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Résolution numérique des équations différentielles

Rappels:
2 grandes classes:

1.  Les équations différentielles ordinaires:
une seule variable.

2.  Les équations aux dérivées partielles:
plusieurs variables.

(équation de la chaleur, des ondes, ...)

Ordre d’une équation différentielle : dérivée la plus élevée.

Équation différentielle linéaire :

émission radioactive : 
dR t

dt
R t

( )
( )= −λ

Équation différentielle non linéaire :

Variation de population : 
dN t

dt
aN t bN t

( )
( ) ( ) .= − 1 7

Convection : 
du t

dt
k u t T

( )
( ( ) )= − −

5

4

nécessite des conditions initiales.
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Résolution numérique des équations différentielles

Exemple du pendule :

Équation différentielle non linéaire
du second ordre.

Impossible de trouver une solution analytique.

Pour de petit mouvements :
Sin( )θ θ≈

Équation du pendule:
t: temps

θ: Position angulaire

d

dt

g

L
Sin

2

2 0
θ

θ+ =( )

Conditions initiales usuelles:
θ θ
θ θ

( )

( )

t

t
0 0

0 0

=

′ = ′

θθ

L
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Méthode des séries de Taylor

Ordre 1:

′ =y t f t y t( ) ( , ( ))
y t y( )0 0=

Développement de Taylor au voisinage de t t j hj = +0

y y h y t
h

y t
h

y t O hj j j j j+ = + ′ + ′′ + ′′′ +1

2 3
4

2 6
( ) ( ) ( ) ( )

Devient:

y y h f t y
h

f t y
h

f t y O hj j j j j j j j+ = + + ′ + ′′ +1

2 3
4

2 6
( , ) ( , ) ( , ) ( )

Remarques:

1. L'ordre local est en h4.

2. Pas d'estimée de l'erreur.

3. Les dérivées de la fonction f(t,y(t)) se font:

df

dt
f t y

f

t

f

y
y

f

t

f

y
f= ′ = + ′ = +( , )

∂
∂

∂
∂

∂
∂

∂
∂

4. Si l'ordre local est en hn , l'ordre global sera en hn-1.
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Exemple:

Appliquer la méthode de Taylor avec un pas h = 0.1
et un ordre local en h3 pour:

′ = = −y t f t y t t y t( ) ( , ( )) ( )2

y t y( )0 0 1= =

Solution analytique: y t
t

( ) =
+
2

2 2

Le pas est h = 0.1, nous allons calculer  les valeurs de y(t)pour
t = 0, t = 0.1, t = 0.2, ..., etc.

Si nous utilisons un ordre local en h3, nous avons:

y y h y t
h

y t O hj j j j+ = + ′ + ′′ +1

2
3

2
( ) ( ) ( )

Exprimons ′′y t( )

′′ = ′ = − + − ′y t f t y t y t t y t y t( ) ( , ( )) ( ) ( ) ( ) ( )2 2

or  ′ = = −y t f t y t t y t( ) ( , ( )) ( )2

donc ′′ = − + − −y t y t t y t t y t( ) ( ) ( ) ( ) ( ( ))2 22

′′ = − +y t y t t y t( ) ( ) ( )2 2 32
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La formule de Taylor d'ordre local h3 devient alors:

y y h t y t
h

y t t y t O hj j j j j j j+ = + − + − + +1
2

2
2 2 3 3

2
2( ( )) ( ( ) ( ) ) ( )

pour t t h1 0= +

y y h t y t y t t y to1 0 0
2

0

2
2

0
2 3

0

01

2
2= − + − +( )

.
( ( ) ( ) )

y1 1 0 005 0 995= − =. .

Valeur exacte: y( . )
. .

. ...01
2

2 01

2

2 01
0 995024872=

+
= ≈

pour t t h2 0 2= +

y y h t y t
h

y t t y t2 1 1
2

1

2
2

1 1
2 3

12
2= − + − +( ) ( ( ) ( ) )

y2
2

2
2 2 30 995 01 01 0 995

01

2
0 995 2 01 0 995= − + − +. . ( . ( . ) )

.
( ( . ) . ( . ) )

y2 0 9802486= . ...

Valeur exacte: y( . )
. .

. ...0 2
2

2 0 2

2

2 04
0 9803921562=

+
= ≈

pour t t h3 0 3= +  Etc.
Ordre global h2.
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Méthode d'Euler (ordinaire)

Ordre 1:

′ =y t f t y t( ) ( , ( ))
y t y( )0 0=

Méthode d'Euler = Méthode de Taylor
d'ordre local en h2.
Ordre global en h.

y y h y t O hj j j+ = + ′ +1
2( ) ( )

y y h f t y t O hj j j j+ = + +1
2( , ( )) ( )

Interprétation géométrique:

x0 x0+h x

y

Solution
analytiquey0

y1
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Erreur globale vs Erreur locale

Yn  = Valeur calculée en xn.

yn  = Valeur exacte en xn.

e y Yn n n= −  = erreur en Yn;    Y y en n n= +

Avec la méthode  d'Euler, nous avons:

Y Y h f t Yn n n n+ = +1 ( , )

En utilisant les séries de Taylor:

y y h f t y
h

yn n n n n+ = + + ′′1

2

2
( , ) ( )ξ            avec x x hn n n≤ ≤ +ξ

[ ]e y Y y Y h f x y f x Y
h

yn n n n n n n n n n+ + += − = − + − + ′′1 1 1

2

2
( , ) ( , ) ( )ξ

e e h
f x y f x Y

y Y
y Y

h
yn n

n n n n

n n
n n n+ = +

−
−









 − + ′′1

2

2

( , ) ( , )

