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Définition :

Si A est une matrice de nxn, alors un vecteur non nul x est dit
vecteur propre de A si

Ax x= λ

λ est appelé valeur propre de A,
et x vecteur propre de A correspondant à λ.

Exemple :
A =

−










3 0

8 1
x =











1

2

Si λ>1 Dilatation.

Si 0<λ<1 Contraction.

Si λ<0 Changement de direction.
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Calcul analytique des valeurs propres
et des vecteurs propres

( )

Ax x

I A x

=
⇔

− =

λ

λ 0

Nous avons une solution non nulle ssi

( )det A I− =λ 0 Équation caractéristique de A.

Les valeurs satisfaisant cette équation sont
les valeurs propres de A.

Exemple :
A =

−










3 2

1 0

λ λI A− =








 −

−










1 0

0 1

3 2

1 0

( )det detλ
λ

λ
I A− =

− −









3 2

1

L’équation caractéristique de

A est λ λ2 3 2 0− + =
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Exemple : trouver les valeurs propres de:

A =
− −









2 1

5 2

et trouver les vecteurs propres de:

A = − −

















10 0 0

1 3 7

0 2 6

det

10 0 0

1 3 7

0 2 6

−

− − −
−

















λ
λ

λ

Les valeurs propres sont: λ1=10, λ2=4 et λ3=-1
λ1=10

10 0 0

1 3 7

0 2 6

10
1

2

3

1

2

3

− −

































=

















x

x

x

x

x

x
   

0

13 7

2 4

0

0

0

1

1 2 3

2 3

x

x x x

x x

− −
−









=

=
=

   

x

x

x

1

2

3

1
2

33
1

33

=

=

=














λ2=4
10 0 0

1 3 7

0 2 6

4
1

2

3

1

2

3

− −

































=

















x

x

x

x

x

x
   

6

7 7

2 2

0

0

0

1

1 2 3

2 3

x

x x x

x x

− −
+









=

=
=

   

x

x

x

1

2

3

0

1

1

=

= −
=









λ3=-1

10 0 0

1 3 7

0 2 6

1
1

2

3

1

2

3

− −

































= −

















x

x

x

x

x

x
   

11

2 7

2 7

0

0

0

1

1 2 3

2 3

x

x x x

x x

− −
+









=

=
=

   

x

x

x

1

2

3

0

1
2

7

=
= −

= −













max mignotte
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La localisation des valeurs propres :
Théorème de Gerschgorin

Ax x= λ

a x xij j
j

n

i
=

∑ =
1

λ pour i = 1 à n.

a x a xij j
j
j i

n

ii i
=
≠

∑ = −
1

( )λ

Si nous choisissons xi tel que x xi
j

j= max

λ − =
=
≠

∑a a
x

xii ij

j

ij
j i

n

1

λ − ≤ ≤
=
≠

=
≠

∑ ∑a a
x

x
aii ij

j

ij
j i

n

ij
j
j i

n

1 1

Posons

r ai ij
j
j i

n

=
=
≠

∑
1

C’est à dire la sommation des valeurs absolues des éléments de
la ligne i sauf aii.
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La localisation des valeurs propres

Les disques de Guerschgorin sont définis par :

{ }D a ri ii i= − ≤λ λ ,  i = 1 à n.

Théorème :

Les valeurs propres de la matrice A sont éléments
de l’union des disques Di.

S Di
i

n

=
=1
U

Note :
1. On vérifie toutes les possibilités pour i = 1 à n qui

pourraient vérifier x xi
j

j= max  pour chaque valeur

(vecteur) propres.
 

2. Puisque les valeurs propres peuvent être complexes,
nous obtenons des disques dans le plan complexe.

 

3. Si la matrice A est symétrique, les valeurs propres sont
réelles et les disques deviennent de simples intervalles.

 

4. aii : centre du disque. ri : rayon du disque.
 



Ift2421 7 Chapitre 7

Exemple :

A =

−

− −

















4 1 1

1 1 1

2 0 6

{ }D a r1 11 1= − ≤λ λ , r aij
j

1
2

3

=
=
∑ .

