


Définition :

Si A est une matrice de nxn, alors un vecteur non nul x est dit
vecteur propre de A si

Ax = Ax

A est appelé valeur propre de A,
et x vecteur propre de A correspondant a A.

Exemple : {3 0}

<l

Si A>1 Dilatation.
Si O<A<1 Contraction.

Si A<0 Changement de direction.
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Calcul analytique des valeurs propres
et des vecteurs propres

Ax =M\x
~
(A1-A4)x=0

Nous avons une solution non nulle ssi

det(A - M ) =0  Equation caractéristique de A.

Les valeurs satisfaisant cette équation sont
les valeurs propres de A.

Exemple : 3 2
-1 0

N kl 0] 3 2

I=4=N, 1] [-1 0

det(A 1 —A)=d A3 =2

et - = et_ 1 A

L’équation caractéristique de
Aest ¥V =30+2=0
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Exemple : trouver les valeurs propres de:
Azl 2 -1
L5 2

et trouver les vecteurs propres de:

10 0 0

A= 1 -3 =7

0 2 6
10— 0 0
det 1 -3-A -7
0 2 6-A

Les valeurs propres sont: A;=10, A,=4 et A3=-1

Ai=10
10 0 ofx] [x] [ox =0 | 7]
=3 -7lx[=10x| §x -13x, -7x=0 1%=33
0 2 6]ux EN 2x, —4x,=0 x3=i
>33
=4
100 0o ofx] [x] [6x =0 [x=0
I =3 =T7|x[=4x,| §x -7x, —-7x,=0 qx,=-1
0 2 6]x EN 2x, +2x,=0 x;=1
Aa=-
10 0 Ofx X, 11x, =0 X, =
1 =3 =7|x,|=—1x, x, —=2x, =T7x=0 x, =+1
0 2 6|x %, 2%, +7x,=0 x}z_%
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La localisation des valeurs propres :
Théoreme de Gerschgorin

Ax =Ax

Zaiixj =My, pouri=1an.

n
Zaijxj =(A—a,)x
j=1

i

Xj

Si nous choisissons x; tel que ‘x,.‘ — max

n xj n
‘7‘_% SZ‘%“_ S ij
j=1 =

J#i J#i

Posons

)

j=1
J#i

C’est a dire la sommation des valeurs absolues des éléments de
la ligne 1 sauf aji.

a;
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Note :

1ft2421

La localisation des valeurs propres

Les disques de Guerschgorin sont définis par :
Diz{le_aii‘S’?}, i=1lan.

Théoreme :

Les valeurs propres de la matrice A sont éléments

de I’union des disques D;.

s=Un
i=1

. On vérifie toutes les possibilités pour i = 1 a n qui

pourraient vérifier M: MaxX;| pour chaque valeur

(vecteur) propres.

. Puisque les valeurs propres peuvent &tre complexes,

nous obtenons des disques dans le plan complexe.

. S1 la matrice A est symétrique, les valeurs propres sont

réelles et les disques deviennent de simples intervalles.

. a5 : centre du disque. r; : rayon du disque.

6 Chapitre 7




Exemple :
4 -1 1
A—{ I 1 1]
-2 0 -6

3
D1={7\.H7\.—a11‘3r1}’ ”1:2

A—4/<2

A peut étre complexe : A=A, +ik,

(he—4)+i(n, —0) <2

\/(A‘R - 4)2 + (7%)2 <2
(A, —4) +(r,-0) <4
D, : centre = (4,0), rayon = 2

D;: centre = (1,0), rayon = 2

D, : centre = (-6,0), rayon = 2
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La localisation des valeurs propres
Corollaires :

1. Les valeurs propres de la matrice A sont aussi éléments de
1’union des disques D;" construit a partir de sa transposée A" :

§'= LnJD,.T
i=1

Note : En effet, A et AT ont les mémes valeurs propres.

2. Les valeurs propres de la matrice A appartiennent donc a
I’intersection de S et S™ :

re(snsT)

3. Une borne supérieure pour la plus grande valeur propre est
donc :

i=l..n

n n
IA| < min max{z a; }, max{z a; }
1
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Exemple (suite) : pouvons nous améliorer le résultat ?

4 1 -2
AT=l-1 1 0
11 -6

D/ : centre = (4,0), rayon = 3
D] : centre = (1,0), rayon = 1

D; : centre = (-6,0), rayon = 2

re(snsT)
A, = 57685
A, = 34694
A= 12992

w

Note : corollaire 3 :
Al < min{max[6,3,8],max[7,2,8]}
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Démonstration du corollaire 3

Ax =\x
n
Z{a,.jxj =My, pouri=1an.
=
n
X.
J
A= Za,-,-_
=1 %

Ily aunitel que : ‘xi‘ = maxx,

A<y
j=1
E)
j=1

Nous ne connaissons pas le i en question, nous choisissons le
max des sommations des éléments des lignes.

n
A < maXZ‘aij‘
=1

P a2
le_

A

Si nous considérons A7, la transposée de A :

n
Al < maxZ
i=1

ajj

n n
|A| < min{ max Zai. , max Za..
i=l...n| % J j=1...n 1 v

Jj=1
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Méthode des puissances
Supposons que nous cherchions la plus grande valeur propre de
la matrice A (n x n) et que cette matrice possede n vecteurs

linéairement indépendants x;, x», ..., X, associés respectivement
aux valeurs propres Aj, Ay, ..., A, qui sont dans 1’ordre.