( )
( ) ( )ξ

e e h f x e
h

yn n y n n n n+ = + + ′′1

2

2
( , ) ( )η ξ   avec ηn n nentre y et Y

e hK e
h

yn n n+ ≤ + + ′′1

2

1
2

( ) ( )ξ
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Erreur globale vs Erreur locale (suite)

e0 0=

e hK e
h

y h y1 0

2

0
2

01
2

1

2
≤ + + ′′ = ′′( ) ( ) ( )ξ ξ

[ ]e hK h y
h

y h hK y y2
2

0

2

1
2

0 11
1

2 2

1

2
1≤ + ′′







+ ′′ = + ′′ + ′′( ) ( ) ( ) ( ) ( ) ( )ξ ξ ξ ξ

[ ]e h hK y hK y y3
2 2

0 1 2

1

2
1 1≤ + ′′ + + ′′ + ′′( ) ( ) ( ) ( ) ( )ξ ξ ξ

...

[ ]e h hK y hK y yn
n n

n≤ + ′′ + + ′′ + + ′′− −
−

1

2
1 1 12 1

0
2

1 1( ) ( ) ( ) ( ) ( )ξ ξ ξK

[ ]e h M hK hKn
n n≤ + + + + +− −1

2
1 1 12 1 2( ) ( ) K

Sachant que :

1
1

1
2 1+ + + + =

−
−

−s s s
s

s
n

n

K

Nous obtenons :

e h M
hK

hKn

n

≤
+ −
+ −

1

2

1 1

1 1
2 ( )

( )   ⇔  e
hM

K
hK

hM

Kn
n≤ + −

2
1

2
( )

e hK
hK hKhK = + + + +1

2 3

2 3( ) ( )
K Maclaurin

1 0+ < >hK e KhK ( )

( ) ( )e
hM

K
e

hM

K

hM

K
e

hM

K
e O hn

hK n nhK x x Kn≤ − = − = − =−

2 2 2
1

2
10( ) ( )( )
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Méthode d'Euler modifiée

Taylor d’ordre local en h3 :

y y h f t y
h

f t y O hj j j j j j+ = + + ′ +1

2
3

2
( , ) ( , ) ( )

Différence avant pour évaluer f’ :

′ =
−

+
+ +

f t y
f t y f t y

h
O hj j

j j j j
( , )

( , ) ( , )
( )

1 1

Formule d’Euler modifiée :

[ ]y y
h

f t y f t y O hj j j j j j+ + += + + +1 1 1
3

2
( , ) ( , ) ( )

[ ]y y
h

y y O hj j j j+ += + ′ + ′ +1 1
3

2
( )

x0 x0+h x

y

Solution
analytiquey0

y1
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Méthode d'Euler ordinaire
Algorithme

y0 donné

y y h f t y tj j j j+ = +1 ( , ( ))

Une seule étape de calcul

Ordre global en h.

Méthode d'Euler modifiée
Algorithme

y0 donné

~ ( , ( ))y y h f t y tj j j j+ = +1

[ ]y y
h

f t y f t yj j j j j j+ + += + +1 1 12
( , ) ( , ~ )

Deux étapes de calcul:

1. la prédiction.
2. La correction.

Ordre global en h2.

Méthode d'Euler ordinaire
Pour résoudre:

′ = −y t t y t( ) ( )2

y( )0 1=

tj yj erreur
0.1 1.0000 -5.0  10-3

0.2 0.9900 -9.6  10-3

0.3 0.9704 -1.3  10-2

0.4 0.94215 -1.6  10-2

Méthode d'Euler modifié
Pour résoudre:

′ = −y t t y t( ) ( )2

y( )0 1=

tj yj prédit yj corrigé erreur
0.1 1.000000 0.995000 2.5  10-5

0.2 0.985100 0.980346 4.6  10-5

0.3 0.961124 0.956878 6.0  10-5

0.4 0.929410 0.925868 6.0  10-5

0.5 0.891579 0.888851 3.8  10-5

0.6 0.847458 0.847458 5.2  10-8

Note: L'étape de correction peut être répétée 2 à 3 fois, au delà,
il est préférable de réduite h.
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Méthode d'Euler ordinaire
′ = −y t t y t( ) ( )2

y( )0 1=

h =0.5

tj yj

0 1
0.5 1
1. 0.75

1.5 0.46875
2. 0.303955

2.5 0.211566
3. 0.155616

3.5 0.119291
4. 0.0943882 0.5 1 1.5 2 2.5 3 3.5 4

0

0.2

0.4

0.6

0.8

1

Méthode d'Euler Modifié

h =0.5

tj yj

0 1
0.5 0.875
1. 0.662472

1.5 0.479149
2. 0.345942

2.5 0.254107
3. 0.191201

3.5 0.147512
4. 0.116497 0.5 1 1.5 2 2.5 3 3.5 4

0

0.2

0.4

0.6

0.8

1
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Méthode de Runge Kutta
Développement à l’ordre 2

y0 donné

k h f x yn n1 = ( , )
k h f x h y kn n2 1= + +( , )α β

y y a k bkn n+ = + +1 1 2

Trouver les valeurs de : a, b, α et β.