λ − ≤4 2

λ peut être complexe : λ λ λ= +R Ii

( ) ( )λ λR Ii− + − ≤4 0 2

( ) ( )λ λR I− + ≤4 2
2 2

( ) ( )λ λR I− + − ≤4 0 4
2 2

D1 : centre = (4,0), rayon = 2

D2 : centre = (1,0), rayon = 2

D1 : centre = (-6,0), rayon = 2
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La localisation des valeurs propres

Corollaires :

1. Les valeurs propres de la matrice A sont aussi éléments de
l’union des disques Di

T construit à partir de sa transposée AT :

S DT
i
T

i

n

=
=1
U

Note : En effet, A et AT ont les mêmes valeurs propres.

2. Les valeurs propres de la matrice A appartiennent donc à
l’intersection de S et ST :

( )λ ∈ ∩S S T

3. Une borne supérieure pour la plus grande valeur propre est
donc :

λ ≤






























= = = =
∑ ∑min max , max

i n
ij

j

n

j n
ij

i

n

a a
1

1
1

1
K K
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Exemple (suite) : pouvons nous améliorer le résultat ?

AT =

−

−
−

















4 1 2

1 1 0

1 1 6

DT
1  : centre = (4,0), rayon = 3

DT
2  : centre = (1,0), rayon = 1

DT
3  : centre = (-6,0), rayon = 2

( )λ ∈ ∩S S T

λ
λ
λ

1

2

3

5 7685

34694

12992

= −
=
=

.

.

.

Note : corollaire 3 :

[ ] [ ]{ }λ ≤ min max , , ,max , ,6 3 8 7 2 8
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Démonstration du corollaire 3

Ax x= λ

a x xij j
j

n

i
=

∑ =
1

λ pour i = 1 à n.

λ =
=

∑a
x

xij

j

ij

n

1

Il y a un i tel que : x xi
j

j= max

λ ≤
=

∑ a
x

xij

j

ij

n

1

λ ≤
=

∑ aij
j

n

1

Nous ne connaissons pas le i en question, nous choisissons le
max des sommations des éléments des lignes.

λ ≤
=

∑max aij
j

n

1

Si nous considérons AT, la transposée de A :

λ ≤
=
∑max aij
i

n

1

λ ≤






























= = = =
∑ ∑min max , max

i n
ij

j

n

j n
ij

i

n

a a
1

1
1

1
K K
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Méthode des puissances

Supposons que nous cherchions la plus grande valeur propre de
la matrice A (n x n) et que cette matrice possède n vecteurs

linéairement indépendants x1, x2, ..., xn associés respectivement
aux valeurs propres λ1, λ2, ..., λn qui sont dans l’ordre.

λ λ λ λ1 2 3 0> ≥ ≥ ≥ >K n

La valeur propre λ1 est dite dominante.

Tout vecteur x de Rn  peut donc s’écrire :

x c xi i
i

n

=
=
∑

1

puisque les vecteurs propres de A forment une base de Rn .

En multipliant ce vecteur par A, nous obtenons :

x Ax c Ax c xi i
i

n

i i i
i

n
( ) ( )1 0

1 1

= = =
= =
∑ ∑ λ

Si nous répétons cette opération k fois :

( )x A x c x

c x c x c x

k k
i i

k

i
i

n

k

k

n
n

k

n

( ) ( )= =

= +






 + +





















=
∑0

1

1 1 1 2
2

1
2

1

λ

λ
λ
λ

λ
λ

K
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Or nous avons 
λ
λ

i pour i
1

1 1< ≠

Donc le terme λ1 1 1
kc x  devient dominant dès que k est assez

grand. Donc pour k assez grand , nous avons :

x c xk k( ) ≅ λ1 1 1

( )x c x c x xk k k k( ) ( )+ +≅ = ≅1
1

1
1 1 1 1 1 1 1λ λ λ λ

x Ax xk k k( ) ( ) ( )+ = ≅1
1λ

en choisissant 2 composantes i, nous obtenons :

λ1

1

≅
+x

x
i

k

i
k

( )

( )

• Nous obtenons donc la plus grande valeur propre et son
vecteur propre en même temps.

