.453

a=-03334

Solution en tout point :
X,(t) =- 03334 x,(t) +13334 x,(t)

5
4
3
g
1
0
1

-2

LI L R S |

r r—
2.2 2.4 2.6 2.8 3.0

LR 2 LA L

1.0 1.2 1.4 1.6 1.8 2.0
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Combinaison destirs

Notes :
1. Problemes linéaires du second
ordre convergent en 2 tirs.

2. Ordre plus élevé . la méthode
fonctionne aussi.

3. Ordre global et précision de la
méthode employée pour les
conditions initiales.

4. Peu géenéralisables en 2D et
3D, peu utilisée en pratique.
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Problemelinéaire a
résoudre

x@t) =t + (1- 02t)x(t)

Eox(t) %(0) x(1)
1.0 2000 2000 2.000
1.2 1751 1449 1.348
14 1605 0991 0.786
1.6 1561 0.619 0.305
1.8 1625 0328 -0.105
2.0 1.803 0.118 -0.444
2.2 2.105 -0.007 -0.711
24 2542 -0.045 -0.908
26 3128 0.013 -1.026
28 3880 0175 -1.061
30 4811 0.453 -1.000

Chapitre 6



Pour les égquations
non linéaires:

Convergence de la
méthode de tir comme une
méthode de point fixe.

X(3)=f(x' (1))

peu de chance que
I’ interpolation linéaire

procure la solution exacte. . o
Probleme non lineaire a

Sert a estimer la prochaine résoudre

pente. X@t) =t + (1- 02 t)x(t)xqt)

avec CL : x(1)=2 et x(3)=-1

Vaeur assumée  valeur Calculée

pour X’ (1) pour x(3)
1.5 -0.016
-3.0 -2.085

-2.213 -1.271
-2.0 -0.972
-1.8 -0.642

-2.017 -0.998
-2.01 -0.987
-2.02 -1.002

-2.018" -1.000

"valeur obtenue par interpolation linéaire.
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M éthodes des différencesfinies
2 etapes :

1. Etape de discrétisation :
- Diviser I'intervalle en sous intervalle de longueur h.
- Deérivées approcheées par des formules de différence.

2. Résolution du systeme discrétise :

- Systemes lineéaires pour des équations différentielles
linéaires et systemes non linéaires pour des éguations
différentielles non linéaires.

- Propriétés mathématiques des matrices obtenues par
discrétisation (matrices tridiagonales, ou symétriques, ou
définies positives).

Probléeme linéaire a résoudre
Xt) =t +(1- 0.21)x(t)

Avec les conditions aux limites (frontieres) :
X(1) =2etx(3)=-1

Différences centrées ;

dX_Xi+1- X1 2 d2X_)§+1- 2Xi+xi—1 2
o~ 2n oM a? 2 +o()

Substituer ces formules dans |’ équation differentielle et choisir
un pas.

1ft2421 42 Chapitre 6



Méthodes des differencesfinies
Etape de discrétisation

X1~ 2% X
h2

=t +(1- 0.2t)x

Pouri=2, ..., n1
avec ti :t1+(i - 1)h et X :X(ti)
Nous avons. t;=1 et x,=2 t=3 et X;=-1

Précision de |'approximation:

- Vaeur dupash
- Type de différences utilisees.

X.p- [2+P(1- 02)]x +x,, =h*%

Remarque:
Ici: O(h?)
Appliquer latechnique d'extrapolation de
Richardson.

. 1
Calculer une solution X avec un pas h.

. 2
Calculer une solution X2, avec un pas 2h.

Ensuite grace al'extrapolation de
Richardson, calculer une nouvelle solution.