Développement de Taylor :

y y h f x y
h

f x y O hn n n n n n+ = + + ′ +1

2
3

2
( , ) ( , ) ( )

or
′ = + ′

= +

f x y f f y

f f f

n n x y n

x y n

( , ) ( )

( )

y y h f x y
h

f f f O hn n n n x y n+ = + + + +1

2
3

2
( , ) ( ) ( ) (1)

Algorithme de Runge Kutta d’ordre 2 :
y y ah f x y bh f x h y h f x yn n n n n n n n+ = + + + +1 ( , ) ( , ( , ))α β

Développons au premier ordre :
f x h y h f x y f f h f h fn n n n n x n y n n( , ( , )) ( ) ( )+ + ≅ + +α β α β

{ }y y a b h f h f b f b fn n n x n y n n+ = + + + +1
2( ) ( ) ( )α β (2)
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Méthode de Runge Kutta : développement à l’ordre 2

y0 donné

k h f x yn n1 = ( , )
k h f x h y kn n2 1= + +( , )α β

y y a k bkn n+ = + +1 1 2

Trouver les valeurs de : a, b, α et β.

y y h f x y
h

f f f O hn n n n x y n+ = + + + +1

2
3

2
( , ) ( ) ( ) (1)

{ }y y a b h f h f b f b fn n n x n y n n+ = + + + +1
2( ) ( ) ( )α β (2)

En forçant (1) = (2), nous avons :
a b

b

b

+ =

=

=

1

1
2

1
2

α

β

Ordre local en h3

Ordre global en h2.

Choix Courants :

a b et= → = = =
1

2

1

2
1α β  → Type I : Euler modifié

a b et= → = = =0 1
1

2
α β  → Type II

a b et= → = = =
2

3

1

3

3

2
α β  → Type III
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Méthode de Runge Kutta d’ordre global 2
Le plus courant :

y0 donné

k h f x yn n1 = ( , )

k h f x h y kn n2 1

3

2

3

2
= + +( , )

y y k k O hn n+ = + + +1 1 2
32

3

1

3
( )

Méthode de Runge Kutta d’ordre global 4
Le plus courant :

y0 donné

k h f x yn n1 = ( , )

k h f x h y kn n2 1

1

2

1

2
= + +( , )

k h f x h y kn n3 2

1

2

1

2
= + +( , )

k h f x h y kn n4 3= + +( , )

y y k k k k O hn n+ = + + + + +1 1 2 3 4
51

6

1

3

1

3

1

6
( )
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Les méthodes de Runge Kutta
sont très efficaces car :

1.  Elles suivent de près la
solution analytique.

2. Avec une valeur du pas
relativement élevé.

3. Moins coûteux que les
autres méthodes pour un

O(hn) donné.

Pas encore d’approximation
de l’erreur commise.

Nécessité de choisir le pas en
fonction de l’erreur maximale

recherchée.

Solution : calculer avec un
pas égal à h, h/2, ...

Jusqu’à la stabilité de la
solution.

Coût élevé !

Les méthodes qui ajustent le
pas sont dites méthodes à pas

adaptatif.

Méthode de Runge
Kutta d’ordre global h4 :

′ = −y t t y t( ) ( )2

y( )0 1=

h =0.1

tj yj yj Réel
0 1 1

0.1 0.9950249 0.9950249
0.2 0.9803922 0.9803922
0.3 0.9569377 0.9569378
0.4 0.9259258 0.9259259

0.5 1 1.5

h=1.0

2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

2

0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1 h=0.5
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Algorithme de Runge Kutta Merson
d’ordre global 4 avec estimé de l’erreur.

y0 donné k h f x yn n1 = ( , )

k h f x h y kn n2 1

1

3

1

3
= + +( , )      k h f x h y k kn n3 1 2

1

3

1

6

1

6
= + + +( , )

k h f x h y k kn n4 1 3

1

2

1

8

3

8
= + + +( , )      k h f x h y k k kn n5 1 3 4

1

2

3

2
2= + + − +( , )

y y k k k O hn n+ = + + + +1 1 4 5
51

6

2

3

1

6
( )

E k k k k≈ − + −






1

15

3

10

4

15

1

301 3 4 5

Algorithme de Runge Kutta Fehlberg
d’ordre global 5 avec estimé de l’erreur.

y0 donné k h f x yn n1 = ( , )

k h f x h y kn n2 1

1

4

1

4
= + +( , )       k h f x h y k kn n3 1 2

3

8

3

32

9

32
= + + +( , )

k h f x h y k k kn n4 1 2 3

12

13

1932

2197

7200

2197

7296

2197
= + + + +( , )

k h f x h y k k k kn n5 1 2 3 4

439

216
8

3680

513

845

4104
= + + − + −( , )

k h f x h y k k k k kn n6 1 2 3 4 5

1

2

8

27
2

3544

2565

1859

4104

11

40
= + − + − + −( , )

y y k k k k O hn n+ = + + + + +1 1 3 4 5
625

216

1408

2565

2

3

1

6
( )

E k k k k k≈ − − + +






1

360

128

4275

2197

75240

1

50

2

551 3 4 5 6
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Exemple : Algorithme de Runge Kutta Fehlberg
d’ordre global 5 avec estimé de l’erreur.