 

• Dépassement de la capacité de l’ordinateur ?

max mignotte

max mignotte
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Pour éviter de dépasser les capacités de l’ordinateur, nous avons
intérêt à normaliser les vecteur itérés xk à chaque étape ; nous

pouvons par exemple ramener à 1 la plus grande composante (en
valeur absolue) de xk, en appliquant l’algorithme :

x Ax y
m

x

x Ay y
m

x

x Ay y
m

xk k k

k

k

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 0 1

1

1

2 1 2

2

2

1

1

1

1

= =

= =

= =−

M M

où mk est la composante de xk de module maximum.

Dans ces conditions, nous avons finalement, pour k assez grand :

y y
m

x
m

Ayk k

k

k

k

k≅ = =+

+

+

+

11

1

1

1

1 1( )

donc

m y Ayk
k k

+ ≅1

Remarque :
lim
k

km
→∞

= λ1 lim
k

ky v
→∞

=
r

1

max mignotte
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Exemple :

     
A = − −

















10 0 0

1 3 7

0 2 6
  

x ( )0

1

0

0

=

















10 0 0

1 3 7

0 2 6

1

0

0

10

1

0

10

1

01

0

10 0 0

1 3 7

0 2 6

1

01

0

10

0 7

0 2

10

1

0 07

0 02

10 0 0

1 3 7

0 2 6

− −

































=

















=

















− −

































=

















=

















− −








.

. .

.

.

.



























=

















=

















− −

































=

















=

















− −









1

0 07

0 02

10

0 65

0 26

10

1

0 065

0 026

10 0 0

1 3 7

0 2 6

1

0 065

0 026

10

0 623

0 286

10

1

0 0623

0 0286

10 0 0

1 3 7

0 2 6

.

.

.

.

.

.

.

.

.

.

.

.

























=

















=

















1

0 0623

0 0286

10

0 6129

0 2962

10

10

0 06129

0 02962

.

.

.

.

.

.

λ1 110

1

2 33

1 33

= =

















r
x /

/

max mignotte
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Remarques :

1. Nous avons :
Ax x= λ

A A x A x A x− − −= =1 1 1λ λ

x A x= −λ 1

A x x− =1 1
λ

Pour obtenir la plus petite valeur propre, nous pouvons donc
utiliser la méthode des puissances sur a-1.

2.  Si λ λ1 2≈  (... λ λn n− ≈1 ), alors la convergence sera très

lente  car 
λ

λ
2

1

1<<  doit être vrai pour avoir une convergence

rapide.

3.  Le choix du vecteur initial influence beaucoup la rapidité de la
convergence. Si le vecteur initial est près du vecteur propre 

r
x1

alors les coefficients ci, i ≠ 1, seront petit par rapport à c1.

x A x c x c x c xk k k k
n n

k
n

( ) ( )= = + + +0
1 1 1 2 2 2λ λ λK
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Exemple :

A = − −

















10 0 0

1 3 7

0 2 6

A− = − −
−

















1

01 0 0

015 15 175

0 05 05 0 75

.

. . .

. . .
  

x ( )0

1

1

1

=

















A

A y

A y

−

−

−

















= −

















= −
−

−

















=
−
−

















= −
−

















= −

















= −
−

−

1

1 1

1 2

1

1

1

01

31

12

31

0 0323

1

0 3871

0 0032

0 8274

0 2113

0 8274

0 0039

1

0 2554

0 004

10525

0 3083

10525

0 0004

1

0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.2929

0 0000

0 9875

0 2803

0 9875

0

1

0 2839

1 3

















= −

















= −
−

















−A y

.

.

.

.

.

Valeurs exactes :

λ3 31

0

1

0 2857

= − =
−

















r
x

.
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Comment obtenir la deuxième valeurs propres ?

Méthode de déflation

a.  Calculer de λ1  et 
r
x1  par la méthode des puissances.

 

b.  Construire A1 :

( )
A A

x x

x x

T

T
1

1
1 1

1 1

= − λ
r r

r r

c.  Appliquer à nouveau la méthode des puissances sur A1

λ2  et 
r
x2

Remarque :
A1  possède les mêmes λi  que A sauf λ1 0=

En effet :

( ) ( )
A

x x

x x
x Ax

x x

x x
x x

T

T

T

T−








 = − =λ λ1

1 1

1 1
1 1 1

1 1

1 1
1 10

r r

r r
r r

r r

r r
r r

( ) ( )
A

x x

x x
x Ax

x x

x x
x Ax x

T

T i
i

i

T

T i i i i−








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Exemple :
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