. 1
(extrapolation) _— ,(2) (2 (1
Xoi +1 = X5 + 3(X2i X +1)
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M éthodes des différences finies

Pouri =2, ..., n1
- [2+h?@- 024)]x +x,, =h?t

Nous avons: t1=1 et x1=2, t=3 et X;=-1
Considéronsh=0.5:
X - [2+h*(1- 02t,)|x, + X, = h't,
X, - [2+h?(1- 02t,)]x +x, = h%,
X, - [2+02(1- 02t,)]x, + % = h?t,

Q'r 2175 1 0 U ?XZU Qr 1625U
e ue uUu e U
? 1 - 2150 1 OX§X3(J:§ 0.5009
g8 0 1 - 2125 &, & 16254

Nous obtenons: X =2
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x@t) =t + (1- 02 t)x(t)

Avec les conditions aux limites: x(1) =2 et x(3) =-1

Pour h=0.2 :
& 20304 1 0 0 0 0 0 0 0 o &1952)
g 1 -20288 1 0 0 0 0 0 0 4 §00s6¢
& 0 1 -20272 1 0 0 0 0 0 G @00640
2 0 0 1 -202%6 1 0 0 0 0 3 20.072 3
¢ o 0 0 1 -2020 1 0 0 0 Uxx=€0080U
S 0 0 0 0 1 20224 1 0 0 § &008y
Y 0 0 0 0 1 -2028 1 o Y  ©ooos!Y
e 0 0 0 0 0 0 1 -20192 1 G 0104
€ 0 0 0 0 0 0 0 1 - 201764  &1112 §
Note: |e systeme est tridiagonal.
Résultats:
M éthode M éthode

t des différences finies detir

1.0 2.000 2.000

1.2 1.351 1.348

14 0.792 0.787

1.6 0.311 0.305

18 -0.097 -0.104

2.0 -0.436 -0.443

2.2 -0.705 -0.712

2.4 -0.903 -0.908

2.6 -1.022 -1.026

2.8 -1.058 -1.060

3.0 -1.000 -1.000
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M éthodes des différences finies
X@t) =t + (1- 02 t)x(t)

Avec les conditions aux limites (frontieres) :
X(1) =2etx(3)=-1

0 - \ & PashedS

1.0 ‘1.8 2.0 2.5 3.0 R

x(l)
°

- Pas h=0.2

-1 -

-2

1.0 12 14 16 1.8 20 2.2 24 26 2.8 3.0 '
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Conditionslimites sur les dériveées.
M éthode detir.

x@t) =t + (1- 02t)x(t)

Avec les conditions aux limites :
XD =0 gt X3 =-1

Essais sur lavaleur de x(1):

On essaie 2 tirs en remplacant par les conditions initiales:
Premier tir; X(D) =2 et x%1) =0

Deuxiémetir: %(1) =8 et x4(1) =0

Combiner les 2 solutions avec X%3) et xf(3)

XK3) et XM sont estimées avec laformules des différences
divisées.
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Conditions|limites sur lesdérivées.
M éthode des différencesfinies.

x@t) =t + (1- 02t)x(t)

Avec les conditions aux limites :
XD =0 gt X3 =-1

Sediscrétiseen:
e 2h)§ ML =t +(1- 02t)x
X.p- [2+P(1- 02)]x + %, =h*%

Mais maintenant, celaest valable pouri =1, ..., n.

Nous rajoutons 2 points: (. %) et (t1: %)
tels que:

X, - X, = 2h xXKt,)

Xoe1 ™ Koo = 2h X([(tn)

Remarque:
Nous connaissons les dérivées aux limites

XD =0 g X3 =-1
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Exemple:
X®t) =t +(1- 02t)x(t)
Avec les conditions aux limites: X&1) =0 et X¢3) =-1

Considéronsh=0.5:
X - [2+h2(1- 02t,)]x, + x, = ht,

X, - [2+h?*(1- 02t,)]x +x, = h%,
X, - [2+02(1- 02t,)]x, + % = h?t,

X, - X, = 2h xX{t,)
X~ X4 = 2h X((ts)

&22 2 0 0 0 uéxl €250
sl -2175 1 0 0 4 &%y 375
€0 1 -215 1 0 Uéxl=e5000
S0 0 1 -2125 1 gk 0625
g0 O 0 2 - 21f & EL750

X, = - 34795

X, = - 370245

X, = - 419833

X, = - 482395

X; = - 542757
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