′ = −y t t y t( ) ( )2

y( )0 1=

h =0.1

tj yj Erreur
0 1 0.0

0.1 0.95025 7.47241  10-8

0.2 0.980392 1.97673  10-7

0.3 0.956938 2.75904  10-7

0.4 0.925926 2.98256  10-7

0.5 0.888889 2.69385  10-7

0.6 0.847457 2.01399  10-7

y6 = 0.847457

Méthode efficace et populaire
avec contrôle de l’erreur.
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Méthodes à pas unique

utilisent seulement le pas
précédent :

yn et ′yn

Exemples :
Méthodes de Taylor et de

Runge Kutta.

Méthodes à pas multiples
(multistep methods)

utilisent plusieurs pas
précédents :

yn et ′yn

et aussi yn−1 et ′−yn 1

( yn−2 et ′−yn 2  possible)

Méthodes ouvertes

n’utilisent que les valeurs
précédentes

yn , yn−1 , yn−2  ...

Méthodes fermées

(de type prédiction
correction)

utilisent autant les valeurs
précédentes

yn , yn−1 , yn−2  ...

que les valeurs suivantes
yn+1 , yn+2  ...

Exemple : méthode d’Euler
modifiée.
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Méthode d’Adams

Équations différentielles sous la forme

dy f x y dx= ( , )

à intégrer sur [xn, xn+1] :

dy f x y dx
x

x

x

x

n

n

n

n+ +

∫ ∫=
1 1

( , )

remplacer la fonction f(x,y(x))
par un polynôme de collocation : xn, xn-1, xn-2, ...

Polynôme quadratique de Newton Grégory descendant :

P s f s f
s s

f
s s s

h fn n n2 1
2

2
31

2

1 2

6
( )

( ) ( )( )
( )= + +

+
+

− −
′′′− −∆ ∆ ξ

Calcul des intégrales :

[ ]

y y h f f f O h

y
h

f f f O h

n n n n n

n n n n

+ − −

− −

= + + +






+

= + − + +

1 1
2

2
4

1 2
4

1

2

5

12

12
23 16 5

∆ ∆ ( )

( )

Note :
Le résultat sera d’ordre local n+2 pour un polynôme de degré n.

Attention : Degré trop élevé ⇒ erreurs d’arrondis.
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Méthodes d’Adams

[ ]

y y h f f f O h

y
h

f f f O h

n n n n n

n n n n

+ − −

− −

= + + +






+

= + − + +

1 1
2

2
4

1 2
4

1

2

5

12

12
23 16 5

∆ ∆ ( )

( )

Remarques :

1.  Pour démarrer, les valeurs de ′y0 , ′y1  et ′y2

(donc f0, f1, et f2) sont nécessaires.
Amorçage : méthode de Runge Kutta.

2.  Pas question d’adapter le pas directement.

3.  Problème : extrapolation avec le polynôme de collocation ;
moins précis qu’interpolation.

Adams (ordre local en h3)

[ ]y y
h

f f O hn n n n+ −= + − +1 1
3

2
3 ( )

Adams (ordre local en h5)

[ ]y y
h

f f f f O hn n n n n n+ − − −= + − + − +1 1 2 3
5

24
55 59 37 9 ( )
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Méthodes d’Adams Moulton
(prédiction correction)

2 étapes :

1.  une étape de prédiction
où nous extrapolons

⇒ approximation de yn+1

2.  une étape de correction
où nous interpolons

pour trouver yn+1  en se servant de f n+1

tel que prédit par la première étape.

Méthode d’Adams Moulton
(d’ordre local en h4)

y0 , y1 , y2  donnés

[ ]~ ( )y y
h

f f f O hn n n n n+ − −= + − + +1 1 2
4

12
23 16 5

Calcul de 
~

( ,~ )f f x yn n n+ + +=1 1 1

[ ]y y
h

f f f O hn n n n n+ + −= + + − +1 1 1
4

12
5 8

~
( )
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Méthodes d’Adams Moulton

Remarques :

1. Le correcteur : même ordre que prédicteur, mais précision
plus grande.

2.  La valeur exacte entre le prédicteur et le correcteur.

3.  Deux évaluations de la fonction f à chaque étape
(comparée à 4 pour Runge Kutta du même ordre).

4. Pour amorcer : Runge Kutta du même ordre.

Méthodes d’Adams Moulton
(d’ordre local e h5)

y0 , y1 , y2 , y3  donnés

[ ]~ ( )y y
h

f f f f h yn n n n n n
v

+ − − −= + − + − +1 1 2 3
5

24
55 59 37 9

251

720
ξ

Calcul de 
~

( ,~ )f f x yn n n+ + +=1 1 1

[ ]y y
h

f f f f h yn n n n n n
v

+ + − −= + + − + −1 1 1 2
5

24
9 19 5

19

720
~

( )ξ
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Méthode d’Adams Moulton
Mesure de la précision

y y y yexact corrige corrige predit≈ − −
19

270
( )

N décimales exactes lorsque :

y ycorrige predit
N− ≤10 14 2.

L’erreur globale est stable donc
pas de divergence.