> =2 n = 2 [h > 0
La valeur propre A; est dite dominante.
Tout vecteur x de R" peut donc s’écrire :

n
X = Z GX;
i=1

puisque les vecteurs propres de A forment une base de R".

En multipliant ce vecteur par A, nous obtenons :

n n
1 0
xP = Ax = ZC,-AX,- = Zcikixl.
i=1 i=1

Si nous répétons cette opération k fois :

n
: k
x = A = Zci(ki) X,
i=1

k k
A A,
=\ ¢x, +cz(k—j] x2+...+cn(k—1) X,
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A,
L .
Or nous avons A, <1 pouri#l

k . . N
Donc le terme AicX; devient dominant dés que k est assez
grand. Donc pour k assez grand , nous avons :

(k) ~ yk
x" = Ahex

(k+1) _ nk+l _ k _ (k)
X =N e, = 7\.1(7»101)61) =Ax
x = Ax = p

en choisissant 2 composantes i, nous obtenons :

D

A=l
1 £

1

¢ Nous obtenons donc la plus grande valeur propre et son
vecteur propre en méme temps.

e Dépassement de la capacité de 1’ordinateur ?
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Pour éviter de dépasser les capacités de I’ordinateur, nous avons
intérét 2 normaliser les vecteur itérés x* a chaque étape ; nous
pouvons par exemple ramener a 1 la plus grande composante (en
valeur absolue) de x*, en appliquant ’algorithme :

1
+ D = Ax© —
m
(2) (1) 2 1 (2)
x7 = Ay y =—x
n,
(k) (k=1) k 1 (k)
x" = Ay yo=—x
ny

ot my est la composante de x* de module maximum.

Dans ces conditions, nous avons finalement, pour k assez grand :

1 1
k _ k+1 __ (k+1) __ k
y =y =——x '=—""Ay
m ., m
donc
k k
mk+1y — Ay
Remarque :
. _ . k _ =
limm, =\, limy" =,
k—>o0

k— oo
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Exemple :
10
A=| 1
0

1ft2421

1
x2 =10
0
10 1
1 =10/ 0.1
0 0
10 ]
07| =10007
02 0.02
10 1
065| =100065
026 0.026
10 1
0623 | =10 00623
0286 00286
10 1
0.6129 | = 10| 006129
02962 002962
1
%=2/33

1/33
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Remarques :

1. Nous avons :
Ax = Ax

A'Ax=A"Ax=AA"%x
x=MAA'x

Aillex
A

Pour obtenir la plus petite valeur propre, nous pouvons donc
utiliser la méthode des puissances sur a™’.

2. 581 ‘}‘1‘ = ‘}‘2‘ (" ‘}\‘n—l‘ = ‘}\‘n
|

lente car ‘k ‘ <<l doit €tre vrai pour avoir une convergence
1

), alors la convergence sera tres

rapide.

3. Le choix du vecteur initial influence beaucoup la rapidité de la
convergence. Si le vecteur initial est prés du vecteur propre X,
alors les coefficients c;, 1 # 1, seront petit par rapport a c;.

x = A Y = e Nx, + e, Nx,+. e, M x,
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Exemple :

10 0 0
A=l 1 -3 -7 ATl =
0 2 6
1 [ 01
Alll =|-31
1 12
[~ 0.0032
Al =|-08274
| 02113
0.004
ATly? =|-10525
| 03083
[ 0.0000
ATy =|-09875
| 02803
Valeurs exactes :
A, =-1
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01 0 0 1
015 —15 —175| x=|1
005 05 075 1
[~ 00323
=31 1
| —03871]
[ 00039 ]
= —08274 1
- 02554
—0.0004
= —1.0525 1
—0.2929
0
— 09875 1
— 02839
0
= 1
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Comment obtenir la deuxiéme valeurs propres ?
Méthode de déflation

a. Calculer de A, et X, par la méthode des puissances.

b. Construire A' :

c. Appliquer 2 nouveau la méthode des puissances sur A’

7‘2 et X,

Remarque :
A' possede les mémes A; que A sauf A, =0

En effet :
— T - =T
A-A (;C?C;—C—l) 41 = Aal - 7\’1 (f?}l) fl = 07‘1
= =T = =T
a-n e s B s
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Exemple :

10 0 0
A=l 1 -3 -7
0 2 6
0 0 0 L[ % %)
I _ _ _ I )
0 2 6] jos3l%
00457 —0.6033 —03016 1
A'=| 03967 —-33066 —7.0183 X0 =1
—~03016 19817 59909 1
1 08593 ] 0.0890
Al =|-9.6581 =-9.6581 1
1 | 7.6709 | —0.7942
03596 0.1283
Ay =| 25730 =-2.8033 -09178
| —28033] 1
03010 0.0752
AUy =|-39727| =4.0001| — 09931
40001 1
0.0752
A, = 4.0001 %, =|-09931
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