Comparaison des méthode pour
résoudre :

′ = −y t t y t( ) ( )2

y( )0 1=

Méthode t1 = 0.1 t2 = 0.2
Solution analytique 0.995025 0.980392

Euler O(h2) 1.000000 0.990000
Taylor O(h3) 0.995000 0.980248
Taylor O(h4) 0.995000 0.980346

Euler Modifié O(h3) 0.995000 0.980346
RK type II O(h3) 0.995000 0.980297
RK type III O(h3) 0.995000 0.980394

RK O(h5) 0.995025 0.980392
Adams Moulton 0.995025 0.980392

y y h yexact predit
v= +

251

720
5 ( )ξ

y y h yexact corrige
v= −

19

720
5 ( )ξ

0
270

720
5= − +y y h ypredit corrige

v ( )ξ

( )h y y yv
corrige predit

5 720

270
( )ξ = −

Donc

( )y y y yexact corrige corrige predit= − −
19

720

720

270

( )y y y yexact corrige corrige predit= − −
19

270
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Résoudre un système d'équations différentielles
du premier ordre:

Exemple: dx

dt
xy t

dy

dt
ty x

= +

= +










Conditions initiales:
x(0) = 1 et y(0) = -1

Méthode de Taylor avec ordre local en h4:

x x h x t
h

x t
h

x t O hj j j j j+ = + ′ + ′′ + ′′′ +1

2 3
4

2 6
( ) ( ) ( ) ( )

y y h y t
h

y t
h

y t O hj j j j j+ = + ′ + ′′ + ′′′ +1

2 3
4

2 6
( ) ( ) ( ) ( )

′ = +

′ = +




x xy t

y ty x

′′ = ′ + ′ +

′′ = + ′ + ′




x xy x y

y y ty x

1

′′′ = ′ ′ + ′′ + ′′ + ′ ′
′′′ = ′ + ′ + ′′ + ′′





x x y xy x y x y

y y y ty x
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Euler modifié
~ ( , ( ))
~ ( , ( ))

x x h f t x t

y y h f t y t

j j j j

j j j j

+

+

= +

= +





1

1

[ ]
[ ]

x x
h

f t x f t x

y y
h

f t y f t y

j j j j j j

j j j j j j

+ + +

+ + +

= + +

= + +










1 1 1

1 1 1

2

2

( , ) ( ,~ )

( , ) ( , ~ )

Exemple: ′ = +

′ = +




x xy t

y ty x

Conditions initiales:
x(0) = 1 et y(0) = -1

h = 0.1
Prédiction:

~ ( , ( )) . [( )( ) ] .
~ ( , ( )) . [( )( ) ] .

x x h f t x t

y y h f t y t
1 0 0 0

1 0 0 0

1 01 1 1 0 0 9

1 01 0 1 1 0 9

= + = + − + =
= + = − + − + = −





Correction:

[ ]

[ ]

x x
h

f t x f t x

y y
h

f t y f t y

1 0 0 0 1 1

1 0 0 0 1 1

2
1

01

2
1 0 9 0 9 01

2
1

01

2
1 01 0 9 0 9145

= + + = + − + − +

= + + = − + + − +










( , ) ( , ~ )
.

( [ . ( . ) . ])

( , ) ( , ~ )
.

( [ . ( . ) . ])

x

y
1

1

0 9145

0 9088

=
= −





.

.
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Équation différentielles d’ordre supérieur

Ordre n :

y t f t y t y t y tn n( ) ( )( ) ( , ( ), ( ), , ( ))= ′ −K 1

Conditions initiales :

y t yk k( ) ( )( )0 0=  donnés pour k = 0, 1, ..., n-1.

Remarque :
Il est rarement possible de trouver une solution analytique.

Équation du pendule:
(pour de petits mouvements)

t: temps
θ: Position angulaire

d

dt

g

L

2

2 0
θ

θ+ =

Conditions initiales usuelles:
θ θ
θ θ

( )

( )

t

t
0 0

0 0

=

′ = ′

′ = + ′θ θ θ( ) ( ) ( )t Cos
g

L
t

L

g
Sin

g

L
t0 0

θθ

L
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Transformation d'une équation différentielle d'ordre 2
en un système d’ordre 1 :

Ordre 2 :
′′ = ′y t f t y t y t( ) ( , ( ), ( ))

Conditions initiales :

y t y( )0 0=  et ′ = ′y t y( )0 0

En posant : x t y t( ) ( )= ′

Système équivalent :

′ =
′ =





x t f t y t x t

y t x t

( ) ( , ( ), ( ))

( ) ( )

avec conditions initiales : y t y( )0 0=  et x t y( )0 0= ′
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Remarque:

Il est toujours possible de transformer
une équation différentielle d'ordre n

en un système d'équations différentielles d'ordre 1.

Équation différentielle d'ordre n:

y t f t y t y t y tn n( ) ( )( ) ( , ( ), ( ), , ( ))= ′ −K 1

Conditions initiales :
y t yk k( ) ( )( )0 0=  donnés pour k = 0, 1, ..., n-1.

En posant: x t y tk
k( ) ( )( )=  pour k = 0, 1, ..., n-1.

Nous obtenons un système de n équations d'ordre 1:

′ =
′ =

′ =
′ =

=
















− −

− −

x t x t

x t x t

x t x t

x t f t x t x t x t

y t

n n

n n

n

0 1

1 2

2 1

1 0 1 1

( ) ( )

( ) ( )

( ) ( )

( ) ( , ( ), ( ), , ( ))

( )( )

M

K

Avec conditions initiales:
x t y tk

k( ) ( )( )
0 0=  pour k = 0, 1, ..., n-1.
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Exemple: Résoudre
d x

dt
x

dx

dt
x

2

2
21 0− − + =( )

Conditions initiales:
x(0) = 0.5 et x'(0) = 0

Mise sous la
forme de
système:

dx

dt
y

dy

dt
x y x

=

= − −








 ( )1 2

Conditions initiales:
x(0) = 0.5

et y(0) = x'(0) = 0

Euler avec h = 0.1

x x h f t x t x t

y y h f t y t y t

j j j j j

j j j j j

+

+

= + ′

= + ′





1

1

( , ( ), ( ))

( , ( ), ( ))

Ici j = 0:

[ ]
x x h y

y y h x y x

1 0 0

1 0 0
2

0 01

= +

= + − −





 ( )

[ ]
x

y

1

1

0 5 01 0

0 01 1 0 25 0 05

= +

= + − −





. ( . )( )

( . ) ( . ) .

Calculer x''(0) et x''(0.1)

′′ = − −x x y x( ) ( )0 1 0
2

0 0

′′ = − −x x y x( . ) ( )01 1 1
2

1 1
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Méthodes d’Adams Moulton d’ordre global 4
Pour les systèmes d’ordre 2.

• x0, x1, x2, x3 donnés
et y0, y1, y2, y3 donnés

• Calcul des prédicteurs :

[ ]~ ( )x x
h

f f f f O hn n n n n n+ − − −= + − + − +1 1 2 3
5

24
55 59 37 9

[ ]~ ( )y y
h

g g g g O hn n n n n n+ − − −= + − + − +1 1 2 3
5

24
55 59 37 9

• Nouveaux estimés de la fonction :

( )~
,~ ,~f f t x yn n n n+ + + +=1 1 1 1

( )~ ,~ , ~g g t x yn n n n+ + + +=1 1 1 1

• Calcul des correcteurs :

[ ]x x
h

f f f f O hn n n n n n+ + − −= + + − + +1 1 1 2
5

24
9 19 5

~
( )

[ ]y y
h

g g g g O hn n n n n n+ + − −= + + − + +1 1 1 2
5

24
9 19 5~ ( )

Correcteur : même ordre que le prédicteur.
Valeur exacte entre le prédicteur et le correcteur.
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Exemple :
Soit le système :

′ = +

′ = +




x xy t

y ty x avec pour conditions initiales :
x

y

( )

( )

0 1

0 1

=
= −

t x x’ t y y’
Valeurs 0.0 1.0 -1.0 0.0 -1.0 1.0

de 0.025 0.9759 -0.9271 0.025 -0.9756 0.9515
départ 0.050 0.9536 -0.8582 0.050 -0.9524 0.9060

0.075 0.9330 -0.7929 0.075 -0.9303 0.8632
Prédiction 0.10 0.10
Correction

• Calcul des prédicteurs :

[ ]

[ ]

~( . )
.

.
.

( . ) ( . ) ( . ) ( )

.

. . . .x x f f f f01
0 025

24
55 59 37 9

0 9330
0 025

24
55 0 7929 59 0 8582 37 0 9271 9 1

0 91396

0 075 0 075 0 05 0 025 0= + − + −

= + − − − + − − −

=

[ ]~( . ) .
.

( . ) ( . ) ( . ) ( . )

.

y 01 0 9303
0 025

24
55 08632 59 0 9060 37 0 9515 9 10

0 9092296875

= − + − + −

= −

• Nouveaux estimés de la fonction :
( )~

, ~ , ~ . ( . ) . .f f t x yn n n n+ + + += = − + = −1 1 1 1 0 91396 0 9092296 01 0 7309995

( )~ , ~ , ~ . ( . ) . .g g t x yn n n n+ + + += = − + =1 1 1 1 01 0 9092296 0 91396 0823037

• Calcul des correcteurs :
[ ]x( . ) .

.
( . ) ( . ) ( . ) ( . ) .01 0 9330

0 025

24
9 0 7309995 19 0 7929 5 08582 0 9271 0 9139581= + − + − − − + − =

[ ]y( . ) .
.

( . ) ( . ) ( . ) . .01 0 9303
0 025

24
9 0823037 19 0 8632 5 0 906 0 9515 0 9092274= − + + − + = −

x( . ) .01 0 9139581=

y( . ) .01 0 9092274= −
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Comparaison des méthodes
pour les équations différentielles

Euler
Modifié

Runge Kutta
d’ordre 4

Adams
Moulton

Type de
méthode

Pas
unique

Pas
unique

Pas
multiple

Erreur
locale O(h3) O(h5) O(h5)

Erreur
globale O(h2) O(h4) O(h4)

nb
d’évaluation de

fonction
2 4 2

Stabilité bonne bonne bonne

Facilité pour
changer le pas oui oui non

Recommandée NON OUI OUI
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Ift 2421

Chapitre 6

Résolution
des équations
différentielles:

Conditions limites
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Problèmes aux limites

Équation différentielle d’ordre 2

′′ = ′y t f t y t y t( ) ( , ( ), ( ))

Avec les 2 conditions limites :

y t y( )0 0= et y t y( )1 1=

Type différent de celles données
avec des conditions initiales.

Les méthodes vues précédemment ne s’appliquent pas
car nous ne connaissons pas ′y t( )0

Exemple :
Déformation d’une poutre :

w(x) : déformation en
fonction de l’abscisse x.

q : charge uniforme.
E : Coefficient d’élasticité.
L : longueur de la poutre.

S : tension aux limites.
I : moment central d’inertie.

d w

dx

S

EI
w

qx

EI
x L

2

2 2
= + −( )

Avec les conditions limites
w w L( ) ( )0 0= =

0 L

w

s s
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Problèmes linéaires aux limites

Pour une équation différentielle linéaire d’ordre 2
ou d’un autre ordre tant qu’elle est linéaire.

′′ = + + ′y t H t G t y t F t y t( ) ( ) ( ) ( ) ( ) ( ) (1)

Nous avons :

Théorème :
Si y1(t) et y2(t) sont deux solutions de (1)

alors
y t y t y t3 1 21( ) ( ) ( ) ( )= + −α α

est aussi solution de (1).

Le théorème pour des
équations différentielles

linéaires seulement.

Cas homogène :

Où H = 0, nous acceptons
toute combinaison linéaire :

Pour tout α et β,
y3(t) = α y1(t) + β y2(t)

est aussi solution de (1).



Ift2421 37 Chapitre 6

Méthode de tir

Problème linéaire à résoudre

′′ = + −x t t t x t( ) ( . ) ( )1 0 2

Avec les conditions aux limites (frontières) :
 x(1) = 2 et x(3) = -1

On essaie un premier tir en remplaçant
par les conditions initiales :

x1(1) = 2
x’1(1) = - 1.5

Premier tir:

Raté : nous trouvons x1(3) = 4.811
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Méthode de tir

Problème linéaire à résoudre

′′ = + −x t t t x t( ) ( . ) ( )1 0 2

Avec les conditions aux limites (frontières) :
 x(1) = 2 et x(3) = -1

On essaie un deuxième tir en remplaçant
par les conditions initiales :

x2(1) = 2
x’2(1) = - 3

Deuxième tir:

Encore raté : nous trouvons x2(3) = 0.453
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Combinaison des tirs

Mais nous avons :

x t x t x t3 1 21( ) ( ) ( ) ( )= + −α α

qui sera aussi une solution.
de

′′ = + −x t t t x t( ) ( . ) ( )1 0 2

Il faut donc déterminer α pour avoir x3(3) = -1.

x x x3 1 23 3 1 3( ) ( ) ( ) ( )= + −α α
− = + −1 4 811 1 0 453α α( . ) ( )( . )

α = −0 3334.
Solution en tout point :

x t x t x t3 1 20 3334 13334( ) . ( ) . ( )= − +
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Combinaison des tirs

Notes :
1. Problèmes linéaires du second

ordre convergent en 2 tirs.
 

2. Ordre plus élevé : la méthode
fonctionne aussi.

 

3. Ordre global et précision de la
méthode employée pour les

conditions initiales.
 

4. Peu généralisables en 2D et
3D, peu utilisée en pratique.

Problème linéaire à
résoudre

′′ = + −x t t t x t( ) ( . ) ( )1 0 2

t x t1( ) x t2( ) x t3( )
1.0 2.000 2.000 2.000
1.2 1.751 1.449 1.348
1.4 1.605 0.991 0.786
1.6 1.561 0.619 0.305
1.8 1.625 0.328 -0.105
2.0 1.803 0.118 -0.444
2.2 2.105 -0.007 -0.711
2.4 2.542 -0.045 -0.908
2.6 3.128 0.013 -1.026
2.8 3.880 0.175 -1.061
3.0 4.811 0.453 -1.000
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Pour les équations
non linéaires :

• Convergence de la
méthode de tir comme une

méthode de point fixe.
X(3)=f(x’(1))

• peu de chance que
l’interpolation linéaire

procure la solution exacte.

• Sert à estimer la prochaine
pente.

Problème non linéaire à
résoudre

′′ = + − ′x t t t x t x t( ) ( . ) ( ) ( )1 0 2
avec CL : x(1)=2 et x(3)=-1

Valeur assumée
pour x’(1)

valeur Calculée
pour x(3)

-1.5 -0.016
-3.0 -2.085

-2.213* -1.271

-2.0 -0.972
-1.8 -0.642

-2.017* -0.998

-2.01 -0.987
-2.02 -1.002

-2.018* -1.000
*valeur obtenue par interpolation linéaire.



Ift2421 42 Chapitre 6

Méthodes des différences finies

2 étapes :

1. Étape de discrétisation :
• Diviser l’intervalle en sous intervalle de longueur h.
• Dérivées approchées par des formules de différence.

2. Résolution du système discrétisé :

• Systèmes linéaires pour des équations différentielles
linéaires et systèmes non linéaires pour des équations
différentielles non linéaires.

• Propriétés mathématiques des matrices obtenues par
discrétisation (matrices tridiagonales, ou symétriques, ou
définies positives).

Problème linéaire à résoudre
′′ = + −x t t t x t( ) ( . ) ( )1 0 2

Avec les conditions aux limites (frontières) :
 x(1) = 2 et x(3) = -1

Différences centrées :
dx

dt

x x

h
O hi i=

−
++ −1 1 2

2
( )        

d x

dt

x x x

h
O hi i i

2

2
1 1

2
22

=
− +

++ − ( )

Substituer ces formules dans l’équation différentielle et choisir
un pas.
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Méthodes des différences finies
Étape de discrétisation

x x x

h
t t xi i i
i i i

+ −− +
= + −1 1

2

2
1 0 2( . )

Pour i = 2, ..., n-1
avec t t i hi = + −1 1( )  et x x ti i= ( )

Nous avons: t1=1 et x1=2 tn=3 et xn=-1

Précision de l'approximation:
• Valeur du pas h
• Type de différences utilisées.

[ ]x h t x x h ti i i i i− +− + − + =1
2

1
22 1 0 2( . )

Remarque:
Ici: O(h2)

Appliquer la technique d'extrapolation de
Richardson.

Calculer une solution xi
( )1

 avec un pas h.

Calculer une solution x i2 1
2
+

( )
 avec un pas 2h.

Ensuite grâce à l'extrapolation de
Richardson, calculer une nouvelle solution.

( )x x x xi
extrapolation

i i i2 1 2 1
2

2 1
2

2 1
11

3+ + + += + −( ) ( ) ( ) ( )
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Méthodes des différences finies

Pour i = 2, ..., n-1

[ ]x h t x x h ti i i i i− +− + − + =1
2

1
22 1 0 2( . )

Nous avons:  t1=1 et x1=2, tn=3 et xn=-1

Considérons h = 0.5 :

[ ]
[ ]
[ ]

x h t x x h t

x h t x x h t

x h t x x h t

1
2

2 2 3
2

2

2
2

3 3 4
2

3

3
2

4 4 5
2

4

2 1 0 2

2 1 0 2

2 1 0 2

− + − + =

− + − + =

− + − + =

( . )

( . )

( . )

−
−

−

















⋅

















=
−















2 175 1 0

1 2150 1

0 1 2 125

1625

0 500

1625

2

3

4

.

.

.

.

.

.

x

x

x

Nous obtenons: x

x

x

x

x

1

2

3

4

5

2

0 552

0 424

0 964

1

=
=
= −
= −
= −

.

.

.
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′′ = + −x t t t x t( ) ( . ) ( )1 0 2

Avec les conditions aux limites : x(1) = 2 et x(3) = -1

Pour h=0.2 :

−
−

−
−

−
−

−
−

−



































⋅ =

−2 0304 1 0 0 0 0 0 0 0

1 2 0288 1 0 0 0 0 0 0

0 1 2 0272 1 0 0 0 0 0

0 0 1 2 0256 1 0 0 0 0

0 0 0 1 2 0240 1 0 0 0

0 0 0 0 1 2 0224 1 0 0

0 0 0 0 0 1 2 0208 1 0

0 0 0 0 0 0 1 2 0192 1

0 0 0 0 0 0 0 1 2 0176

1952

0 056

0 064

0

.

.

.

.

.

.

.

.

.

.

.

.

.

x

072

0 080

0 088

0 096

0104

1112

.

.

.

.

.



































Note: le système est tridiagonal.

Résultats:

t
Méthode

des différences finies
Méthode

de tir
1.0 2.000 2.000
1.2 1.351 1.348
1.4 0.792 0.787
1.6 0.311 0.305
1.8 -0.097 -0.104
2.0 -0.436 -0.443
2.2 -0.705 -0.712
2.4 -0.903 -0.908
2.6 -1.022 -1.026
2.8 -1.058 -1.060
3.0 -1.000 -1.000
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Méthodes des différences finies

′′ = + −x t t t x t( ) ( . ) ( )1 0 2

Avec les conditions aux limites (frontières) :
x(1) = 2 et x(3) = -1
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Conditions limites sur les dérivées.
Méthode de tir.

′′ = + −x t t t x t( ) ( . ) ( )1 0 2

Avec les conditions aux limites :
′ =x ( )1 0  et ′ = −x ( )3 1

Essais sur la valeur de x(1):

On essaie 2 tirs en remplaçant par les conditions initiales:

Premier tir: x1 1 2( ) =  et ′ =x1 1 0( )

Deuxième tir: x2 1 8( ) =  et ′ =x2 1 0( )

Combiner les 2 solutions avec ′x1 3( )  et ′x2 3( )

′x1 3( )  et ′x2 3( )  sont estimées avec la formules des différences
divisées.
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Conditions limites sur les dérivées.
Méthode des différences finies.

′′ = + −x t t t x t( ) ( . ) ( )1 0 2

Avec les conditions aux limites :
′ =x ( )1 0  et ′ = −x ( )3 1

Se discrétise en :
x x x

h
t t xi i i
i i i

+ −− +
= + −1 1

2

2
1 0 2( . )

[ ]x h t x x h ti i i i i− +− + − + =1
2

1
22 1 0 2( . )

Mais maintenant, cela est valable pour i = 1, ..., n.

Nous rajoutons 2 points : ( , )t x0 0  et ( , )t xn n+ +1 1

tels que:

x x h x t2 0 12− = ′( )

x x h x tn n n+ −− = ′1 1 2 ( )

Remarque:
Nous connaissons les dérivées aux limites

′ =x ( )1 0  et ′ = −x ( )3 1
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Exemple:
′′ = + −x t t t x t( ) ( . ) ( )1 0 2

Avec les conditions aux limites : ′ =x ( )1 0  et ′ = −x ( )3 1

Considérons h = 0.5 :

[ ]
[ ]
[ ]

x h t x x h t

x h t x x h t

x h t x x h t

1
2

2 2 3
2

2

2
2

3 3 4
2

3

3
2

4 4 5
2

4

2 1 0 2

2 1 0 2

2 1 0 2

− + − + =

− + − + =

− + − + =

( . )

( . )

( . )

x x h x t2 0 12− = ′( )
x x h x t6 4 52− = ′( )

−
−

−
−

−























⋅























=























2 2 2 0 0 0

1 2 175 1 0 0

0 1 2 15 1 0

0 0 1 2 125 1

0 0 0 2 2 1

0 250

0 375

0 500

0 625

1750

1

2

3

4

5

.

.

.

.

.

.

.

.

.

.

x

x

x

x

x

x

x

x

x

x

1

2

3

4

5

34795

3 70245

4 19833

4 82395

5 42757

= −
= −
= −
= −
= −

.

.

.

.

.


